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Abstract 
Cell therapy is a promising treatment for diseases 
that are caused by cell degeneration or death. The 
cells for clinical transplantation are usually obtained 
by culturing healthy allogeneic or exogenous tissue in 

vitro . However, for diseases of the eye, obtaining the 
adequate number of cells for clinical transplantation 
is difficult due to the small size of tissue donors and 
the frequent needs of long-term amplification of 
cells in vitro , which results in low cell viability after 
transplantation. In addition, the transplanted cells often 
develop fibrosis or degrade and have very low survival. 
Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPS) are also promising candidates for cell 
therapy. Unfortunately, the differentiation of ESCs can 
bring immune rejection, tumorigenicity and undesired 
differentiated cells, limiting its clinical application. 
Although iPS cells can avoid the risk of immune rejection 
caused by ES cell differentiation post-transplantation, 
the low conversion rate, the risk of tumor formation 
and the potentially unpredictable biological changes 
that could occur through genetic manipulation hinder 
its clinical application. Thus, the desired clinical effect 
of cell therapy is impaired by these factors. Recent 
research findings recognize that the reason for low 
survival of the implanted cells not only depends on the 
seeded cells, but also on the cell microenvironment, 
which determines the cell survival, proliferation and 
even reverse differentiation. When used for cell therapy, 
the transplanted cells need a specific three-dimensional 
structure to anchor and specific extra cellular matrix 
components in addition to relevant cytokine signaling 
to transfer the required information to support their 
growth. These structures present in the matrix in 
which the stem cells reside are known as the stem cell 
microenvironment. The microenvironment interaction 
with the stem cells provides the necessary homeostasis 
for cell maintenance and growth. A large number of 
studies suggest that to explore how to reconstruct 
the stem cell microenvironment and strengthen its 
combination with the transplanted cells are key steps to 
successful cell therapy. In this review, we will describe 
the interactions of the stem cell microenvironment 
with the stem cells, discuss the importance of the stem 
cell microenvironment for cell-based therapy in ocular 
diseases, and introduce the progress of stem cell-based 
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Core tip: Cell therapy is a promising treatment for 
the diseases caused by cell degeneration or death. 
However, the transplanted cells often develop fibrosis 
or are absorbed and cannot survive long. It is not 
simply because of seed cells, but also due to the cell 
microenvironment. How to reconstruct the stem cell 
microenvironment and strengthen its combination 
with the transplanted cells is the key to successful cell 
therapy. We will discuss the importance of the stem 
cell microenvironment for cell-based therapy in ocular 
diseases and introduce the progress of cell therapy for 
ocular diseases.  
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INTRODUCTION
Limbal stem cell deficiency, corneal endothelial 
decompensation, corneal grafts endothelial decom
pensation, retinitis pigmentosa, agerelated macular 
degeneration, Stargardt disease and other hereditary 
retinal diseases are all caused by cell degeneration or 
death. There is no effective clinical treatment currently 
available. Unlike traditional medicine or surgical 
therapy, cell therapy is a promising treatment and can 
treat the abnormal cells most directly and efficiently.

The road to cell therapy has been a long and 
tortuous process. In the early days, most of the efforts 
to obtain sufficient therapeutic seed cells were based 
on establishing cell lines or improving tissue culture 
methods with the expectation that they will provide 
therapeutic effects after the cell transplantation. The 
former long-term passaged cell lines were mainly 
obtained by transgenic or nuclear atypia. Because 
of biosecurity risks and allograft immune rejection, 
cells obtained by this method are mainly used for 
basic research[1]. The cells for clinical transplantation 
are usually obtained by culturing healthy allogeneic 
or exogenous tissue in vitro. It is hard to get large 
tissue from the eye to obtain a sufficient amount of 
cells and the culture often needs to go through long
term amplification in vitro, resulting in low cell viability 
after transplantation. Cells often develop fibrosis or are 
absorbed and cannot survive long. Thus, the desired 
clinical effect of the cell therapy cannot be accessed 

and so it was shelved for a while.
Considerable progress has been made in the 

induction and differentiation of embryonic stem cells 
(ESCs) since the last century and it brought new 
vitality to cell therapy. However, the differentiation of 
ESCs can bring immune rejection, tumorigenicity and 
differentiation of uncertainty, which limits its clinical 
application. Although induced pluripotent stem cells 
(iPS) can avoid the risk of immune rejection caused 
by ESC differentiation post-transplantation, the low 
conversion rate and the risk of tumor formation still 
exists and the potentially unpredictable biological 
danger achieved through genetic manipulation hinders 
its clinical application. Thus, cell therapy returns to 
the transplantation of the cultured autologous cells, 
especially the enriched stem cells and the methods 
and the results have been greatly improved.

With the development of research, it is increasingly 
recognized that the reason the implanted cells 
cannot survive longterm in cell therapy is not simply 
because of seed cells, but also because of the cell 
microenvironment which determines cell survival, 
proliferation and even reverse differentiation. The 
birth of Dolly the sheep is the best example. In a good 
embryo environment, mature breast cells can be re
developed into a new individual sheep. From a biological 
point of view, whether it is a cell or an organism, it 
must exist in its surroundings with exchange material, 
energy and information. In terms of cell therapy, the 
transplanted cells need a specific threedimensional 
structure to anchor and specific extra cellular matrix 
(ECM) components and cytokine biological information 
transfer to support their growth. These structures are 
present in the matrix in which the stem cells located 
and are called the stem cell microenvironment. The 
microenvironment interacts with the stem cells and they 
are interdependent, mutually promote and complement 
each other, working together to maintain the stem cell 
homeostasis[25]. A large number of studies suggest that 
exploring how to strengthen the organic combination 
of the transplanted cells and the stem cell niche and 
reconstructing the stem cell microenvironment is the 
key to successful cell therapy.

In this review, we will recount the interactions of the 
stem cell microenvironment with the stem cells, discuss 
the importance of the stem cell microenvironment for 
cellbased therapy in ocular diseases, and introduce the 
progress of stem cell treatment for ocular diseases.

THE ROLE OF THE STEM CELL 
MICROENVIRONMENT
Obtaining autologous cells for cell therapy aided by the 
stem cell microenvironment 
In the process of inducing embryonic stem cells and 
iPS cell differentiation, it was discovered that the adult 
cells can induce embryonic stem cells to differentiate 
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and the embryonic stem cells can promote somatic 
cell proliferation, repair the defects of cocultured 
cells, or even reverse the differentiation state of 
somatic cells[69] by improving the microenvironment 
via secreting a variety of factors and cell interactions, 
etc.

We began to work on the induction and differ-
entiation of embryonic stem cells and epidermal 
stem cells[1012] in 1997 and found that when the 
adult cells were treated with supernatant from 
cultured embryonic stem cells or co-cultured with the 
embryonic stem cells, the aging process of adult cells 
can be slowed down or even reversed into progenitor 
cells and their self-renewal and proliferation capacity 
can be increased significantly[1318], whereas the 
adult cells can also induce embryonic stem cells 
to differentiate. We found a phenomenon that the 
corneal epithelial cells maintain longterm proliferative 
capacity and tissue-specific cell phenotype by factors 
secreted from murine ESCs. Rabbit corneal epithelial 
cells, cat corneal endothelial cells, rabbit skin epithelial 
cells and rabbit conjunctiva epithelial cells grew 
very well in culture medium with addition of ESC 
conditioned medium. These corneal epithelial cells 
were serially subcultured for more than 20 passages 
and maintained high cell purity, cobblestonelike 
morphology, enhanced colony forming efficiency, 
normal diploid and capacity to regenerate a functional 
stratified corneal epithelial equivalent. The rabbit 
corneal epithelial cells cultured in the embryonic stem 
cell microenvironment can be continuously passaged 
over 55 generations in 22 wk, gradually restoring its 
precursor characteristics, such as: decreased corneal 
epithelial cell specific differentiation markers K3/K12 
expression, increased corneal epithelial precursor 
cell markers P63 and ABCG2 expression, but the 
expression of Oct-4 was not detected, indicating 
that the embryonic stem cell microenvironment 
treated cells obtained a strong proliferative capacity 
without the potential tumorigenicity and uncertain 
differentiation[1318]. Zhang et al[13] also found that 
the proliferation and maturation of the dendrite cells 
co-cultured with the bone marrow mesenchymal 
cells were able to be significantly promoted, with 
the enhanced precursor cell marker expression and 
reduced expression of differentiation markers, so 
that the mature dendritic cells were reversed to the 
original progenitor cell stage. Pearton et al[9] reported 
that mouse embryonic skin can induce the terminal 
rabbit central corneal epithelial cells to reverse to 
the limbal stem cells by gradually losing specific 
marker K12 and K3. These results strongly suggest 
that the stem cell microenvironment can significantly 
regulate adult cell proliferation. It has the potential to 
become a more effective and safe method to access 
autologous seed cells with high proliferative activity 
which are close to pluripotent stem cells or transient 
amplifying cells without uncertain differentiation 
direction or tumorigenicity and render them more 

suitable for clinical use.

Repair of the stem cell microenvironment is the basis 
for long-term efficient cell-based therapy
Stem cell microenvironment is the general term 
of the threedimensional structure and a variety 
of signaling molecules (growth factors and their 
receptors, hormones and signaling molecules) present 
in the stroma where the stem cells reside and it can 
regulate the fate (proliferation/differentiation) of the 
stem cells. Because of its specific threedimensional 
structure, it is vividly called niches (niche), which 
consists of three components: the extracellular matrix 
(ECM), niche cells (supporting cells, stem cells) and 
soluble factors derived from the niche cells (Figure 
1). The proliferation and differentiation of stem cells 
are preprogrammed by themselves and are also 
affected by the microenvironment where they are 
residing. The stem cell microenvironment can anchor 
stem cells in vivo and regulate the self-renewal and 
production of their progeny cells through cellcell, 
cellECM and cytokinecell interactions. The different 
macromolecules or properties of the cells and ECM 
interact with each other in a complex and dynamic 
network[19,20]. Nowadays, there is increasing evidence 
showing that the ECM is not only the supportive 
scaffold but also plays a fundamental role in cell 
biology. It plays important roles in the development 
of the cells and can regulate their behavior[21] by the 
production, degradation of its components and the 
remodeling of the structure[22,23] and the direct and 
indirect signaling properties[21]. The polarity, division 
and migration of the cells can be influenced by the 
physical properties of the ECM, such as rigidity, 
porosity, topography and insolubility[24]. Cytokines play 
an important role in exchanging information from cell-
cell and cell-ECM. The changes of the extracellular 
matrix components also affect the differentiation of 
the stem cells and the induced differentiation in vitro is 
accomplished by mimicking the cell microenvironment. 
So, it is difficult to obtain a long lasting therapeutic 
effect in cell-based therapy without the support of a 
good stem cell microenvironment, even when excellent 
cells are transplanted.

The importance of stem cell microenvironment 
in tissue engineering has also been verified. How 
to rebuild the stem cell microenvironment becomes 
the biggest challenge currently for constructing 
tissue engineered tissues and organs. In the past, 
because the scaffolds for tissue engineering of organs 
and tissues had no such sophisticated stem cell 
microenvironment, the desired therapeutic effect could 
not be achieved and the structure and function could 
not be completely recovered after transplantation. 
In 2009, we introduced phospholipase A2, which 
can specifically hydrolyze the phospholipids of the 
corneal stroma cell membrane, can destroy the cell 
structure and be used to prepare acellular porcine 
corneal stroma acellular porcine corneal stroma 
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the microenvironment has an important regulation 
role in the fate of the stem cells.

Stem cells can sustain and repair the structure and the 
function of the niche 
On the other hand, evidence in vivo showed the 
relevance of the ECM and the stem cell behavior 
in that the altered properties or the aged niches’ 
ability of maintaining stem cells’ stemness can 
be reduced[39] and it further affected stem cell 
proliferation and updated, which created a vicious 
cycle. Scientists from Harvard University attempted 
to study the relationship between human aging and 
microenvironmental changes between stem cells via 
the stem cell microenvironment (niche) and they 
found that altering the aged microenvironment with 
the young microenvironment can improve the ability 
of the proliferation and renewal of the stem cells. 
The study also found that adding “insulin-like growth 
factor-1” (IGF-1) can also improve the state of the 
aging stem cell microenvironment.

Cell receptors can directly mediate the interactions 
between the stem cells and the ECM where they 
are located. It was also found that integrins, a large 
family of heterodimeric transmembrane receptors, 
are important receptors for the ECMstem cell 
interactions and can regulate cell survival, migration, 
proliferation and differentiation by connecting the 
ECM to the intracellular cytoskeleton[40] as well as 
the adhesion, anchorage and homing of the stem 
cells. Different kinds of integrins bind to different 
ECM components or different cell surface adhesion 
molecules and receptors[4143]. Integrins can regulate 
the self-renewal and proliferation of the stem cells 
by directly activating focal adhesion kinase (FAK) 
and the phosphoinositide 3-kinase (PI3K) signaling 
pathway[40,44,45]. The α6b1 integrin can bind to the 
ECM protein laminin and help the spermatogonial 
stem cells home in to the testicular niche[46] and NSCs 
(neural stem cells) adhere to the vascular niche[47]. 
The α9 integrin is essential for the proliferation of 
the HSC[48] and NSC microenvironment[49] via binding 
protein tenascinC in the ECM. The α4, α6, α9 and 
b1 integrin chains are also important to the HSCs 
in their homing in to the bone marrow niche[5053]. 
HSC homing and proliferation are also regulated 
by αvb3 integrin[5456]. Furthermore, b1 integrins 
can control the balance between symmetric and 
asymmetric divisions in skin and brain, as well as the 
differentiation and self-renewal of the stem cells[5760] 
by regulating the activity of the Notch pathway and 
EGF receptor[61,62]. They are also important for the 
proliferation of intestinal stem cells (ISCs) via the 
Hedgehog signaling pathway[63]. Signaling pathways 
of the growth factors and cytokines, such as IL-3 and 
TGF-b[43,6467], can also be regulated by integrins and 
these signaling pathways can regulate the expression 
of integrins conversely[46]. Therefore, the receptors 

(APCS) for biological tissue engineering cornea[25]. 
The natural corneal collagen structure and 80% 
of the extracellular matrix components can be 
retained by this means. This APCS not only has good 
biocompatibility and biomechanical strength, but 
also keeps the limbal stem cells microenvironment 
necessary for their longterm proliferation. The grafts 
of APCS maintained good biomechanical strength 
and high transparency posttransplantation in animal 
experiments and it can help to rebuild the limbal 
stem cell microenvironment[2630]. Nakayama et al[31], 

Ott et al[32], Petersen et al[33], Uygun et al[34] and 
Conrad et al[35] have also reported the use of acellular 
matrix as a scaffold in tissue engineering in kidneys, 
lungs, heart, trachea and bladder. As Song et al[36] 
stated, using an acellular matrix scaffold with natural 
extracellular matrix to build tissue engineering 
products can mediate organ development, reparation 
and regeneration which cannot be accessed by 
synthetic materials. There are further experiments 
that proved that the acellular materials with extracellular 
matrix play an important role in the regulation of stem 
cells[37]. These studies showed that a decellularized 
tissue with the natural ECM scaffold can induce the 
stem cells to differentiate into cell types present in 
certain tissue[31] and thus the decellularized organ 
has already been used in tissue engineering and cell 
therapy[31,36].

The microenvironment has a great effect on the 
fate of stem cells. In recombination experiments, hair 
follicle stem cells were induced to differentiate into 
corneal epithelial cells when they were cultured in a 
limbusspecificlike niche[38]. These cells grow into 
stratified epithelium and express the cornea-specific 
markers K12 and Pax6 while the epidermal specific 
K10 obviously down-regulated[38]. While in other 
studies the rabbit epithelial cells from the central 
cornea differentiated into epidermal keratinocytes 
when recombined with mouse embryonic dermis, it 
lost corneal-specific marker K3/K12 together with the 
down-regulation of Pax6 and expressed keratinocyte 
marker K5/K14[9]. All of these changes showed that 
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have specific activities in a certain kind of stem cell 
microenvironment.

Some ECM components can regulate their availability 
by setting a biochemical gradient and binding growth 
factors[21]. On the one hand, the ECM can also make the 
growth factors insoluble, unavailable or not bioactive 
and serve as the reservoir for them, like proteoglycans, 
collagens, fibronectin and vitronectin, which bind 
VEGFs, FGFs, HGFs, TGF-b and BMPs. On the other 
hand, ECM proteins and proteoglycans can be induced 
to be soluble and remodeled to release and distribute 
growth factors under the action of enzymes, such as 
metalloproteinase[21]. The function NSC can be favored 
by the ECM components in its niche by promoting 
growth factor activity via capturing FGF-2 from it[68,69]. 
Similarly, in the procedure of the regulation of muscle 
satellite cells, all kinds of growth factors bind to the cell 
surface or the basal lamina proteoglycan and then they 
can be activated in a certain signaling pathway[70]. 

The biophysical properties of the ECM can determine 
the behavior of stem cells. The balance of the internal 
forces generated by cell cytoskeleton tension and 
the external forces from the compression of the 
neighboring cells and the stiffness of the surrounding 
ECM maintains the shape of the cells and makes 
them stay in their anatomical localization[71], which 
can regulate the cell behavior finally[7274]. Recently, 
the YAP/TAZ transcriptional factors were found to 
have key biological effects on the ECM elasticity, cell 
geometry and cytoskeletal modulation[71,74,75] among 
the mechanotransduction pathways (Wnt/bcatenin, 
PI3K/Akt, TGF-b, Ras/MAPK, and RhoA/ROCK 
pathways). In fact, ECM organization and composition 
can regulate tissue stiffness and then have an 
influence on the stem cell behavior[72,76]. The human 
mesenchymal stem cells can express organ-specific 
transcription factors and differentiate into myoblasts, 
neurons and osteoblasts[77] when they are cultured 
on ECMs with similar stiffness of the muscle, brain or 
bone respectively. Culture on hydrogel with the same 
elastic modulus as the bone marrow can increase the 
self-renewal ability and maintain multipotency of the 
hMSCs (human mesenchymal stem cells) compared to 
those cultured on stiffer substrates[78]. NSCs cultured 
on hydrogel with similar stiffness to the brain tissue 
gain the neuronal differentiation potential, while the 
stiffer gels make them differentiate into glial cells[79]. 
That the stiffness gradients of the hippocampus 
regulate NSC behavior in vivo confirmed that ECM and 
its biomechanical properties play important roles in the 
fate of the stem cell[80]. This opens new insights in to 
the role of ECM mechanical properties in the stem cell 
microenvironment. 

Stem cells in ocular tissues: Several studies 
showed the conjunctiva epithelial stem cell niche 
located in the fornix by growth potential assays, 
label-retention analyses and keratin expression 
detection[8184]. They have bipotential to differentiate 

into both epithelial cells and goblet cells[85]. 
Corneal epithelial stem cells resident at the basal 

limbal epithelium and called limbal stem cells were 
first applied to clinical use in ophthalmology. Tung
Tien Sun’s group did immunostaining with monoclonal 
antibodies against the corneal-specific K3[86] and 
showed the negative expression of K3/K12 in the 
limbal basal layer, which gave rise to a number of 
experiments that verified that the corneal stem cells 
were located in the limbus[8688]. These labelretaining 
limbal cells[89] have a higher proliferative potential[90] 
and colonyforming ability[91] compared with central 
ones.

People made efforts to find specific molecules 
markers of the limbal stem cells. p63[92], vimentin[9395], 
αenolase[96,97], α9b1 integrin[98], tenascinC and 
EMILIN1[99]，ABCG2[100103] and ABCB5[104] are all highly 
expressed in the basal layer of limbal epithelium 
but none of them are the specific markers of the 
limbal stem cells as expected. This is because the 
early differentiating cells[105,106] still have the stem 
cell markers and show intermediate profiles between 
stem and differentiated cells until the stem cell 
markers are down-regulated with the expression of 
the differentiated phenotype[107]. Thus, we can only 
enrich the stem cells while separating them with 
these molecules markers[108].

Since it is complex and difficult to characterize 
the corneal stem cells, people try to identify them by 
analyzing their niches and the regulatory functions of 
the niche.

The limbus is a specific region which is chara-
cterized by the palisades of Vogt with the papillae-
like projections and the vascular net in the peripheral 
cornea[109]. It enables the epithelial cells to interact 
with ECM and chemical signals diffused from the 
vascular network[110]. Some studies showed that 
the limbus has a specific anatomic structure such 
as the niche, the LEC (limbal epithelial crypt) or LC 
(limbal crypt), which consists of a cord or finger of 
cells that are located between the palisades of the 
limbal stroma and extends radically to the conjunctiva 
stroma[92,93]. The high expression of K14[111], ABCG2[112] 
and p63[92,93] in cells at the LEC[112]/LC[113] suggest that 
they are the microenvironment of the limbal stem cells 
but the LEC/LC structure has not been found in other 
species besides humans and pigs[94]. 

This tissue with unique cellular properties can 
synthesize different kinds of ECM substrates. Several 
studies on the ECM components of the cornea were 
performed regarding the aspect of the biochemical 
and immunological characteristics. Corneal stroma 
comprises collagen type ⅠⅥ[114117], glycosamin
oglycans (chondroitin, heparin, dermatan) and 
keratan sulfates[118122], fibronectin and laminin[105,123] 
and hyaluronic acid[124] and the limbal epithelial cells 
are more likely to adhere to a rougher surface than 
those in the central cornea[125]. To further study the 
interaction between corneal stem cells and their 
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microenvironment and the different functions between 
the central cornea and the limbus, the corneal 
basement membrane components were analyzed 
by several studies. These studies found that the 
conjunctiva, limbal and central corneal epithelia have 
a heterogeneous composition of the basal membrane 
(BM)[126]. Some studies reported that there was 
no collagen Ⅳ in the central cornea BM[127], while 
others had the controversial results that collagen Ⅳ 
presented both in the limbal and the central corneal 
BM[126]. Later, people found that collagen IV α1 (Ⅳ) 
and α2 (Ⅳ) chains show more intense staining at 
the corneal limbus and the α3 (Ⅳ) chain shows an 
abrupt decrease at the limbus[128,129], while collagen 
types Ⅳ (α3α4 chains) and XII are only expressed 
in the central cornea[128]. Then, other components of 
the limbal BM were studied further. Laminin α2α5, 
b1b3, g1g3, nidogen-1, -2, SPARC/BM-40, as well as 
agrin are preferentially expressed in the limbal BM[128], 
which colocalized with the ABCG2/p63/K19-positive 
and K3/Cx43/desmoglein/integrin-a2-negative stem 
cells and early progenitor cell clusters[128,129]. The BM 
components, such as type XVI collagen, fibulin2, 
tenascin-C/R, vitronectin, bamacan, chondroitin 
sulfate and versican, are colocalized with the putative 
vimentinpositive late progenitor cells[128130] at the 
limbus. On the contrary, type Ⅴ collagen, fibrillin-1 and 
2, and thrombospondin-1 were almost only found in 
the corneal BM[128]; others, such as type Ⅳ collagen α5 
and α6 chains, collagen types Ⅶ, XV, XVII  and XVIII, 
laminin111, laminin332, laminin chains α3, b3 and 
g2, fibronectin, matrilin-2 and 4, and perlecan, were 
expressed throughout the epithelial layer on the ocular 
surface[129,130]. All these studies showed that the BM 
at the limbus has a specific ECM composition which is 
different from that in the peripheral or central cornea. 
This suggested that the EMC at the LEC/LC created a 
microenvironment that regulates stem cells and their 
progeny by supporting stemness while inhibiting the 
differentiation and preserving the proliferative abilities 
in limbal cells. 

The stem cells of the corneal endothelium and 
the trabecular meshwork are believed to be located 
at the transition zone between the peripheral corneal 
endothelium and the anterior non-filtering portion of 
the trabecular meshwork[131]. Corneal stroma stem 
cells are located in the limbal stroma, play roles in 
visualization and have corresponded to the limbal 
niche cells[132].

At the early stage, the stem cells of the lens were 
assumed to be the label-retaining cells which are 
located at the anterior central region of the lens[133]. 
Yamamoto et al[134] concluded that the germinative 
zone of the lens epithelium contains transient 
amplifying cells with the positive expression of prolifera-
tion markers, such as A1, B1, C and D1 cyclins and 
PCNA (proliferating cell nuclear antigen), and can be 
labeled by BrdU (5-bromo-2’-deoxyuridine). On the 

other hand, other studies showed that they were 
probably located in the region anterior to the germi
native zone. However, Remington et al[135] assumed 
that lens stem cells resided in the ciliary body because 
the lens is nonvascular, its epithelium does not have 
the morphology of other stem cells and no type of 
tumors are derived from the lens. Thus, the existence 
of the lens stem cells remains controversial and needs 
to be elucidated.

Previously, it was believed that there were no 
stem cells in the mammalian retina since it cannot 
regenerate[136] but von Leithner et al[137] found retinal 
precursors in the peripheral retinal pigment epithelium 
later. However, the cells from the pigmented ciliary 
margin were later found to have the ability to form 
spherical colonies and produce various types of 
differentiated retinal cell[138]. These results gave the 
evidence that retinal stem cells are located in the 
pigmented ciliary margin epithelium.

CELL-BASED THERAPY IN OCULAR 
DISEASES
Progress in the research of stem cell therapy for corneal 
diseases 
Limbal stem cell deficiency can be caused by a myriad 
of insults that present with the following pathological 
states: damaged corneal barrier function, persistent 
corneal epithelium defects or recurrent corneal 
erosions, chronic inflammation associated with corneal 
stromal scarring, visualization, conjunctivalization and 
eventually blindness. Some researchers speculate 
that this occurs due to gradual deterioration of the 
limbal stromal niches[139]. Thus, limbal epithelial stem 
cell transplantation and the reestablishment of the 
limbal stem cell microenvironment are necessary for 
ocular surface reconstruction in these diseases[139].

Autologous or allogenic limbal transplantation has 
achieved good clinical efficiency in the treatment of 
limbal stem cell deficiency. However, in successful 
cases post limbal transplantation, there is a doubt as 
to whether there is a causal relationship between the 
survival of the donor limbal stem cells and the clinical 
effect. Shimazaki et al[140] detected the presence of 
donorderived epithelial cells in 60% of cases (10 
eyes/9 cases) post human limbal transplantation 
with fluorescence in situ hybridization assay, with 
77.8% by RFLP analysis. At the same time, the 
authors stated that there was no difference in the 
postoperative clinical outcomes whether the presence 
of survived donor-derived cells was detected. Thus, 
more studies should be carried out to confirm the 
clinical significance of the survival of donor cells. 
Furthermore, it was reported that donor-derived 
cells were undetected in cases with objective clinical 
improvement after three to five years post limbal 
transplantation, even with DNA fingerprinting 
analysis[141]. This suggested that the survival of 
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donorderived cells is not essential for improvements 
of the clinical symptoms. These results indicated 
that limbal transplantation might simply serve as the 
corneal stroma transplantation. Presumably, limbal 
transplantation improves the residual stoma stem cell 
microenvironment, making residual stem cells in the 
patient regenerate on the ocular surface and allowing 
for improvement of the ocular surface[142]. Therefore, 
some scholars believe that the essence of limbal 
transplantation may be the restoration of the limbal 
stroma resulting in increased stability of the limbal 
stem cell “niche”[143]. So, limbal epithelial stem cell 
deficiency treatment lies in the application of various 
methods to restore the normal limbus matrix.

Although traditional corneal transplantation, limbal 
transplantation, has already achieved good results 
in ocular surface reconstruction for corneal diseases, 
there still several problems that have hindered clinical 
application, such as the shortage of donors, the 
immune rejection posttransplantation and other issues. 
Therefore, the construction of tissue engineering cornea 
in vitro with appropriate biomaterials and synthetic 
materials is the hope for solving these questions. How 
to get a sufficient amount of high activity seed cells for 
tissue engineering has been the challenge for tissue 
engineering product construction and cell therapy. 
The microenvironment plays an important role in the 
survival and development of cells and tissues. The 
microenvironment or simulated microenvironment 
can effectively induce ES and iPS differentiation in a 
certain direction and the embryonic microenvironment 
also has the effect of reverse differentiation of the 
adult cells. We have considered two aspects in our 
studies: (1) cellular microenvironment: embryonic 
stem cell microenvironment culture systems can make 
the differentiated corneal epithelial cells, conjunctiva 
epithelial cells[15] and even human corneal endothelial 
cells[17] obtain a strong proliferation ability and can be 
passaged long-term with de-differentiation cell marker 
expression, normal cell morphology and karyotype, 
but no tumorigenicity. Our preliminary findings showed 
that the ES microenvironment may inhibit the apoptosis 
of the cells by activating telomerase via integrin the 
b1-FAK-PI3K/Akt, telomerase-p21-mitochondrial axis 
and FAK/Wnt signaling pathway[18,144]; and (2) stromal 
microenvironment: the APCS limbal produced by lipase 
(not existing protease digestion)[25,30] can retain the 
normal extracellular matrix, collagen lamellar micro 
ultrastructure.  It can repair and maintain the stemness 
and proliferation ability of the limbal stem cells after 
it is transplanted to the limbal stem cell deficiency 
rabbit model. In short, the microenvironment can be 
used to obtain sufficiently pure seed cells with strong 
proliferation capability but no immunogenicity. The 
microenvironment plays an important role in cell 
therapy and is the basis for the longterm efficacy of 
the treatment. Establishment of seed cells using the 
microenvironment will make cell therapy return to 

autologous cell transplantation. Maintaining the specific 
three-dimensional structure and the extracellular matrix 
to promote the proliferation and longterm survival of 
the transplanted cells[145] has great meaning. Professor 
Ott et al[32] stated that acellular matrix has a natural 
extracellular matrix which can mediate and guide organ 
development and mediate repair and regeneration. 
The key steps for the best clinical efficacy of cell 
transplantation are the longterm survival of the seed 
cells and the reconstruction of the stem cell niche. 

Progress in the research of stem cell therapy for the 
retinal and optic nerve diseases
Retinal stem cells and optic nerve repair: Retinal 
diseases such as agerelated macular degeneration, 
Leber congenital amaurosis and cone rod dystrophy 
are caused by lesions of retinal neuronal cells, 
which have an irreversible pathological process of 
degeneration and damage of the retinal neuronal 
cells, causing serious visual impairment or even 
blindness which currently cannot be effectively 
treated. Since the stem cells have self-renewal and 
multidifferentiation potential abilities, using stem 
cells as donor cells for retinal diseases treatment has 
become a hot topic. 

In 2000, Wirtschafter et al[83] found that groups 
of self-renewing cells in the ciliary epithelium of 
the adult mice can form neurospheres when they 
were cultured in vitro. They can be induced to 
differentiate into specific types of neuronal cells in 
the retina, such as the rod cells, bipolar cells and glial 
cells, indicating that retinal stem cells exist in adult 
mammalian eyes. Ballios et al[146] found that retinal 
stem cells (retinal stem cell, RSC) also exist in the 
ciliary margin zone in people of different ages. These 
cells have proliferative capacity in vitro and can be 
induced to differentiate into different retinal neurons. 
Some of these stem cells can migrate and integrate 
into the host retina and can even differentiate into 
photoreceptor cells. These studies suggested that 
RSCs from different sources of animals or humans 
can survive and migrate to the host retina layers after 
transplantation. Although the implanted RSCs can 
migrate into the retina and differentiate into a variety 
of retinal cells, most transplanted RSCs remain in the 
subretinal space or the vitreous body, while less can 
be integrated and induced to differentiation, so the 
efficiency is not ideal.

Meyer et al[147] transplanted GFP-labeled ESCs 
into mouse vitreous after induced differentiation and 
found that the transplanted cells can migrate into 
the entire retina layers and differentiate into retinal 
neurons cells with the expression of markers such as 
NeuN, calretinin and cPKC-a. In 2010, Parameswaran 
et al[148], using a similar method as embryonic stem 
cell differentiation, completed the differentiation of 
mouse iPS cells into retinal ganglion cells, which 
not only highly express the retinal ganglion cells 
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regulation gene Ath5, Wtl, Brn3b, Rpfl and lrx2, but 
also can specifically project upwards to the superior 
colliculus with the synapse structure formation which 
has a sensitive tetrodotoxin voltage-dependent 
sodium current. This fully proved that iPS cells can 
differentiate into retinal ganglion cells. In glaucoma 
and traumatic optic neuropathy, the regeneration of 
retinal ganglion cells may be the only way to restore 
vision. The finding that iPS cells can differentiate into 
retinal ganglion cells provides a new method for the 
treatment of such diseases.

Arnhold et al[149] found that the cones cannot 
survive without healthy rod cells. Therefore, it is 
difficult to achieve the aim of the treatment by simply 
transplanting the induced iPS cells into the retina of 
patients with retinitis pigmentosa because the rod 
cells will eventually die.

Stem cell treatment for retinitis pigmentosa: 
Retinal pigment epithelium (RPE) is a single layer of 
epithelium with polarity and a rich pigment that is 
located between the neural retina and choriocapillaris 
layer. It can support the metabolism and activities 
of the retinal photoreceptor cells and phagocytose 
the outer segment photoreceptors. Recent studies 
show that the retinal pigment epithelium also has 
self-renewing stem cells that can be induced to form 
other cell types under suitable conditions.

RPE degeneration diseases caused by agerelated 
macular degeneration (AMD), hereditary retinal 
degeneration, macular dystrophy and Stargardt disease 
result in the death of photoreceptors and neural retina 
and eventually cause blindness. There is currently 
no effective treatment for retinitis pigmentosa. The 
transplantation of the induced differentiated stem cells 
to establish the retinal pigment epithelium membrane in 
vivo has been studied extensively but it is still far from 
functional reconstruction. Thus, looking for new ways 
to stimulate the repair of RPE is an important research 
direction for the future. With the rise of regenerative 
medicine research, stem cell transplantation as a 
regenerative therapy becomes a hotspot for research. 
In the past decade, scholars induced bone marrow 
mesenchymal stem cells, iPS cells and embryonic stem 
cells to differentiate into retinal pigment epithelial 
cells but the process of differentiation into RPE cells 
is not clear and only a small fraction of cells can be 
differentiated into RPE cells. So, the research of finding 
the desired factors to directly induce cell differentiation 
is still very popular.

In 2010, Geron biopharmaceutical company (Geron, 
United States) sponsored the world’s first clinical trial 
on using hESC to repair damaged nerves. Currently, 
the United States Food and Drug Administration 
has approved the ACT company (Advanced Stem 
Cell Technologies) to carry out two Phase II clinical 
trials on using embryonic stem cells to treat macular 
degeneration in the United States, dry AMD and 
juvenile macular dystrophy (Stargardt disease). This 

time, they induced hESCs to differentiate into retinal 
epithelial cells with purity over 99%. Approximately 
50000 retinal pigment epithelial cells were isolated 
and injected into the retina of two patients. Four 
months later, the researchers found that RPE had 
been completely replaced by the injected retinal 
epithelial cells. They measured the visual acuity of 
the two female patients and the data confirmed that 
the injected cells survived and largely improved their 
vision. Early data suggest that hESC therapy is not 
only safe but also efficient. The research paper was 
published in the world’s oldest and most respected 
peer-reviewed medical journal, “The Lancet”[150]. These 
results from ACT have brought new optimistic hope 
for stem cell research. This same study found that it 
is crucial that the transplanted cells can attach to the 
Bruch’s membrane and integrate into the host RPE 
layer and survive to have a successful therapeutic 
effect[149].

CONCLUSION
In summary, recent studies show that real cell 
therapy is not a simple supplement of cells. The 
interaction, interdependence, mutual promotion and 
supplementation between the transplanted cells 
and the microenvironment are more important. The 
microenvironment of the recipient can regulate the 
transplanted cell behavior and decide their fate. 
The transplanted cells cannot survive longterm 
without the support from the microenvironment of 
the recipient. The survived transplanted cells can not 
only completely replace the recipient’s cells, but also 
supplement the sufficient quantity and function of the 
recipient’s cells. More importantly, they are involved 
in the cellular microenvironment reconstruction 
so the stem cells obtain a stronger self-renewal 
capacity and proliferation ability. Therefore, in order 
to improve clinical cell therapy, we should pay more 
attention to the characteristics and components of 
each stem cell microenvironment and put efforts 
into understanding the regulation mechanisms of the 
stem cell microenvironment[151].
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