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Abstract
Multipotent mesenchymal stromal cells [also referred to 
as mesenchymal stem cells (MSCs)] are a heterogeneous 
subset of stromal cells. They can be isolated from bone 
marrow and many other types of tissue. MSCs are 
currently being tested for therapeutic purposes (i.e.,  
improving hematopoietic stem cell engraftment, managing 
inflammatory diseases and regenerating damaged 
organs). Their tropism for tumors and inflamed sites and 
their context-dependent potential for producing trophic 
and immunomodulatory factors raises the question as 
to whether MSCs promote cancer and/or infection. This 

article reviews the effect of MSCs on tumor establishment, 
growth and metastasis and also susceptibility to infection 
and its progression. Data published to date shows a 
paradoxical effect regarding MSCs, which seems to 
depend on isolation and expansion, cells source and 
dose and the route and timing of administration. Cancer 
and infection may thus be adverse or therapeutic effects 
arising form MSC administration.
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Core tip: Mesenchymal stem cells (MSCs) derived from 
different origins have recently received much attention 
as potential therapeutic. However, such cells also appear 
to have essential functions in building and supporting 
tumor microenvironments. Here, we review the effect 
of MSCs on tumor establishment, as also susceptibility 
to infection and its progression. The literature reveals 
incongruity regarding the impact of MSCs on the 
development of cancer and infection; such paradoxical 
effect might be attributed to differences in isolation 
and expansion conditions, the source and dose of the 
cells, the administration route and its timing and host 
characteristics. MSCs immunomodulatory potential seems 
to be the leading mechanism responsible for such effects. 
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INTRODUCTION 
Multipotent mesenchymal stromal cells, also referred 
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to as mesenchymal stem cells (MSCs), were described 
for the first time half a century ago[1]. Such cells are 
distributed throughout the stroma of several organs 
in vivo whilst MSCs adhere to plastic in vitro and 
proliferate when stimulated by fetal bovine serum[1]. 
MSCs differentiate into mesodermal cells in vitro and 
in vivo (i.e., adipocytes, chondrocytes, osteocytes and 
myocytes)[2]. They can also cross the germ line barrier 
and produce cells from endo- and ectodermal lineages, 
such property being known as cell plasticity[3]. 

MSCs are an ideal tool for cell therapy because 
they are easily procured from live donors[4] and can be 
efficiently expanded ex vivo[5]. The receptors do not 
need to have been conditioned before cell administration 
transplant[6], as in total bone marrow or hematopoietic 
stem cell transplant. Once administered intravenously, 
they are able to home onto and engraft into damaged 
tissue where they could become differentiated into 
tissue-specific cells, release trophic factors, promote 
neovascularization, manage oxidative stress and 
fibrosis, or trigger an anti-inflammatory response[7-11].

MSCs from the same individual (autologous) 
were administered into a human for the first time in 
1995[12]; MSCs were safely allogeneically transplanted 
seven years later[13]. More than 350 clinical trials 
involving the use of MSCs are currently under way 
(www.clinicaltrials.gov) and no serious adverse 
events have been reported to date. Nevertheless, 
MSCs biosafety is still a major concern, particularly 
regarding the development of adverse event-related 
cancer and infection.

MSCs AND CANCER
MSCs might form tumors
Like any other cell, when MSCs are manipulated in the 
long-term they might have chromosomal aberrations 
and produce tumors in healthy animals[14]; this has 
mainly been reported regarding mouse cells, which 
require extensive cultures for producing a significant 
number of hematopoietic-free MSCs[14]. For instance, 
it has been shown that intravenously administered 
NOC/SCID bone marrow-derived MSCs embolize 
within the lung capillaries, expand and invade the 
lung parenchyma and form tumor nodules[15]. These 
lesions rarely contain lung epithelial cells but they have 
the characteristics of cartilage and immature bone 
resembling well-differentiated osteosarcoma.

No transformation has been proven so far for 
human MSCs when expanded properly ex vivo (i.e., 
non-exhausted and not forced to cell crisis)[14]. The 
Canadian Critical Care Trials Group has recently 
published a meta-analysis of randomized, non-
randomized, controlled and uncontrolled, phase Ⅰ 
and phase Ⅱ clinical trials[16]; no association between 
autologous or allogeneic MSCs administration and 
tumor formation was reported in the 36 studies 
reviewed by them. Nonetheless, longer follow-up is 
required to draw a final conclusion regarding human 

MSCs’ tumorigenic potential.

MSCs may promote tumor growth 
Human bone marrow-derived MSCs have increased 
the growth of ERAα positive breast cancer cell lines 
(T47D, BT474 and ZR-75-1) in an in vitro three-
dimensional tumor environment, but have had no 
effect on an ERAα negative cell line (MDA-MB-231)[17]; 
however, the growth rate of another ERAα negative 
cell line (MDA-MB-468) was high in the presence of 
human MSCs. Another study has shown that both 
human fetal MSCs and human adipose-derived MSCs 
transplanted subcutaneously into BALB/c-nu/nu mice 
alone or together with tumor cell lines F6 or SW480 
(ratio 1:1 or 1:10), favored the growth of these tumor 
cell lines[18].

Tumor cells obtained from primary breast cancer 
grown in the presence of human bone marrow-derived 
MSCs (ratio 1:1) and tested in secondary mice have 
been seen to have greater tumor-producing ability 
than cells obtained from primary tumors and grown 
in the absence of MSCs[19]. Besides, tumor incidence 
and/or size[18,20,21] as well as tumor vascularity[22] have 
all increased when breast, lung, colon or prostate tumor 
cells have been co-injected with human adipose-derived 
or bone marrow-derived MSCs. The same has been 
proven for osteosarcoma, melanoma and glioma tumor 
cells[23]. Another interesting observation concerned 
adipose tissue implant adjacent to lung cancer or Kaposi 
sarcoma xenografts resulting in a substantial increase 
in tumor size along with the appearance of stromal 
cells from the implant; adipose-derived MSCs can thus 
promote tumor growth[24].

MSCs’ innate tropism for established tumors has 
been widely reported[24], yet the mechanism behind it still 
remains to be fully elucidated[25]. The explanation advanced 
to date is that tumors behave as unresolved wounds as 
their stroma closely resemble healing granulation tissue 
and they produce cytokines, chemokines and other 
chemoattractants[26] and MSCs chemotactic properties are 
similar to those of leukocytes[27,28]. MSCs tropism for tumors 
has been successfully exploited for the delivery of antitumor 
agents in animal models of lung and breast cancer and 
melanoma and glioma[25]. 

MSCs might promote metastasis 
Breast cancer cells co-cultured with human bone marrow-
derived MSCs (ratio 1:1) up-regulate the expression 
of oncogenes and proto-oncogenes associated with 
tissue invasion, angiogenesis and apoptosis (i.e., 
N-cadherin, vimentin, Twist, Snail and E-cadherin)[29]. 
Such molecular changes have been accompanied by 
morphological and growth alterations, these being 
features of a more metastatic phenotype. It has been 
seen that 0.5 × 105 breast cancer cells co-injected 
subcutaneously with 1.3 × 106 human bone marrow-
derived MSCs have significantly increased lung 
metastasis rate in NOD/SCID mice. This effect was 
lost when bone marrow-derived MSCs were injected 
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separately from tumor cells[20]. On the other hand, it has 
been shown that bone marrow-derived MSCs facilitate 
cancer cells [MCF-7, T47D low invasive cell lines and 
stromal cell-derived factor 1 (SDF-1)null MDA-MB-231 
highly aggressive ones] homing into bone marrow and 
have modified the metastatic niche through trophic 
factor secretion (SDF-1 and CXCR4) and improved 
neovasculogenesis in a xenogeneic mouse model[30].

MSCs might inhibit tumor growth 
It has been shown that human bone marrow-derived 
MSCs interfere in vitro with small cell lung cancer 
(A549), esophageal cancer (Eca-109), Kaposi’s 
sarcoma and leukemic cell line proliferation kinetics[31]. 
The foregoing was observed when 0.5 × 105 tumor 
cells were co-cultivated with 0.5 × 105 human bone 
marrow-derived MSCs but also when they were 
exposed to MSCs-conditioned medium; cells were 
arrested during the cell cycle G1 phase in both cases 
by the downregulation of cyclin D2 and induction of 
apoptosis[32,33]. MSCs from other sources, including 
human fetal skin-derived MSCs and adipose-derived 
MSCs, have also inhibited the growth of human liver 
cancer cell lines[34], breast cancer (MCF-7)[35] and 
primary leukemia cells by reducing their proliferation, 
colony formation and oncogene expression[22]. The 
intravenous injection of 4 × 106 human bone marrow-
derived MSCs into Kaposi’s sarcoma-bearing nude mice 
has inhibited tumor cell growth[36]. A similar effect has 
been observed in an animal model of hepatocellular 
carcinoma and pancreatic tumors as altering cell cycle 
progression has led to decreased cell proliferation[22,37]; 
the same has happened with melanoma due to 
increased apoptosis of capillaries[38] and rat colon 
carcinoma growth has been inhibited when rat MSCs 
(the MPC1cE cell line) were co-implanted with tumor 
cells in a 1:1 or 1:10 ratio[39]. 

Human fetal skin-derived MSCs (Z3 cell line) have 
also delayed liver tumor growth and decreased tumor 
size when injected with the same number of cells 
from the H7402 cell line in SCID mice[34]. Injecting 
human adipose-derived MSCs (1 × 103 cells/mm3) 
into established pancreatic cancer xenografts has led 
to apoptosis and the abrogation of tumor growth in 
female Swiss nude (athymic) mice[37].

The role of MSCs in cancer thus remains paradoxical. 
Evidence to date has suggested that they are pro- as 
well as anti-tumorigenic[40-42] such discrepancy seems 
to depend on isolation and expansion conditions, cell 
source and dose, the administration route and the 
tumor model used. 

MSCs AND INFECTION
MSCs might increase infection 
MSCs can be recruited into inflamed sites secondary 
to microbial infection where they promote potent 
immune-suppressive activity[43,44]. For instance, it has 

been shown that administering MSCs (1.25 × 105 
cells/kg) to animals infected by Trypanosoma cruzi 
(T. cruzi, protozoa) or Mycobacterium tuberculosis 
(Mtb, bacteria) has worsened the natural course of 
infection. Activated macrophages play an essential 
role in host defense against T. cruzi as they can 
destroy intracellular parasites via interferon (INF)-γ- 
and tumor necrosis factor (TNF)-α-stimulated nitric 
oxide (NO) production[45]. It has been shown that mice 
bone marrow-derived MSCs switch macrophages to 
an anti-inflammatory profile, thereby suppressing 
inflammatory cytokine production and enhancing 
interleukin (IL)-10 production[46]. An immune response 
to Mtb depends on IFN-γ-producing T-lymphocytes 
activating macrophages to produce NO[47,48]. Bone 
marrow-derived MSCs (2.5 × 105/kg) infusion into 
animals, which are normally resistant to this infection 
[transforming growth factor β (TGF-β) RIIDN transgenic 
mice], has resulted in making them susceptible to 
disease. Furthermore, it has been observed that 
donor MSCs have been recruited to the periphery of 
live bacteria-containing granuloma and have induced 
regulatory T-cell differentiation, thus resulting in 
immunosuppression.

A recent study aimed to prove the safety and 
feasibility of autologous bone marrow-derived MSCs 
infusion (1 × 106 cells/kg, two doses) into kidney 
allograft recipients, showing that three out of six 
enrolled patients developed an opportunistic viral 
infection[49].

MSCs might decrease infection 
Regarding fungal infection, the intravenous administration 
of an IL-17-producing sub-population of bone marrow 
derived-MSCs (1 × 106 cells) significantly reduced the 
fungal burden of kidneys in immunocompetent mice, 
which had suffered invasive candidiasis[50].

Both un-stimulated and IFN-γ stimulated human 
MSCs can inhibit the growth of Gram-negative bacteria 
such as Escherichia coli and Pseudomonas aeruginosa, 
as well as the growth of Gram-positive pathogens 
such as Staphylococcus aureus, Staphylococcus 
epidermidis, group B Streptococci and Enterococcus 
faecium[46,51]. MSCs’ antimicrobial effect depends on 
whether they have been stimulated[51]; while cathelicidin 
LL-37 antimicrobial peptide is critical to un-stimulated 
human MSCs, tryptophan-catabolizing enzyme heme 
oxygenase-1 and indoleamine-2,3-dioxygenase (IDO) are 
needed in IFN-γ-stimulated human MSCs. Tryptophan 
depletion and toxic kynurenine accumulation leads 
to the inhibition of bacterial growth in the latter 
case. Differences between human and murine MSCs 
antibacterial activity have also been reported; murine 
MSCs do not produce cathelicidin LL-37 and cannot 
express IDO, even after stimulation with a combination 
of cytokines, but they do produce lipocalin 2 (an 
antimicrobial molecule)[52].

Little data has been published concerning the 
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known whether using immunosuppressive MSCs may 
inadvertently inhibit antimicrobial immune responses 
and ultimately result in an increased risk of infection in 
allogeneic HSCT recipients[62], considering that infection 
is one of the major complications following an HSCT 
contributing to high morbidity and mortality indexes[63,64]. 
One open randomized clinical trial has demonstrated 
that acute grade Ⅱ-Ⅳ and chronic GVHD incidence 
in 10 patients receiving a median 3.4 × 105/kg MSCs 
dose from a human leukocyte antigen-identical sibling 
donor was lower than in 15 patients who did not receive 
MSCs (11% cf 53% and 14% cf 29%, respectively)[65]. 
Unfortunately, this did not mean a lower risk for infectious 
complications. Early and mid-phase severe infection 
incidence was even higher in patients who had received 
a co-transplant of hematopoietic stem cells and MSCs 
compared to a control group, which did not receive MSCs, 
although differences were not statistically significant [4/10 
(40%) cf 5/15 (33%)]. Patients receiving MSCs suffered 
from cytomegalovirus (CMV) interstitial pneumonia and 
bacterial and/or fungal infection whereas this was only 
seen in two of the patients who did not receive MSCs[65]; 
no patient treated with MSCs died because of infectious 
complications, whereas this happened in two control 
group patients who did not receive MSCs. This raises 
the question of whether infection severity is lower when 
MSCs are co-transplanted with a graft. 

By contrast, another two non-randomized clinical 
trials, involving 20 patients[66] and 14 pediatric 
patients[67], showed that co-transplanting MSCs did not 
result in higher infection incidence and severity when 
compared to historical controls.

On the other hand, multivariate analysis regarding 
a retrospective cohort study of 691 HSCT patients 
showed that GVHD grade Ⅱ-Ⅳ, CMV infection and 
having received human bone marrow-derived MSCs 
were factors which were associated with overall 
pneumonia-related deaths[68]. 

Thus, the role of MSCs in infection is paradoxical. 
Evidence reported to date suggests that there may be 
pro- as well as anti-microbial effects[40-42] and this seems 
to depend on isolation and expansion conditions, cell 
origin and dose and administration route and timing. 

MECHANISMS BEHIND MSCs CANCER-

INDUCING EFFECT
MSCs modify cancer cells 
Although the cancer stem cell (CSC) concept was first 
introduced in hematological malignancies (chronic 
and acute leukemia)[69], it has been identified during 
recent years in a variety of solid tumors such as 
glioblastomas, medulloblastomas and carcinomas[70]. 
It has been demonstrated that MSCs interact with 
CSC in human cancer and regulate their own self-
renewal through cytokine networks involving IL-6 and 
CXCL7[19]. CSC-produced IL-6 interacts with IL6R/gp130 
expressed on MSCs to produce CXCL7; this molecule 

impact of MSCs on viral pathogens. One study has 
reported that IFN-γ-stimulated human MSCs have 
reduced intracellular replication of cytomegalovirus 
and herpes simplex virus type 1 in vitro[46], such effect 
being attributed to IDO activity[46].

Together with MSCs’ direct antimicrobial effect, 
it has been shown that they play an important role 
in the complex network of host immune response 
against pathogens, particularly regarding the dynamic 
coordination of the immune system’s pro- and anti-
inflammatory components[53]. 

MSCs’ antimicrobial activity observed in vitro 
has been clearly supported by animal models of 
experimental infection, such as polymicrobial sepsis[42], 
lipopolysaccharide (LPS) administration[54] and 
pulmonary respiratory distress syndrome[55]. Regardless 
of MSCs source, administration route (intravenously cf 
intraperitoneally) or strategy (prophylaxis cf therapy), 
their administration leads to reduced pathogen burden 
and significantly improved survival rate[41,42,53,56].

It has been shown that administering 2.5 × 105 
mouse bone marrow-derived MSCs led to decreased 
mortality, controlled multi-organ dysfunction/injury 
and reduced pulmonary and systemic inflammation 
in a clinically relevant model of polymicrobial sepsis 
where infection was settled after the inoculation of 
Gram-negative and Gram-positive organisms[42]. 
An endotoxemic rat model (involving intravenous 
LPS injection) has been used to demonstrate that 
administering 2.5 × 105 human adipose-derived MSCs 
decreased inflammatory cytokine level in serum and 
the lungs, reduced inflammatory changes in the lungs, 
prevented apoptosis in the kidneys and reduced multi-
organ injury[54]. A pulmonary respiratory distress 
syndrome model (induced by intratracheal endotoxin 
administration) has been used to show that the 
intrapulmonary delivery of mouse bone marrow-derived 
MSCs has down-regulated an LPS-induced inflammatory 
response and reduced lung injury, while direct lung 
injury by toxins or pneumonitis led to severe pulmonary 
edema and inflammation[57,58].

MSCs' antimicrobial effect has also been demonstrated 
in the blood, peritoneum, liver and spleen, using a Gram-
negative pneumonia model involving immunocompetent 
mice[42,44,56]. 

As MSCs might lessen the development of infection, 
they have been used recently in a clinical study aimed 
at treating patients suffering acute respiratory distress 
syndrome (NCT01902082); one intravenous dose of 1 
× 106 cells/kg allogeneic adipose-derived MSCs proved 
to represent a safe and feasible therapeutic tool for 
this infection[59]. 

MSCs have been seen as an innovative therapeutic 
tool for preventing or treating graft-versus-host disease 
(GvHD) following allogeneic hematopoietic stem cell 
transplant (HSCT)[60,61] owing to their immunosuppressive 
properties, such as not eliciting immunological 
responses from alloreactive T-lymphocytes and/or 
other immunological effector cells. However, it is not 
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interacts with CSCs through the CXCR2 receptor where 
it induces the synthesis of others cytokines (i.e., IL-8, 
IL-6, CXCL6, and CXCL5)[19]. These cytokines trigger 
CSC self-renewal and enhance their invasive properties 
while IL-6 mediates chemotaxis, which may facilitate 
MSCs homing to primary tumor growth sites. It has 
been shown that MSCs administered subcutaneously 
in mice having had a breast tumor xenograft became 
recruited to the tumors and produced IL-6 and IL-8, 
which accelerated their growth by regulating the CSC 
population[20].

MSCs might induce epithelial-to-mesenchymal transition 
Most malignancies have an epithelial origin, and cancer 
progression is often associated with epithelial-to-
mesenchymal transition (EMT)[71]; this is a physiological 
process, which is recognized as being crucial for 
embryogenesis and wound healing. It involves epithelial 
cell conversion to mesenchymal cells through the 
disruption of cell-cell junctions and the reorganization of 
the actin cytoskeleton; EMT has gained much attention 
recently due to its role in converting benign lesions into 
invasive and metastatic tumors[72]. It is governed by 
complex networks, which are influenced by signals from 
the neoplastic microenvironment, such as collagen, 
cytokines and TGFβ, epidermal growth factor, fibroblast 
growth factor (FGF), hepatocyte growth factor (HGF) 
and platelet-derived growth factor[71-73]. Interestingly, all 
the aforementioned factors are secreted by MSCs[9]. 

MSCs modify vasculogenesis 
Vasculogenesis plays a critical role in tumor growth[74]; 
MSCs could contribute towards tumor vasculogenesis 
because they act as pericytes but may also differentiate 
into endothelial cells and secrete provasculogenic 
factors[75-77], thereby allowing blood vessel formation[75]. 
Vascular endothelial growth factor (VEGF) and FGF-2 
are the two main MSCs-secreted vasculogenic factors 
involved in tumor neovascularization[76]. VEGF is known 
to regulate MSCs mobilization and recruitment to 
neovascularization sites and directs MSCs differentiation 
to vascular cell[78,79]. VEGF expression in MSCs can be 
enhanced by hypoxia, a common phenomenon in tumor 
tissue[80] whilst FGF-2 is a potent mitogen which is 
produced and secreted by endothelial cells and MSCs[81]. 
This factor has been implicated in cell proliferation 
and endothelial cell migration during tumor growth[81]; 
conversely, MSCs appear to reduce vascular density due 
to endothelial cell cytotoxicity in certain conditions[38].

MSCs modify anti-cancer immune response 
MSCs suppress both innate and adaptive immune 
responses[82,83]; they inhibit CD4+ and CD8+ T-cell 
proliferation[84] by producing a wide range of mediators, 
including TGFβ1, HGF, insulin-like growth factor, 
prostaglandin E2, NO, heme oxigenase-1 and IDO[85-89]. 
MSCs also inhibit monocyte and hematopoietic progenitor 
proliferation and differentiation into mature dendritic 

cells[32,90]. Other MSCs-induced effects regarding dendritic 
cells would be a loss of their ability to stimulate allo-
responses[91], acquiring a regulatory phenotype due to 
the production of large amounts of IL-10[91] and changing 
dendritic cells’ cytokine secretion profile by MSCs-derived 
PGE2

[91]. MSCs alter the natural killer (NK) cell phenotype 
besides suppressing their proliferation and cytokine 
secretion[92]; this requires cell-to-cell contact and soluble 
factors (TGFβ1 and PGE2). Hence, MSCs could promote 
an anti-inflammatory response within a tumor, thereby 
allowing its enlargement[93]. Systemically administered 
MSCs have promoted immune-tolerance in damaged 
organs, irrespective of whether donor cells home into 
them[7,8,94]. It is expected that MSCs would worsen the 
immune-destruction of tumor cells and thus facilitate 
tumor growth and metastasis. Conversely, increased 
macrophage and granulocyte infiltration in MSCs-injected 
tumors has been shown, suggesting that allogeneic 
MSCs immunogenicity might contribute towards their 
antitumor effect[32,39].

Changes in MSCs microenvironment, together 
with changes in transformed cells, would also seem to 
contribute towards carcinogenesis[95].   

MECHANISMS BEHIND MSCs INFECTION 
ADVERSE EFFECTS 
MSCs modify bacterial growth inhibition and clearance 
MSCs can participate in host defense through the 
secretion of antimicrobial peptides (cathelicidin LL-37[51] 
and lipocalin 2[52]), which can directly inhibit bacterial 
growth or kill the pathogens. The secretion of these 
soluble peptides improves resident phagocyte ability to 
clear bacteria through the up-regulation of pathways 
associated with monocyte/macrophage, phagocytosis, 
NK cell activity and antigen presentation[42] while MSCs 
antifungal activity means an increased amount of 
TH17 cells in the blood, thereby promoting TH1-type 
immune responses and restraining TH2-type ones[50].

MSCs modify anti-microorganism immune response 
MSCs induce a marked decrease in Toll-like receptor 2 
expression, which plays a fundamental role in pathogen 
recognition and activation of innate immunity[96]. MSCs 
induce a marked increase in macrophage susceptibility 
to infection by parasites and bacteria. The mechanisms 
so involved appear to be linked to the production of 
inflammatory cytokines TNF-α, IL-12p70 and IFN-γ 
which drive NO production[43]. MSCs switch activated 
macrophages into regulatory ones producing low levels 
of pro-inflammatory cytokines. MSCs could modify an 
immune response against microorganisms by inducing 
apoptosis and cell-cycle arrest of T-cells by producing 
NO, TGFβ or IDO[91]. MSCs can inhibit cellular immune 
responses and promote regulatory T-lymphocyte 
production, thereby establishing T-cell tolerance for 
microorganisms[97-100]. 
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ARE CANCER AND INFECTION ADVERSE 
EFFECTS ARISING FROM USING MSCs IN 
THERAPY?
In vitro and in vivo studies have demonstrated MSCs’ 
pro- and anti-cancer and pro- and anti-infection effects  
nevertheless, most clinical trials have reported that 
MSCs-based therapy appears safe and has not been 
associated with serve adverse events. Together, due 
to MSCs’ context-dependent potential to produce 
immune-modulatory factors they seem to be an ideal 
therapeutic tool for both cancer and infections.

CONCLUSION
The pertinent literature reveals incongruity regarding 
the impact of MSCs on the development of cancer and 
infection (Figure 1); such paradoxical effect might be 
attributed to differences in isolation and expansion 
conditions, the source and dose of the cells being 
used, the administration route and its timing and host 
characteristics. MSCs immunomodulatory potential 
seems to be the leading mechanism responsible for 
such effects. Until conclusive data becomes available, 
cancer and infection will still be seen as adverse effects 
and therapeutic targets for using MSCs-based therapy.
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