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Despite the decrease in the incidence of squamous cell 
carcinoma of the lung (SQCCL) in the last decades, it 
still represents 20-30% of non-small cell lung cancer  
(NSCLC) (1). Unlike non-smoker lung adenocarcinoma, 
where strong biomarkers of response to specific tyrosine 
kinase inhibitors (TKI) (such as activating mutations of 
EGFR or ALK rearrangements) are available, in SQCCL 
actionable alterations have only been partially characterized 

in recent years, without any breakthrough in treating such 
tumor entities (2). 

Gene copy number (GCN), like other genetic structural 
variations, represents an event of strong evolutionary 
pressure within both normal cells and particularly in cancer 
cells, where genomic instability it is a hallmark. GCN 
gains, such as gene duplication or amplification, can cause 
an increase in protein levels. Nowadays, there are three 
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molecular mechanisms that can potentially produce a gene 
amplification, including the double-stranded DNA repair 
pathways: non-homologous end-joining (NHEJ), non-
allelic homologous recombination (NAHR) (3,4), and DNA 
re-replication. In DNA re-replication, license control of 
replication is lost and a single DNA molecule is replicated 
more than once, triggering GCN gains, amplification, 
genomic instability and tumorigenesis (5).

Fibroblast growth factor receptor 1 (FGFR1) is one of 
the four family members of the FGFR of transmembrane 
tyrosine kinase receptors (TKR) involved in regulation 
of embryonic development, differentiation and cell 
proliferation (6-8). The functional validation of FGFR1 
gene amplification in SQCCL was initially described 
by Weiss et al. Their work placed this histological-
tumor subtype on the edge of the wave, identifying new 
therapeutic options that could change the management of 
SQCCL patients (9).

Broad amplification at 3q chromosome is the most 
frequent chromosomal alteration in SQCCL tumors. It 
was initially reported using fluorescent in situ hybridization 
(FISH) (10). It is known that increasing frequency 
of 3q amplification can be found from dysplasia to 
metastatic squamous lesions (11). Moreover, the potential 
epidemiological relationship of 3q amplification and 
tobacco consumption has been suggested (2). A recent 
comprehensive genomic characterization of SQCCL 
reported that 3q amplicon covers 3q13 to 3q29 (12). They 
also showed a correlation of GCN and mRNA levels at 
single-gene resolution. 

This review highlights the recent findings on the 
prognostic and/or predictive value of FGFR1, as well as 
other important genes targeted by the 3q chromosome 
amplification in SQCCL.

FGFR1 amplification

FGFR is a family of receptors tyrosine kinases (RTK) 
consisting of four family members (FGFR1-4). FGFR1, like 
other RTKs, has an extracellular domain, a transmembrane 
domain and an intracellular domain, where the catalytic 
tyrosine kinase domain is located. The FGFR1 gene resides 
at 8p12 cytoband and spans a genomic DNA fragment of 
57.7 Kb in length. Upon receptor activation, it promotes 
cell proliferation, angiogenesis, survival and apoptotic 
resistance through the PLCγ/PKC, RAS/MAPK and PI3K-
AKT pathways (13). The oncogenic potential of activated 
FGFR1 represents an attractive therapeutic target that is 

currently being clinically tested.
The seminal work of Weiss et al. (9), demonstrated a 

growth dependency of a subset of SQCCL based on FGFR1 
amplification that was abrogated both in lung cancer cell 
lines and in NCI-H1581 mice xenografts by PD173074, a 
specific TKI. No activating mutations were found. Twenty-
two percent of squamous lung cancer tumors were carriers 
of FGFR1 focal amplification, as detected by FISH. Further 
studies confirmed that the percentage of amplification 
ranges from 16-22% (14-16) and independent in vitro 
studies confirmed that FGFR1-amplified cells are vulnerable 
when treated with a specific TKI (17). FGFR1 has also 
been reported to be amplified in other cancers, including 
17.4% oral squamous cell carcinoma (18), 6% of esophageal 
squamous cell carcinoma (19), 10-17% of breast (20,21), 
7.8% of ovarian (22,23), 3.4% of bladder (24) and 9% of 
prostate cancer (25).

Heist et al., in a retrospective cohort of 226 SQCLC, 
where almost 70% of the patients were staged as IA-IIB, 
detected 16% of FGFR1 amplification. They measured 
gene copy number by FISH , using for the threshold of 
gene amplification a FISH ratio equal to 2.2 or higher (14). 
In this study, amplification of FGFR1 was not correlated 
with age, sex, stage or smoking history. They found no 
correlation with overall survival. On the other hand, 
Weiss et al. reported a trend towards inferior survival 
among patients amplified for FGFR1 (9). In a recent work 
carried out by Kim et al. reported that patients, carriers of 
FGFR1 amplification, had significantly shorter disease-
free survival and overall survival than diploid patients  
(wild type), regardless of sex, smoking status, adjuvant 
therapy and pathologic stage. These findings are in 
contradiction to those previously published by Heist and 
Weiss, and suggest FGFR1 amplification is an independent 
prognostic marker in this cohort of patients. Furthermore, 
in the same study, a positive association of FGFR1 
amplification and smoking habit, in a dose-dependent 
manner, was reported. An interesting observation is that 
none of the 37 patients classified as never-smokers were 
carriers of amplified FGFR1 (26). Recently, a 100% 
concordance of FGFR1 amplification between primary 
SQCCL tumors and their lymph node metastatic tissue 
was described, suggesting an important role for FGFR1 
in tumor prognosis and progression. So further studies 
are needed to validate whether the prognostic impact of 
FGFR1 amplification is a population-based phenomena or 
not (16). 

Due to the important biological impact of FGFR 
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activation in tumor cell growth, survival, tumor angiogenesis, 
progression and metastasis, the development and clinical 
testing of anti-FGFR compounds are currently major areas 
of research. There has been a great expectation as some 
reports have suggested FGFR1 amplification as a predictive 
biomarker of specific TKIs. There are two different types of 
FGFR inhibitors under development: small TKI molecules 
and ligand-competitor antibodies (see Table 1). Most of the 
small molecules exert their biological activity by binding 
into the ATP-binding pocket. This prevents either auto-
phosphorylation of the receptor or proliferative signal 
transduction through transphosphorylation of receptor-
dimers and their downstream adaptor proteins such as 
FSR2 (17,27). A clinical trial with BIBF1120, which inhibits 
FGFR1, will be developed in the Netherlands and in Spain 
in the second line treatment of SQCCL patients with 
FGFR1 amplification. Double methodological validation of 
FGFR1-amplified tumors will be carried out by FISH and 

multiplex ligation-dependent probe amplification (MLPA). 
Taking advantage of what we have learned from 

gastrointestinal stromal tumors treated with imatinib/
sunitinib (28,29), as well as from the history of erlotinib/
gefitinib or crizotinib in lung cancers carriers of mutant 
EGFR (30,31) or ALK-rearrangements (32) respectively, we 
will need to identify the mechanisms of intrinsic, adaptive 
and acquired resistance to TKI treatment, as quickly as 
possible, and how to revert them clinically. The priority 
should be to analyze the presence of gain-of-functional 
mutations, amplification or overexpression of RTKs that 
activates redundant pro-survival pathways which bypass the 
drugged one (33,34). In addition, alterations in apoptotic 
pathways have also been demonstrated a key role in TKI 
resistance, and thus need to be analyzed (35-38).

Currently, fluorescent in situ hybridization (FISH) 
is the standard method available for identification of 
gene amplification among cancer patients. The previous 

Table 1 Selected FGFR inhibitors currently used in clinical development and/or evaluation

DRUG Company TARGETS Clinical development stage

Small-Molecule TKIs

Vargalef (BIBF1120) Boehringer Ingelheim, Novartis FGFRs, VEGFR and PDGFR III

Ponatinib (AP24534) Ariad FGFR, VEGFR and IGF-1R I

Dovotinib (TKI258) Novartis FGFRs, VEGFRs, KIT, FLT3, CSFR and 

PDGFRs

III

Brivanib (BMS582664) Bristol Myers Squib VEGFRs and FGFRs II

AZD4547 Astra Zeneca FGFRs I/II

Cediranib (AZ2171) Astra Zeneca VEGFRs, FGFRs and KIT III

TSU68 (SU668) Taiho Pahrmace FGFRs, VEGFR and PDGFR II

E7080 Eisai FGFRs, VEGFR and PDGFR II

E3810 Ethical Oncology Science FGFRs, VEGFR I

BGJ398 Novartis FGFRs I

RG1507 Roche, Genmab FGFRs, VEGFR and PDGFR II

LY2874455 Lilly FGFRs n/a

FGFR antibodies

Figitumumab Pfizer FGFR, VEGFR and IGF-1R III

Cixutumumab ImClone Systems FGFR, VEGFR and IGF-1R II

AMG479 Amgen FGFR, VEGFR and IGF-1R II/III

BIIB022 Biogen Idec FGFR, VEGFR and IGF-1R I/II

FP1039 (Fusion protein) Five Prime FGFR1 I/II

R3Mab Genectech FGFR3 n/a

Abbreviations: FGFRs, fibroblast growth factor receptors; VEGFRs, vascular endothelial growth factor receptor; PDFRs,  

platelet derived growth factor receptor; IGF-1R, Insulin Growth factor-1 receptor; KIT, mast/stem cell growth factor receptor; FLT3,  

fms-like tyrosine Kinase receptor 3; CSFR, colony stimulating factor receptor; n/a, not applicable
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experience from ERBB2 in breast cancer has shown that 
a key point was the inter-laboratories standardization of 
FISH criteria (39,40). Recently it has been reported in a 
cohort of 307 squamous lung carcinomas a reference guide 
to classify the tumor entities with respect to their FGFR1 
gene status by FISH (41). The authors defined low-level 
amplification by ≥5 FGFR1 signals in ≥50% of tumor 
cells, whereas high-level amplification is defined by an 
FGFR1/centromere 8 (CEN8) ratio ≥2.0, or by an average 
number of FGFR1 signals per tumor cell nucleus ≥6, or 
by the percentage of tumor cells containing ≥15 FGFR1 
signals or large clusters ≥10%.

In order to establish an appropriate GCN threshold 
correlation between FGFR1 gene dosage and drug response 
in SQCCL patients, we propose to measure FGFR1 gene 
status by FISH along with, a secondary independent 
quantification of FGFR1 gene copy number by MLPA. In 
addition to clarify how FGFR1 amplification is translated 
at active-protein levels, we recommend measuring phospho 
FGFR1 and phospho FSR2 as indicators of FGFR1 signal 
transduction activity (17,27).

3q amplification

Over the recent decades, due to the great technical 
advancement in the field of molecular biology, there has 
been vast improvement towards the genetic characterization 
of tumors, in an effort to understand how their biology can 
be targeted to improve cancer patient care. One of the most 
frequent chromosomal aberrations found in NSCLC is the 
amplification at 3q chromosome, which can be present in 
up to 43% of cases. It can be found in squamous dysplasia, 
established carcinoma and also in metastatic tissue (42) 
and is suggested that 3q amplification frequency increases 
as disease progresses (43). It is known that each patient 
carries a different length of 3q chromosome amplicon 
(see Figure 1). We hypothesized that the number and the 
biological importance of the trapped genes in each patient’s 
3q amplicon might be helpful to explain the inter-individual 
differences in disease outcome or its response towards 
specific targeted therapy.

Only a few genes that are targeted by the 3q chromosome 
amplicon have been functionally validated as prognosis 
modifiers of cancer disease, and even fewer as biomarkers of 
cancer therapy. Among these genes are phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) 
(44-46), SRY-related HMG-box (SOX2) (47-50), tumor 
protein 63 (TP63) (42), atypical Protein kinase C iota 

(aPKCɩ) (51,52), eukaryotic translation initiation factor 
4 gamma 1 (EIF4G1) (53,54), member of RAS oncogene 
family RAP2B, and others. 

PIK3CA encodes for the p110α catalytic subunit of 
phosphatidylinositol (PI) 3-kinase. A broad range of cancer-
related functions have been associated with its activation, 
such as cell proliferation, survival, oncogenic RAS signaling 
and transformation, making this an attractive target for 
therapeutic intervention. PIK3CA was found to be amplified 
in up to 45% of SQCCL cancer patients (55-59) and, due 
the strong correlation between PIK3CA amplification 
and its increased activity through its downstream effectors 
such as AKT and mTOR, this gene also appeared as an 
oncogene candidate (44). Abnormalities including mutations 
and amplification of PIK3CA/AKT/mTOR/PTEN are 
more common in SQCCL than in adenocarcinoma of the 
lung (60-62). Similar results have been showed by Spoerke  
et al. in their study where they have evaluated the candidate 
predictive biomarkers of sensitivity to select PI3K/mTOR 
pathway inhibitors in lung cancer patients. They suggests that 
different predictive biomarker strategies might be needed for 
both squamous and non-squamous patient populations, due 
to their alteration patterns and frequency (46).

The transcription factor TP63 (TP73L) is a homologue 
of p53 that functions by transactivating p53-targeted 
genes. The TP63 gene is expressed as multiple isoforms 
with different functions, including a full length (TAp63) 
and a truncated amino-deleted isoform ΔNp63, also called 
p40 (63). TAp63 can induce cell cycle arrest and apoptosis 
in response to DNA damage (64), whereas ΔNp63 has 
opposite functions because of its competition with p53, with 
respect to cell cycle arrest, mobility, invasion (epithelial–
mesenchymal transition) and senescence. The ratio of 
TAp63 and ΔNp63 regulates chemosensitivity. ΔNp63a is 
the most commonly expressed TP63 isoform in squamous 
cell carcinoma together with TP63 amplification (65). 
Massion et al. reported that 88% of SQCCLs have TP63 
amplification by FISH (42). As an interesting finding, 
they observed that TP63 amplification was an early event 
in the development of squamous carcinoma along with 
overexpression by IHC which results in better survival. 
ΔNp63 has been demonstrated as a more specific maker 
of squamous cell carcinoma than full length TP63, in 
the differential diagnosis in comparison with other lung 
histologies (66,67).

The SOX2 gene is a key transcription factor that 
coordinates embryonic development, differentiation and 
self-renewal of normal non-alveolar epithelium of the 
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airway. SOX2 amplification has been reported in 43-
60% (11,48,50,68) of SQCCL and in 27% of SCLC (69).  
The biological and clinical impact of SOX2 in lung 
cancer is reviewed by Karachaliou et al. (doi: 10.3978/
j.issn.2218-6751.2013.01.01).

CEP63 (centrosomal protein 63 kDa) plays a role in DNA 
damage response. Following DNA double strand breaks 
(DSBs) formation, it is delocalized from centrosomes and 
recruits CDK1, a regulator mitotic entry of the cell (70,71).

We took advantage of a recent report where authors 
performed a high resolution genomic characterization 
of SQCCL by RNA-seq, gene copy number and mRNA 
expression analysis (12) that is publicly available at the 
cBio cancer genomics portal (72). In this section, we will 
summarize the recent evidence of selected 3q-resident 
genes, where gene amplification might explain its 
contribution to malignant transformation, tumor 
progression or its role as a biomarker for targeted therapies. 
From protein-coding genes located at 3q, we only selected 
those were having strong correlation of GCN and mRNA. 
We defined strong GCN-mRNA correlation for a given 

gene, when at least 50% of the amplified tumors expressed 
higher levels of mRNA than diploid tumors (see Figure 2).

Atypical protein kinase C iota (aPKCɩ)

aPKCɩ belongs to the atypical subgroup within the protein 
kinase C family of structurally related serine/threonine 
kinases. Different PKC isoenzymes are involved in different 
functions, such as: cellular differentiation, proliferation, 
polarity and apoptosis. Atypical PKCs, unlike most of the 
members of the family, can be activated independently 
of Ca2+, diacyglycerol or phosphatidylserine (73). High 
aPKCɩ expression has been found in several human tumors, 
including squamous carcinomas of head and neck (64),  
esophageal (74,75) and lung (52), but also in lung 
adenocarcinoma (76). Recent data suggests that aPCKɩ 
activity is required by the oncogenic RasG12D mice model 
to progress from bronchial hyperplasia to lung tumor (77). 
In the same study, bronchoalveolar stem cells that lacked 
Prkci, the mice gene that encodes for aPKCɩ, were unable 
to transform neither in vitro nor in vivo.
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Figure 2 Boxplots of mRNA expression vs. gene copy number in SQCCL selected oncogenes. Only protein-coding genes were considered 
for screening as candidate genes. Gene data was retrieved from the cBio portal (http://www.cbioportal.org/public-portal/) based on their 
GCN- mRNA correlation and previous available bibliography. Those genes in which ≥50% of the amplified tumors expressed higher 
mRNA levels than diploid were selected for further bibliographic review. A-G, selected genes showing an strong correlation of GCN and 
mRNA expression levels. H, an example of a discarded gene due to its low correlation value.
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aPKCɩ interacts with PAR6α, forming a complex 
that triggers the activation of RAC1-PAK-MEK-ERK 
pro-survival pathway. Interestingly in NSCLC, the 
ECT2 oncogene, which also localizes at 3q amplicon, 
is mislocalized in the cytoplasm, where it is a target of 
phosphorylation at Thr-328 by aPKCɩ (78) for a proper 
oncogenic signaling through the RAC1 small GTPase 
pathway (79).

Taking into consideration, the importance of aPKCɩ 
in KRAS-mediated lung tumors, the prognostic and/
or predictive role of PRKCI amplification and aPKCɩ 
overexpression needs to be evaluated in oncogene “addicted” 
lung tumors, such as lung adenocarcinoma induced by 
EGFR-activating mutations or oncogenic rearrangements 
of ALK, where targeted therapies have a strong impact on 
patient survival and quality of care. Of course, it might be also 
interested to address the same question in SQCCL carriers 
of FGFR1 amplification treated with FGFRs inhibitors.

Activated CDC42 kinase 1 (ACK1)

ACK1, also known as TNK2, is a non-receptor tyrosine 
and serine/threonine protein kinase which functions as 
transducer of multiple ligand-activated RTKs including 
EGFR (80,81), AXL (82), MERTK (53), HER2 (83) and 
PDGFR (84) by activating cytosolic or nuclear effectors 
such as AKT and AR respectively to promote cell growth 
and survival (85,86). EGF ligand stimulation activates the 
ACK1 activity, which at the same time prevents EGFR from 
ubiquitination (87). AKT activation by ACK1 happens in a 
PI3K-independent manner. When phosphorylated by ACK1 
at Tyr-176, unlike the PI3K-activated AKT, it is confined 
to the membrane phosphatidic acid phospholipid. Once 
the phospho-activated AKT/ACK1 complex is located at 
the plasma membrane, it then translocates into the nucleus 
where it phosphorylates FoxO3a, preventing the expression 
of the BIM-1 pro-apoptotic gene, the GADD45 DNA 
repair gene and p21 and p27 inducers of cell cycle arrest. 
Moreover it can also activate the mitotic progression (88).  
In addition, the E3 ubiquitin ligase Nedd4-2 is a negative 
regulator of ACK1 when co-expressed (87,89), and can 
be rescued by treatment with MG132, a proteasomal 
inhibitor. Xenografts of prostate LNCaP cells are usually 
poorly tumorigenic in nude mice. But when LNCaP cells 
expressing a constitutively activated ACK1 were engrafted 
into nude mice, they rendered very large tumors within the 
first 24 days after injection. In prostate cancer, activated 
ACK1, phosphorylates androgen receptor (AR) either at 

Tyr-267 or Tyr-363 led to the nuclear translocation of AR/
ACK1 complex, thus activating the transcription of AR 
target genes such as prostate-cancer proteins: prostate-
specific antigen (PSA) and HK2, independently of androgen 
or testosterone, the Androgen receptor ligands (83). 
Interestingly, a hallmark of prostate cancer progression 
implies the acquisition of an androgen-resistant phenotype, 
which might be explained in some cases by the AR estrogen-
independent activation by ACK1.

Conclusions

Taking into consideration, the potential biological and 
medical impact of FGFR1, its activation turned to be a 
major area of research interest. Although prognostic data 
on FGFR1 has only recently been reported, the results 
are contradictory. Larger studies are needed to clarify 
its prognostic role. Furthermore, FGFR1 inhibitors 
have entered clinical trials, and over the next few years 
its predictive role with targeted TKIs will be definitely 
clarified.

On the other hand, finding new predictive biomarkers 
in highly genetic heterogeneous tumors such as SQCCL 
might be challenging because of the coexistence of multiple 
driver oncogenes, both in the same cellular clone or in 
different ones. An example might be the 3q chromosome 
amplification in SQCCL.
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