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Abstract
Tissue engineering is an emerging field of science 
that focuses on creating suitable conditions for the 
regeneration of tissues. The basic components for 
tissue engineering involve an interactive triad of 
scaffolds, signaling molecules, and cells. In this context, 

stem cells (SCs) present the characteristics of self-
renewal and differentiation capacity, which make them 
promising candidates for tissue engineering. Although 
they present some common markers, such as cluster of 
differentiation (CD)105, CD146 and STRO-1, SCs derived 
from various tissues have different patterns in relation 
to proliferation, clonogenicity, and differentiation abilities 
in vitro  and in vivo . Tooth-derived tissues have been 
proposed as an accessible source to obtain SCs with 
limited morbidity, and various tooth-derived SCs (TDSCs) 
have been isolated and characterized, such as dental 
pulp SCs, SCs from human exfoliated deciduous teeth, 
periodontal ligament SCs, dental follicle progenitor cells, 
SCs from apical papilla, and periodontal ligament of 
deciduous teeth SCs. However, heterogeneity among 
these populations has been observed, and the best 
method to select the most appropriate TDSCs for 
regeneration approaches has not yet been established. 
The objective of this review is to outline the current 
knowledge concerning the various types of TDSCs, and 
discuss the perspectives for their use in regenerative 
approaches.
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Core tip: Stem cells (SCs) present the characteristics of 
self-renewal and differentiation capacity, which make 
them promising candidates for regenerative approaches. 
Although they present some common markers, SCs 
derived from various tissues have different patterns 
of proliferation, clonogenicity, and differentiation. 
Tooth-derived tissues are an accessible source of SCs 
with limited morbidity. However, heterogeneity within 
populations of tooth-derived SCs has been observed, 
and the best method to select the most appropriate 
SCs for regenerative approaches has not yet been 
established.
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INTRODUCTION 
Stem cells (SCs) are cells that present two distinctive 
characteristics: they are able to continuously self-
renew, and they can be induced to differentiate into 
multiple specialized cell types[1]. SCs have therefore 
been a subject of interest to researchers and the 
general public, as a way to regenerate damaged 
tissues and improve the resolution of some illnesses, 
such as Parkinson’s disease[2] and diabetes[3], that 
current approaches in the medical field have not 
yet achieved. In this context, many studies have 
been conducted to identify and isolate SCs and to 
understand their biologic aspects. 

SCs can be isolated in the earliest stages of 
embryogenesis (embryonic SCs)[4-9] or in various 
postnatal tissues (adult SCs)[2,10,11] (Table 1). Although 
embryonic SCs present interesting properties, such 
as the ability to differentiate into hundreds of other 
cell types, the bioethical aspects involved in the study 
of these cells, especially for human embryos, have 
hindered advances in this field and research has thus 
been focused on adult SCs[1,10-12]. Adult SCs can be 
obtained from adult specialized tissues, such as bone 
marrow[13-16], skin[17,18] and fat[19-23], where they likely 
act to renew cell populations and maintain tissue 
homeostasis, or help to repair the tissue in case of 
injury[18,24,25]. Even though adult SCs can be obtained 
from less ethically concerning sources, they have some 
limitations compared to embryonic SCs, such as more 
limited lifespan and differentiation potential[1,11,24,26]. 
In order to overcome these drawbacks, adult SCs can 
be reprogrammed by the insertion of SC-associated 
genes, forming induced pluripotent SCs (iPSCs)[3,27-31].

Within the medical field, mesenchymal SCs (MSCs) 
have been widely studied to understand their role in 
skeletal tissue development, physiology and repair[14], 
and because of their promising therapeutic potential[2]. 
MSCs are characterized by the capacity to differentiate 
into multiple types of skeletal tissues[14,32-36]. They were 
first described as adherent, clonogenic, self-renewing, 
fibroblast-like cells (colony-forming unit fibroblasts) 
obtained from bone marrow[35,37,38]. Subsequently, 
several studies were performed to identify other 
sources and to understand how these cells can give 
rise to distinct cell types, for the purpose of using 
these cells in regenerative procedures[39-43]. 

In this context, dental tissues have also been 
investigated as niches of MSCs, and many tooth-
derived SCs (TDSCs) have been identified and 
characterized, including dental pulp SCs (DPSCs)[44-48], 
SCs from human exfoliated deciduous teeth (SHED)[49-53], 

periodontal ligament SCs (PDLSCs), dental follicle 
progenitor cells (DFPCs)[54-56], SCs from apical papilla 
(SCAP)[19,56-59], and periodontal ligament of deciduous 
teeth SCs (DePDL)[50,51,60-62] (Figure 1). Dental tissues 
are an accessible source of MSCs that can be obtained 
with limited morbidity and without additional risks to 
the donor, as extracted/exfoliated teeth represent a 
waste product of dental procedures[13,63-65]. However, 
the properties of these TDSCs and their feasibility for 
regenerating tissues still need to be investigated in 
greater detail. Thus, the aim of the present review is 
to describe the current knowledge concerning TDSCs, 
and to consider the perspectives for their use in 
regenerative approaches.

ISOLATION, CHARACTERIZATION, AND 
DIFFERENTIATION POTENTIAL OF TDSCs
Because of the variety of methodologies used to 
isolate and characterize MSCs, the Mesenchymal 
and Tissue Stem Cell Committee of the International 
Society for Cellular Therapy proposed minimal criteria 
to define human bone marrow SCs (BMSCs) and other 
types of MSCs in vitro[32]. Briefly, MSCs must adhere 
to plastic under standard culture conditions, express 
cluster of differentiation (CD)105, CD73 and CD90, 
but not CD45, CD34, CD14, CD11b, CD79a, CD19, or 
human leukocyte antigen-DR surface molecules, and 
have the potential to differentiate along osteogenic, 
chondrogenic and adipogenic lineages[32]. Therefore, 
studies characterizing TDSCs usually evaluate these 
criteria, as well as clonogenicity (capacity to form 
adherent colonies derived from one single cell) and 
differentiation potency, in order to compare them to 
each other and to BMSCs[66,67] (Table 2). 

DPSCs 
DPSCs were the first TDSCs isolated and characterized 
in 2000[44]. Obtained from permanent third molars, 
these cells were found to be more proliferative than 
BMSCs, and had the capacity to form mineral deposits 
in vitro, though in reduced amounts compared to 
BMSCs[44]. DPSCs also failed to form lipid-laden 
adipocytes in vitro, whereas BMSCs are capable of 
differentiating into adipocytes[44]. However, more recent 
studies demonstrate that DPSCs can differentiate into 
adipocyte cells when other supplements are added to 
the adipogenic induction medium[46,65].

When transplanted in vivo, some DPSC clones 
differentiate into aligned odontoblast-like cells, with 
prolonged processes oriented into newly formed 
dentin-like structures[44,46], whereas BMSCs form 
distinct lamellae of bone[44]. DPSCs can also form 
reparative dentin-like tissue on the surface of human 
dentin in vivo[68].

SHED
In 2003, progenitor cells were isolated from the 
remnant pulp of exfoliated deciduous teeth[49]. SHED 
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Table 2  Characterization of tooth-derived stem cells

TDSCs Ref. Location Expression markers Differentiation capacity

Positive Negative In vitro In vivo

DPSCs [13,44,46,51,65] Permanent tooth pulp CD29, CD44, CD73, CD90, 
CD105, CD146, STRO-1, Oct-3/4, 
Sox-2, nanog

CD14, CD34, 
CD45

Osteoblast, adipocyte, 
chondrocyte, hepatocyte, 
neuron

Dentin-like structures

SHED [49,51,53,69,70] Deciduous tooth pulp CD29, CD105, CD146, STRO-1 CD31, CD34 Osteoblast, odontoblast, 
adipocyte, neural cell

Dentin formation, induce 
bone formation by murine 
host cells

SCAP [13,56,57,65] Apical papilla of 
developing tooth

CD24, CD29, CD31, CD44, CD73, 
CD90, CD105, CD106, CD146, 
CD166, STRO-1, Oct-3/4, Sox-2, 
nanog, survivin

CD14, CD18, 
CD34, CD45, 
CD150

Osteoblast, adipocyte, 
chondrocyte, hepatocyte, 
neuron

Dentin-like tissue

DFPCs [13,54,56,65,72] Dental follicle of 
developing tooth

CD29, CD44, CD73, CD90, 
CD105, nestin

CD14, CD31, 
CD34, CD45, 
CD117

Osteoblast, adipocyte, 
chondrocyte, hepatocyte, 
neuron

Bone/cementum-like tissue

PDLSCs [13,57,60,73] Permanent tooth 
periodontal ligament

CD44, CD90, CD105, CD166, 
CD146, STRO-1, Oct-3/4, Sox2, 
nanog, nestin

CD14, CD34, 
CD34, CD45

Osteoblast/
cementoblast,adipocyte, 
neuron

Periodontal ligament/ 
cementum-like tissue

DePDL [60] Deciduous tooth 
periodontal ligament

CD105, CD166, STRO-Oct-4 CD34, CD45 Osteoblast, adipocyte

CD: Cluster of differentiation; DePDL: Periodontal ligament of deciduous teeth stem cells; DFPCs: Dental follicle progenitor cells; DPSCs: Dental pulp stem 
cells; Oct: Octamer; PDLSCs: Periodontal ligament stem cells; SCAP: Stem cells from apical papilla; SHED: Stem cells from human exfoliated deciduous teeth; 
Sox2: SRY-box containing gene 2.

were found to be more proliferative than BMSCs 
and DPSCs[49,51], and showed higher capability for 
osteogenic and adipogenic differentiation than DPSCs 
in vitro[51]. SHED can also differentiate into neural 
cells[69]. When 12 single-colony-derived SHED clones 
were transplanted into immunocompromised mice, 
only three clones demonstrated the potential to 
generate ectopic dentin-like tissue on the hydroxyapatite/
tricalcium phosphate (HA/TCP) carrier equivalent 
to that generated by multicolony-derived SHED[49]. 
When SHED were seeded into human tooth slices and 
transplanted into immunodeficient mice, they were 
also able to form a dentin-like structure[70]. Although 
some researchers claim that SHED have the ability to 
differentiate into osteoblasts in vivo[51], Miura et al[49] 
reported that, in fact, SHED act as an osteoinductive 
factor, inducing the host cells to form bone.

SCAP
The apical papilla is the tissue located at the apex of 
the root of developing teeth[66], and is distinct from 
the pulp[71]. As this tissue is associated with root 
formation, it potentially provides a source of MSCs for 

this purpose. SCAP are the cells isolated from this tissue 
that present characteristics of MSCs, and can give 
rise to odontoblastic, osteoblastic and adipocyte-like 
cells when cultured under appropriate conditions[57]. 
SCAP also have the capability to form a dentin-like 
structure when transplanted into immunocompromised 
mice, using HA/TCP as a scaffold[57]. Sonoyama et 
al[57] evaluated whether SCAP and DPSCs are the 
same or distinct MSC populations based on their 
cDNA microarray profile, and observed that many 
genes were differentially expressed by these MSC 
populations. In particular, CD24 and survivin were 
highly expressed in the SCAP population. Additionally, 
SCAP also showed other favorable characteristics, such 
as higher proliferative rate and telomerase activity, and 
improved migration capacity[57].

DFPCs
The dental follicle is a condensation of ectomesenchymal 
cells that surrounds the tooth germ in early stages of 
tooth formation and contains cells that form the three 
tissues that constitute the periodontium: periodontal 
ligament, cementum and alveolar bone[54,72]. When the 
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Table 1  Classification of stem cells according to their plasticity[1,2,41,66]

Stem cell type                                                                                      Description

Totipotent Stem cells able to differentiate into cells of all three germ layers (ectoderm, mesoderm and endoderm) and extra-embryonic tissues (e.g., 
zygote)

Pluripotent Stem cells able to differentiate into all cells of the body, but that cannot form extra-embryonic tissues (e.g., embryonic stem cells and 
induced pluripotent stem cells)

Multipotent Stem cells that have differentiation abilities restricted to some cell types, usually from the germ layer they are derived from (e.g., 
mesenchymal stem cells)
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it was supposed that putative MSCs would be present 
in the periodontal ligament, which was confirmed 
in 2004[73]. PDLSCs show expression of STRO-1 
and CD146, SC markers previously reported to be 
expressed in BMSCs and DPSCs, and also express 
scleraxis, a tendon-specific transcription factor[73].

PDLSCs are more proliferative and clonogenic 
than BMSCs[34]. PDLSCs can also differentiate into 
adipocytes[34,73] and chondrocytes[34], as well as 
osteoblasts/cementoblasts[34,60,73]. Although PDLSCs 
are able to form mineralized tissue in vitro when 
osteoblastic/cementoblastic differentiation is 
induced, they form fewer mineralized nodules than 
BMSCs[34,73]. Additionally, when transplanted into 
immunocompromised mice, some clones of PDLSCs 
have been shown to form periodontal ligament-like 
structures in vivo[73]. 

DePDL
As MSCs can be isolated from the pulp of deciduous 
teeth, it was thought that the periodontal ligament 
of deciduous teeth may also harbor MSCs[60]. In 
2010, DePDL were isolated and compared with 
their permanent counterparts and found to be more 
proliferative than PDLSCs[60]. Moreover, it was observed 
that, although DePDL and PDSLCs have the ability to 
differentiate into both adipocyte-like and osteoblast-
like cells in vitro, DePDL show a higher potential for 
adipogenic commitment, and PDLSCs have a higher 
potential for osteogenic commitment[60].

heterogeneity of DPFCs was analyzed, it was observed 
that, although all cloned cell lines were positive for MSC-
related surface markers (CD105, CD44, CD29) and 
negative for hematopoietic markers (CD34, CD117), 
they were different in terms of proliferation and 
mineralization patterns, indicating that they could be 
committed to distinct lineages[72].

In order to avoid donor variability, TDSCs from 
follicle, pulp and papilla were isolated from a single 
donor tooth and the morphology, proliferation 
rate, expression of MSC-specific and pluripotency 
markers, and in vitro differentiation into osteoblasts, 
adipocytes, chondrocytes and hepatocyte-like cells were 
compared[65]. Adherent, fibroblast-like morphology 
was observed in all TDSCs cultured under the same 
standard conditions, and DFPCs were more proliferative 
than DPSCs and SCAP[65]. Although all three cell types 
were able to differentiate into the osteoblast lineage, 
DFPCs and DPSCs showed higher potentials than SCAP 
to form mineralized nodules in vitro[65]. Additionally, 
when cultivated under chondrogenic-inducing conditions, 
DFPCs expressed all three chondrogenic-specific 
markers (aggrecan, and type Ⅰ and type Ⅲ collagen), 
whereas DPSCs and SCAP only expressed aggrecan[65]. 

PDLSCs
The periodontal ligament harbors a heterogeneous 
cell population, with subsets of cells in various stages 
of commitment to fibroblastic and osteoblastic/
cementoblastic lineages[34,73,74]. Within these subsets, 
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DFPCs

DPSCs

SHED

Second 
permanent lower 
molar germ

SCAP
PDLSCs

DePDL
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permanent lower 
premolar germ

Second deciduous 
lower molar

First permanent 
lower molar

Figure 1  Sources of tooth-derived stem cells. DePDL: Periodontal ligament of deciduous teeth stem cells; DFPCs: Dental follicle progenitor cells; DPSCs: Dental pulp 
stem cells; PDLSCs: Periodontal ligament stem cells; SCAP: Stem cells from apical papilla; SHED: Stem cells from human exfoliated deciduous teeth.
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iPSCs from TDSCs
Following reports of reprogramming of dermal fibroblasts 
to behave like embryonic SCs[27,28], studies were 
conducted to evaluate if other cell types could also 
be reprogrammed, including TDSCs[29,30]. It was 
reported that human gingival and periodontal ligament 
fibroblasts[29], SHED, SCAP and DPSCs[30] can be 
reprogrammed as iPSCs, with formation of teratomas 
after implantation in immunocompromised mice[29,30].

PERSPECTIVES ON TDSCs IN 
REGENERATIVE APPROACHES 
Tissue engineering is an emerging field based on basic 
science and engineering technology, designed to create 
suitable conditions to regenerate damaged tissues[75-78]. 
The basic components for tissue engineering involve an 
interactive triad of scaffolds[79-81], signaling molecules[82-84] 
and cells[24,33,41,85], which play a fundamental role in the 
regeneration process[24,76,86,87]. Scaffolds serve as a three-
dimensional template mimicking the extracellular matrix; 
signaling molecules enhance this cellular activity by 
stimulating cells to migrate, proliferate and differentiate; 
and cells provide the machinery synthesis of the 
extracellular matrix and tissue regeneration[24,75,76,88,89]. 
Due to their interesting properties, including self-renewal 
and differentiation abilities, MSCs are considered important 
for tissue maintenance and renewal, and, therefore, a 
promising candidate for tissue engineering[24,90-94].

Some studies demonstrated that cell-based therapies 
are able to regenerate dental tissues[48,57,70,95-98]. In a 
study in dogs, complete pulp regeneration was achieved 
when CD105+ DPSCs with stromal cell-derived factor-1 
were transplanted into pulp, and this was not observed 
when total pulp cells or CD105+ adipose-derived 
cells were used[48]. Supplementation of guided tissue 
regeneration with periodontal ligament cells for the 
treatment of class Ⅱ and Ⅲ furcation defects in dogs 
enhances periodontal regeneration[95,97]. Twelve weeks 
after PDLSCs with an HA/TCP scaffold were transplanted 
into periodontal defects in a minipig model, new bone, 
cementum and periodontal ligament formation was 
observed[98]. Sonoyama et al[57] also explored the 
potential of human PDLSCs and SCAP to generate 
a root-periodontal ligament complex in minipigs. 
They were able to obtain engineered roots capable of 
supporting porcelain, though with lower compressive 
strength. Nakahara[96] reported the formation of root 
and periodontal ligament in a new culture system using 
one tooth crown collected from a neonatal mouse, 
which was referred to as a “test-tube dental implant”. 
The author stated that cell therapy will be the next 
generation of dental medicine, but further information 
regarding human SCs is necessary for safe and reliable 
clinical applications[96]. 

In regard to human clinical trials, autologous 
progenitor cells obtained from periodontal ligament 
have been used to treat intrabony defects[99]. These 
progenitor cells were of a later cell lineage with 

decreased capacity for osteogenic and adipogenic 
differentiation compared to PDLSCs in vitro. Despite 
this, these progenitors were able to promote 
improvement in clinical and radiographic parameters. 
Another study reported the cultivation of periodontal 
ligament cells on titanium pins that were subsequently 
implanted in patients and in dogs[91]. Clinical evaluation 
of the implants placed in the patients showed 
satisfactory mechanical function, and radiographs 
revealed bone filling and formation of a lamina-dura 
around the implants. Additionally, histologic evaluation 
of the implants placed in dogs revealed a ligament-
like formation. Although these studies are not directly 
related to MSCs, they indicate that cell therapy can be a 
feasible clinical approach in the near future. 

Despite these promising studies in cell-based tissue 
engineering, it is important to highlight that the best 
method to select the most appropriate MSC type for 
regenerating dental tissues is not yet clear. Although 
BMSCs, DPSCs, SHED, SCAP, DFPCs, PDLSCs, and 
DePDL present a common marker profile, they differ in 
their clonogenicity, proliferative ability, and differentiation 
potential in vitro and in vivo, suggesting that these 
properties are related to the microenvironments of 
origin of each cell lineage[13,24,34,44,60,65,67,73]. Additionally, 
it has been noted that, even in the same population of 
MSCs, there are heterogeneous cell subpopulations with 
distinct differentiation potentials[100]. This heterogeneity 
in relation to the ability to differentiate in vitro and 
to form dental tissues in vivo has also been reported 
in some TDSCs lineages, including DPSCs[44,46,67], 
SHED[49], DFPCs[72], and PDLSCs[34,73,74,101-104]. Therefore, 
it can be concluded that, although there are MSC-
related surface markers, such as STRO-1, CD146 and 
CD105, specific surface markers associated with the 
hierarchical commitment to differentiation pathways 
of TDSCs are not yet well established. In this context, 
further advances in understanding the regulation of 
MSCs during differentiation and dental development are 
required in order to develop new approaches for dental 
tissue regeneration with predictable outcomes[19,26,67,89].

CONCLUSION
The interest in organ regeneration using SCs has 
increased in the last decade. In this context, TDSCs 
are promising candidates, as they are readily available, 
highly proliferative, and present multi-differentiation 
abilities. Research on cell therapy for regenerating 
dental tissues has already been done, and shows 
promising results. Nevertheless, further research is 
needed to better characterize TDSCs and to understand 
their differentiation pathways in order to develop the 
most appropriate approaches for SC-based tissue 
engineering-therapies in dental practice.
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