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Abstract

Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have 

been implicated in cell proliferation and differentiation but also in the pathogenesis of various 

diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize 

polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further 

transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, 

lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an 

important element in gene expression regulation. Although the first mammalian lipoxygenases 

were discovered 40 years ago and although the enzymes have been well characterized with respect 

to their structural and functional properties the biological roles of the different lipoxygenase 

isoforms are not completely understood. This review is aimed at summarizing the current 

knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-

physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and 

infectious disorders.
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1. Introduction

Lipoxygenases (LOXs) are non-heme iron-containing dioxygenases [1, 2] that catalyze 

dioxygenation of polyunsaturated fatty acids containing at least two isolated cis-double 

bonds (Fig. 1). In mammalian cells linoleic acid (C18:Δ2, n-6) and arachidonic acid 

(C20:Δ4, n-6) are the most abundant polyenoic fatty acids that serve as substrates for the 

different mammalian LOX-isoforms. In general, mammalian LOXs prefer free fatty acids as 

substrate over polyenoic fatty acid containing ester lipids but the cellular concentration of 

free fatty acids is rather low. Thus, an active LOX pathway requires liberation of substrate 

fatty acids from the ester lipids localized in the cellular membranes. After hydrolytic 

cleavage of the membrane ester lipids catalyzed by cytosolic phospholipase A2 [3] the 
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liberated fatty acids [mainly arachidonic acid (AA), eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA)] are alternatively oxygenated by cyclooxygenases (COX) to 

G-prostaglandins (PGG2 in case of AA, PGG3 in case of EPA, PGG4 in case of DHA) or by 

LOX isoforms to various hydroperoxy derivatives of the substrate fatty acids [2]. The 

primary products of the LOX pathway are subsequently converted to a large array of 

bioactive lipid mediators, which include leukotrienes [4], lipoxins [5], hepoxilins [6], eoxins 

[7], resolvins [8], protectins [9] and others. However, the classical concept of the 

arachidonic acid cascade may not be the only way, by which LOXs exhibit their bioactivity. 

There are at least two alternative scenarios (Fig. 2): i) Some LOX isoforms are capable of 

oxygenating polyenoic fatty acids if they are constituents of phospholipids [10] or 

cholesterol esters [11]. The introduction of a hydrophilic peroxide group into the 

hydrophobic tail of a fatty acid changes the physico-chemical properties of the ester lipids. 

Clustering of oxidized lipids within the lipid bilayer of a biomembrane leads to the 

formation of “hydrophilic pores”. By this mechanism the barrier function of the membrane 

is impaired which may lead to cellular dysfunction. ii) The cellular redox state is of major 

cell physiological relevance. It impacts the gene expression pattern of a given cell 

population [12] on transcriptional and post-transcriptional levels and thus determines the 

cellular phenotype. In each cell the redox homeostasis is maintained by the balanced 

equilibrium of pro- and anti-oxidative processes and LOXs constitute some of the key pro-

oxidative players in the redox homeostasis. LOX-catalyzed formation of hydroperoxy lipids 

impacts the activity of redox-dependent transcription and/or translation factors [13], which 

in turn leads to up- and/or down-regulation of the expression of redox sensitive genes.

The molecular details of how the different LOX-isoforms exhibit their bioactivity have been 

explored for many years and a large number of reports employing various loss-of-function 

(siRNA-mediated expression knockdown, knockout mice) as well as gain-of-function 

(cellular transfection studies, transgenic animals) strategies have provided a deeper insight 

into the biological importance of LOXs in health and disease. Nonetheless, our knowledge 

of the biological role of various LOX-isoforms, in particular for ALOX15, ALOX15B, and 

ALOX12 is still somewhat limited. This review is aimed at summarizing and critically 

evaluating the experimental data characterizing the physiological and patho-physiological 

roles of various LOX-isoforms in mammals. Of course, LOXs have been the topic of 

previous reviews and a PubMed search with the key words “lipoxygenase and review” 

yielded some 1700 hits. However, most of these reviews cover selected areas of LOX 

research such as LOX enzymology [1], ALOX5 pathway and leukotriene signaling [2] or 

LOX in bone disease [14]. To the best of our knowledge there is no recent review paper 

summarizing the current knowledge of the biological role of mammalian LOX isoforms in 

health and disease.

During the past decades LOX research has developed rapidly and a PubMed search with the 

keyword “lipoxygenase” gave some 15,600 hits. Since 2003 about 500 articles have been 

published annually and because of space limitations it was not possible to reference here 

even 10% of these reports. Thus, although we tried to make a balanced selection we might 

have overlooked important articles and we apologize to those distinguished colleagues 

whose work we have not had sufficient space to reference.
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2. Lipoxygenase distribution, classification and properties

LOX occur in two (bacteria, eukarya) of the three domains of terrestrial life [1, 15] but their 

occurrence in archaea remains unclear (Fig. 3). The genomic sequences of selected archeae 

(Methanococcus voltae, Halorubrum kocurii) also contain LOX-like sequences but in the 

absence of any functional data it remains unclear if these sequences encode for a functional 

LOX-isoform. When we performed multiple amino acid alignments of these putative LOX 

sequences with the primary structure of well-characterized pro- and eukaryotic LOXs we 

observed only low (<25%) degrees of amino acid conservation. Moreover, we did not find 

conservation of the iron liganding residues suggesting that the sequences of interest may not 

encode for functional LOXs. The occurrence of LOX in single cell organisms, in plants and 

lower metazoa [15–17] has been reviewed before but distribution of LOX isoforms in 

multicellular vertebrates has not been summarized systematically.

2.1. Classification of mammalian lipoxygenases and LOX genes

The human genome involves six functional LOX genes (ALOX15, ALOX15B, ALOX12, 

ALOX12B, ALOXE3, ALOX5), which encode for six different LOX-isoforms [18]. Except 

for the ALOX5 gene, which was mapped to chromosome 10, all other LOX genes are 

localized in a joint gene cluster on chromosome 17. The corresponding mouse genes [18] 

were detected in syntenic regions on chromosome 6 (alox5) and 11 (other LOX-isoforms). 

Originally, the human LOX isoforms were classified with respect to their specificity of 

arachidonic acid oxygenation but this nomenclature turned out to be misleading and caused 

confusion among scientists not working in the LOX field [1]. These days the gene 

nomenclature is frequently employed to define the LOX isoenzyme and Table 1 summarizes 

human and murine LOX-isoforms and assigns names of the genes to the different 

isoenzymes. For this review we will use the names of the genes also when we talk about the 

corresponding enzymes. To differentiate between genes and proteins we employ italic letters 

when referring to enzymes but use normal letters when referring to the genes.

The ALOX15 gene encodes for the 12/15-LOX, which is expressed at high levels in 

eosinophils [19], broncho-alveolar epithelial cells [20] and interleukin 4 treated monocytes 

[21]. The ALOX15B gene encodes for 15-LOX2, which is highly expressed in epithelial 

cells [22, 23]. The ALOX12 gene encodes for the platelet-type 12-LOX (pl12-LOX), which 

is expressed at high levels in blood platelets [24] but also occurs in the skin [25]. The 

ALOX12B gene [26, 27], which encodes for a 12R-lipoxygenating enzyme and the 

ALOXE3 gene [28, 29] encode for two distinct epidermis-type LOX isoforms, which are co-

expressed in the skin. These enzymes have been implicated in epidermal differentiation [30] 

and appear to be important for the development of the epidermal water barrier [31, 32]. The 

ALOX5 gene encodes for a 5-lipoxygenating enzyme, which plays a major role in 

leukotriene biosynthesis [2, 33].

In mice the situation is somewhat different (Table 1). Mouse Alox12, Alox12b, Aloxe3 and 

Alox5 share high degrees of amino acid conservations with their human orthologs and 

exhibit similar enzymatic properties. However, this is not the case for mouse Alox15 and 

mouse Alox15b. In fact, mouse Alox15 is a 12-lipoxygenating enzyme converting 

arachidonic acid mainly to 12S-HpETE [34]. In contrast, the human ortholog exhibits a 15-
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lipoxygenating activity [35]. Because of its reaction specificity and its high-level expression 

in murine leukocytes mouse Alox15 has previously been named leukocyte-type 12-LOX but 

this nomenclature should not be used any more. In general, LOXs, which have previously 

been named leukocyte-type 12-LOXs [mice [34], rats [36], pigs [37] cattle [38], macaca [39] 

and other mammals), should be classified as 12-lipoxygenating ALOX15 isoforms. Analysis 

of the completely sequenced genomes of these and additional mammalian species did not 

provide any evidence for the simultaneous existence of separate ALOX15 and leukocyte-

type 12-LOX genes in a single mammalian species. Even in rabbits, where 15- and 12-

lipoxygenating ALOX15 variants are expressed [40], only a single copy ALOX15 gene 

exists. For the time being it remains unclear how a single ALOX15 gene is able to encode in 

a tissue specific manner [40] for two functionally distinct enzyme species, but post-

translational mRNA modification [41] might be involved. It should explicitly be stressed 

here that in humans there is a single copy ALOX15 gene but there is no additional gene 

encoding for a leukocyte type 12-LOX. On the other hand, mice, rats, pigs, cattle, macaca 

and others express 12-lipoxygenating ALOX15 isoforms. The molecular basis for the 

variable reaction specificity of ALOX15 orthologs from different species has been explored 

in detail [39, 42] and multiple mutagenesis studies have indicated that single amino acid 

exchanges at critical positions convert the 15-lipoxygenating human ALOX15 into a 12-

lipoxygenating isoform [1, 43]. Inversely, the 12-lipoxygenating mouse Alox15 (formerly 

called mouse leukocyte-type 12-LOX) can easily be converted into a 15-lipoxygenating 

enzyme by L353F exchange [44].

Human ALOX15B converts arachidonic acid almost completely to 15S-HpETE [22]. In 

contrast, the mouse ortholog, which shares a high degree of overall amino acid conservation 

with the human enzyme, exhibits an arachidonic acid 8S-lipoxygenating activity [23]. Site 

directed mutagenesis of Tyr603 and His604 of human ALOX15B to the corresponding 

residues present at these positions in murine Alox15b (Tyr603Asp+His604Val) leads to a 

complete shift in the positional specificity of arachidonic acid oxygenation from 15S-

HpETE to 8S-HpETE formation [45]. The inverse mutagenesis strategy starting with human 

ALOX15B leads to partial alterations in the reaction specificity [45]. When we compared 

(data not shown) the ALOX15B amino acid sequences of different mammals (man, 

chimpanzee, gorilla, orangutan, macaca, baboon, cattle, pigs, rat) we found that all of them 

share the human motif (Asp-Val or Asp-Ile). Only mice have a Tyr-His combination at these 

positions. Thus, among mammals mice are somewhat unique and although not tested for 

other mammals arachidonic acid 15-lipoxygenation may be predicted for other (chimpanzee, 

gorilla, orangutan, macaca, baboon, cattle, pigs, rat) mammalian ALOX15B orthologs. It 

would be of mechanistic interest to experimentally test this prediction and explore in more 

detail the biological background of this unusual reaction specificity of mouse Alox15b.

2.2. Enzymatic properties of mammalian lipoxygenases

Mammalian LOXs are single polypeptide chain proteins that fold into a two-domain 

structure (Fig. 4). The small (about 15 kDa) N-terminal domain consists of several parallel 

and anti-parallel β-sheets and has been implicated in activity regulation and membrane 

binding. The C-terminal catalytic domain consists of several helices and contains the 

catalytic nonheme iron localized in the putative substrate-binding pocket. For mammalian 
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LOXs complete crystal structures are currently available for rabbit ALOX15 [46, 47], which 

serves as a suitable model for the human ortholog; for a stabilized version of the human 

ALOX5 [48]; for the catalytic domain of porcine ALOX15 [49]; and for human ALOX15B 

[50]. In addition, X-ray data have been published for a phosphorylation-mimicking mutant 

(Ser663Asp) of the stabilized version of human ALOX5 [51]. However, these data need to be 

interpreted with care since the functional consequences of the phosphorylation mimicking 

mutations (Ser663Asp exchange converts the reaction specificity of the stabilized human 

ALOX5 from 5- to 15-lipoxygenation) could not be confirmed for native ALOX5 orthologs 

of man, mice and zebrafish [52].

In aqueous solutions the structure of proteins is less rigid than in crystals. To compare the 

degree of motional flexibility of rabbit ALOX15 and soybean-LOX1, small angle X-ray 

scattering (SAXS), dynamic fluorescence, and fluorescence resonance energy transfer 

measurements were carried out. The results suggest that rabbit ALOX15 is more susceptible 

to temperature-induced structural alterations and exhibits a higher degree of global 

conformational flexibility [53]. There are several processes contributing to global structural 

flexibility of rabbit ALOX15: i) Interdomain movement: Comparative SAXS measurements 

on aqueous solutions of recombinant rabbit ALOX15 and its catalytically active N-terminal 

truncation mutant (no N-terminal β-barrel domain) suggested the possibility of interdomain 

movement [54]. Such interdomain movement was not confirmed for the soybean enzyme 

[55]. Although SAXS data in general can be interpreted in different ways [56] more recent 

molecular investigations into the dimerization behavior of rabbit ALOX15 [57] and 

molecular dynamics simulations [58] confirmed the possibility of interdomain movement for 

this enzyme. For the solution structure of human ALOX12 a similar interdomain movement 

has been suggested [59]. ii) Alternative conformers: Reevaluation [47] of the X-ray data set 

obtained for the crystallized rabbit ALOX15 [46] suggested that the enzyme undergoes 

conformational changes when binding an inhibitor at the active site. Helices surrounding the 

catalytic center appear to relocate upon ligand binding. However, it remains unclear whether 

these structural rearrangements are peculiar to the active site probe (inhibitor) used for 

crystallization or whether binding of substrate fatty acids at the active site also induces 

similar structural alterations. iii) Allosteric properties: Human ALOX5 [60], ALOX15 and 

ALOX15B [61, 62] appear to exhibit allosteric properties. Although the binding sites for 

allosteric effectors have not been identified for ALOX15 and ALOX15B kinetic data suggest 

the existence of different enzyme conformers. Interestingly, the allosteric regulators of 

human ALOX15 do not affect the catalytic activity of the less flexible soybean LOX1 [63]. 

iv) Enzyme dimerization: For a long time LOXs have been suggested to function as 

monomeric enzymes. However, more recent data on recombinant human ALOX15 [64], 

human ALOX12 [59] and human ALOX5 [65] suggests the existence of LOX dimers in 

aqueous solutions. Human ALOX15 may undergo ligand-induced dimerization and 

molecular dynamics simulations suggested that LOX dimers are surprisingly stable in the 

presence of substrate fatty acids. Introduction of negatively charged residues (Trp181Glu, 

His585Glu, LeuL183Glu, Leu192Glu) at the protein surface disturbs monomer interactions 

compromising the catalytic activity of the mutants [64]. In addition, the rabbit ALOX15 

forms oligomers upon membrane binding [66].
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The catalytic cycle of the LOX reaction involves four consecutive elementary reactions [1, 

2]: i) hydrogen abstraction from a bisallylic methylene forming a carbon centered fatty acid 

radical, ii) rearrangement of the fatty acid radical, iii) introduction of molecular dioxygen 

forming a oxygen-centered peroxy radical, iv) reduction of the hydroperoxy radical to the 

corresponding anion. Hydrogen abstraction appears to be the rate-limiting step of the 

catalytic cycle and this elementary reaction involves hydrogen tunneling [67, 68]. Thus, 

LOXs may be considered quantum chemical enzymes and some aspects of the reaction 

mechanisms cannot adequately be described employing traditional thermodynamics.

3. Biological function of mammalian LOX isoforms

Following the classical concept of the arachidonic acid cascade LOXs exert their bioactivity 

via the formation of lipid mediators that regulate the functional phenotype of a given cell 

population (Fig. 2). However, at least two alternative concepts have been introduced to 

explain LOX functionality: i) Several LOX isoforms are capable of oxidizing complex ester 

lipids and even lipid-protein assemblies (biomembranes, lipoproteins) modifying their 

structural and functional parameters. This concept is at least in part applicable for the roles 

of different LOX isoforms in erythropoiesis, epidermal differentiation and atherogenesis 

(see 3.1.1., 3.1.2., 3.3.2.2.). ii) LOXs are lipid peroxidizing enzymes and by forming lipid 

peroxides they modify the cellular redox state. Since the cellular redox equilibrium is an 

important regulator of cell proliferation and gene expression (3.1.3.) intracellular LOX-

activity may impact cell functionality. Of course, LOXs are not the only enzymes 

modifiying the cellular redox state since a large number of pro- and anti-oxidative enzymes 

exist in mammalian cells. However, the catalytic activity of LOX clearly contributes to 

cellular redox homeostasis.

3.1. Lipoxygenases in cell development and proliferation

3.1.1. ALOX15 in erythropoiesis—Normal erythrocytes and their immediate precursors 

(reticulocytes) do not contain sizable amounts of ALOX15. However, when erythropoiesis is 

challenged in rabbits [69] by either repeated bleeding or forced hemolysis (phenylhydrazine 

injection) reticulocytes express large amounts of ALOX15. In fact, rabbit reticulocytes are 

the richest natural source of ALOX15 and model calculations suggested that up to 4 mg of 

ALOX15 protein is present in 1 ml of packed reticulocytes [70]. Interestingly, the enzyme is 

almost undetectable in young stress reticulocytes but during in vitro maturation of these cells 

expression of the enzyme parallels the maturational decline of cellular respiration [71]. 

These anti-parallel biological dynamics (increase in ALOX15 expression vs. decrease in 

cellular respiration) and the observation that isolated ALOX15 in vitro induces structural 

decomposition of rat liver mitochondria [72] implicated ALOX15 in maturational breakdown 

of mitochondria during late erythopoiesis. Consistent with this hypothesis, oxidation 

products formed by ALOX15 were found in reticulocyte membranes [73]. In vitro studies 

with the isolated rabbit ALOX15 showed that the enzyme does not just bind to mitochondrial 

and other organelle membranes and oxidize the membrane lipids [74], but also directly 

permeabilizes them, forming pores in the membrane [66]. Freshly isolated reticulocytes 

matured in vitro degrade their mitochondria more slowly in the presence of a LOX inhibitor 

[75–77]. However, functional inactivation of the Alox15 gene in mice did not lead to major 
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functional defects in erythropoiesis [78], and we (Kühn, unpublished results) did not find 

significant differences in the standard hematological parameters (erythrocyte count, Hb, HK, 

MCHC, MCV) of Alox15-deficient mice when compared with Alox15-sufficient controls. 

In addition to intracellular degradation initiated by ALOX15 [70], there are two competing 

hypotheses for how mitochondrial degradation occurs in erythroid cells [79]: i) engulfment 

and digestion within autophagic vacuoles [80]; and ii) exocytosis of mitochondria within 

exosomes [81]. There is experimental support for all three scenarios, but none of the 

proposed mechanisms appears to provide a complete answer [82]. It may simply be that 

inhibition of one pathway can be compensated for by one or both of the others. Indeed, 

ALOX15 inhibition leads to an increase in autophagic vacuoles in cultured cells, and in the 

livers of Alox15 knockout mice in vivo [83]. Furthermore, exosome formation by in vitro 

matured reticulocytes is impaired by addition of a LOX inhibitor [83], suggesting there is 

considerable crosstalk between these pathways. Further studies of erythropoiesis under both 

stressed and non-stressed conditions are needed to investigate the relative contribution of 

each of the three mitochondrial degradation pathways.

3.1.2. Lipoxygenases in epidermal differentiation and skin development—
ALOX12B (12R-LOX) and ALOXE3 (eLOX-3) have been implicated in late epidermal 

differentiation, particularly in maintenance of the Stratum corneum [84, 85]. Mammalian 

skin is composed of three principal layers (epidermis, dermis, subcutis) and the Stratum 

corneum constitutes the outermost layer of the epidermis. Its major function is to protect the 

organism from infection, irritants, and from loss of water. The Stratum corneum consists of 

specialized cells (corneocytes), which are according to the brick and mortar model [86] 

imbedded in a compact extracellular matrix consisting of cross-linked proteins and special 

extracellular lipids. Like red blood cells, corneocytes are anucleated cells, which do not 

contain intracellular organelles [87]. They originate from interfollicular epidermal stem cells 

localized in the Stratum basale of the epidermis and mature via keratinocytes into 

corneocytes. During this maturation process the cells migrate perpendicularly through the 

epidermis and their journey towards the surface of the skin takes approximately 14 days. In 

more basal layers of the Stratum corneum corneocytes are bridged together through 

specialized junctions (corneodesmosomes) but these junctions disintegrate as the cells 

mature resulting in desquamation. Corneocytes are characterized by the cornified envelope, 

which is formed beneath the plasma membrane [88, 89]. It consists of a 10 nm thick layer of 

highly crosslinked insoluble proteins and a 5 nm thick layer of ceramide lipids that are 

covalently bound to the proteins. Ceramides also occur in the extracellular space and here 

they organize the extracellular lipids into orderly lamellae. Together, the cornified envelope 

and extracellular lipid lamellae, are essential for effective physical and water barrier 

function in the skin [90].

In normal mouse skin five different LOX-isoforms (Alox15b, Alox12, Alox12b, Aloxe3, 

Aloxe12) are expressed. Targeted inactivation of the Alox12 [91], Alox12b [84] and Aloxe3 

[85] genes led to an impaired water barrier function of the skin. Alox12 knockout mice are 

viable and reproduce normally [92] and thus, defective function of this enzyme is likely to 

be compensated by the other LOX-isoforms. In contrast, Alox12b and Aloxe3 knockout 

mice die shortly after birth because of rapid dehydration [84, 85].
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In humans autosomal recessive congenital ichthyosis (ARCI) is a group of skin diseases, 

which is characterized by intense scaling [93]. Naturally occurring mutations in the 

ALOX12B and ALOXE3 genes have frequently been detected in ichthyosis patients [94, 

95]. In a large group of 250 ARCI patients [96] 11 previously unidentified mutations have 

been described in the two LOX genes in 21 ARCI patients from 19 unrelated families. These 

data indicated that mutations in the two genes are the second most common cause for ARCI 

in this patient cohort. More detailed analysis of the sequence data revealed a high allelic 

heterogeneity for the ALOX12B gene, and two mutational hotspots in the ALOXE3 gene 

have been identified. Functional characterization of these mutations indicated a loss of 

catalytic activity suggesting a causal relation between the loss-of-function mutations and 

pathogenesis [96]. Unfortunately, the frequency of functionally deficient ALOX12B and 

ALOXE3 mutants in the average population (not ARCI patients) has not been determined. 

Of course, ALOX12B and ALOXE3 deficiencies are not the only reason for ARCI and 

mutations in other genes such as transglutaminase-1 do also contribute [97].

The question why defective ALOX12B and ALOXE3 expression in man and mice induces 

impaired formation of the water barrier of the skin is still a matter of discussion. The current 

understanding of the molecular mechanisms [30, 31, 98] is that under normal conditions 

ALOX12B catalyzes oxygenation of skin specific ceramides to their corresponding 

hydroperoxídes. These hydroperoxy lipids are subsequently converted by the hydroperoxide 

isomerase activity of ALOXE3 [99] to hepoxilin-like secondary lipid peroxidation products 

[6]. This oxidative modification triggers preferential removal of the oxidized linoleate 

moieties from the ceramides resulting in the formation free ω-hydroxyceramides. These 

reactive lipids may subsequently be linked covalently to proteins contributing to the 

formation of the cornified envelope [88, 89]. Although there are still some mechanistic 

caveats (e.g. which lipid hydrolyzing enzymes prefer hepoxilin-containing ceramides over 

the non-oxidized counterparts) this pathogenetic scenario is supported by several lines of 

experimental observations [98]: i) Murine epidermis contains oxidized linoleate containing 

ceramides, which are almost absent in the skin of Alox12b knockout mice. ii) The oxidized 

linoleate residues in the ceramide lipids are chiral suggesting their enzymatic origin. iii) 

Covalently cross-linked ceramides in the epidermis of Alox12b knockout mice are severely 

reduced in the epidermis of these animals. iv) Aloxe3 knockout mice show a less severe 

phenotype when compared with Alox12b-deficient animals, which was associated with a 

reduction in covalently bound ceramides.

3.1.3. Lipoxygenases in cell proliferation and carcinogenesis—The role of LOX 

isoforms in cell proliferation and carcinogenesis appears to be very complex and the 

observed effects are sometimes controversial. ALOX5 metabolites, such as 5-HETE, its 

oxidation product 5-oxo-ETE and peptido leukotrienes, stimulate cell proliferation and thus, 

may act as pro-carcinogenics [100]. 12-HETE, the major arachidonic acid oxygenation 

product of ALOX12 and ALOX12B, which is also formed in smaller amounts by ALOX15 

orthologs, also exhibits pro-carcinogenic activities stimulating cell adhesion, metastasis and 

neoangiogenesis [101]. These data are consistent with the observation that overexpression of 

ALOX15 in human prostate cancer cells increases tumorgenesis [102]. In contrast, the major 

ALOX15 and ALOX15B metabolite of linoleic acid oxygenation (13-HODE) induces 
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apoptosis in human colorectal cancer and thus, exhibits anti-carcinogenic properties [103]. 

Expression of ALOX15B is reduced in human prostate, esophageal and skin carcinoma [104–

106] and the enzyme was suggested as tumor suppressor protein [107]. It should, however, 

be stressed that there is no uniform expression regulation of different LOX isoforms in all 

types of malignancies. In contrast, expression regulation strongly depends on the kind of 

tumor and perhaps on its developmental stage. For instance, the enzymatic activity of 

ALOX15 is down-regulated in colorectal carcinoma [108] but up-regulation was observed in 

prostate cancer [109].

If one reviews the relevant LOX literature four (ALOX15, ALOX15B, ALOX12, ALOX5) of 

the six human LOX isoforms have been implicated in regulation of cell proliferation and 

carcinogenesis. There are a number of reports exploring the roles of these LOX isoforms in 

different types of cancer [110–115], but the majority of the reports implicate LOXs in 

colorectal [116] and prostate carcinoma [117]. Thus, for this review we will focus on these 

two types of cancer. Carcinogenesis is a complex process that involves increased cell 

proliferation, reduced apoptosis, tumor associated neoangiogenesis, up-regulation of cellular 

adhesion and invasiveness (metastasis) as well as down-regulation or circumvention of 

immunological defense reactions. In all of these processes LOX isoenzymes have been 

implicated [118] but there is no unifying concept for the biological roles of the different 

LOX isoforms.

3.1.3.1. Lipoxygenases in colorectal cancer: Comparison of the steady state concentrations 

of LOX metabolites in normal, polyp and colorectal cancer mucosa did not identify 

significant differences in 12-HETE, 15-HETE and leukotriene B4 levels [119]. However, 

the tissue concentrations of 13S-HODE declined across this progressive sequence. In a 

separate study a strong correlation between ALOX5 expression and increased polyp size as 

well as higher tumor grade suggested a role for this enzyme in early stages of colon cancer 

[120]. These data are consistent with the overexpression of ALOX5 in colon polyps and 

carcinoma tissue described in another study [121]. Summarizing these results it was 

concluded that ALOX5 expression is an early event in the mechanistic sequence leading to 

colon cancer, with increased expression in adenoma, while ALOX12 expression appears to 

be a later event, possibly mediating invasion and metastasis. The products of the ALOX5 

pathway (leukotrienes) have been suggested to induce their biological effects as endocrine 

or paracrine mediators via binding at cell surface receptors of surrounding cells. For 

instance, leukotriene B4 (LTB4) regulates colon cancer growth via binding at the BLT1 

receptor. A BLT1 receptor antagonist, and siRNA-induced expression silencing of this 

protein suppressed LTB4-induced cell proliferation [122]. On the other hand, autocrine 

signaling mechanisms, such as activation of endogenous transcription factors, have also 

been described for various LOX products [123, 124].

The role of ALOX15 in colorectal carcinoma has been a matter of discussion for several 

years and still the picture is not clear. Transfection of HCT116 colon carcinoma cells with 

ALOX15 induced activation of the ERK protein kinase led to increased rates of cell 

proliferation. These data suggest a pro-carcinogenic activity of the enzyme [125]. Treatment 

of these cells with NDGA, a non-specific LOX inhibitor with antioxidant properties, 

appeared to block ERK activation, which is consistent with the pro-carcinogenic activity of 
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ALOX15 [125]. The underlying mechanisms have not been explored in detail but it might 

well be that NDGA-induced cell cycle arrest is related to an off-target effect of this 

compound. NDGA is a potent antioxidant and interferes with the redox state of the cells. 

Since cell cycle regulation is impacted by the redox equilibrium [126] the observed anti-

proliferative effect might not directly be related to ALOX15 inhibition. In similar cellular 

models of colorectal carcinoma (HCT116, HT29) ALOX15 exhibited anti-carcinogenic 

properties, which was related to inhibition of the anti-apoptotic effect of the inflammatory 

transcription factor nuclear factor kappa B [127]. Here again, the molecular basis for the 

observed anti-carcinogenic affect is not completely understood but overexpression of 

ALOX15 inhibited the degradation of the inhibitor of kappa B, impaired nuclear 

translocation of p65 and p50, decreased DNA binding in the nucleus and reduced the 

transcriptional activity of NF-κB [128]. Unresolved chronic inflammation is a key process in 

tumor progression and thus, pro-resolving lipid mediators (eicosanoids and related 

metabolites of other polyenoic fatty acids) such as lipoxins [129], resolvins [130] and 

maresins [131] need to be discussed as regulators of carcinogenesis [132]. Resolving 

eicosanoids are generally believed to exhibit anti-tumor activities [133]. Chronic 

inflammation of colonic mucosa creates a pro-carcinogenic milieu and patients suffering 

from ulcerative colitis exhibit defective lipoxin biosynthesis [134]. Thus, the lack of pro-

resolving mediators may drive carcinogenic transformation of normal epithelial cells during 

chronic inflammation. On the other hand, under certain conditions these mediators may also 

act in a pro-carcinogenic manner. For instance, depletion of regulatory T cells induced by 

cyclophosphamide treatment of patients with large established tumors caused significant 

tumor progression and this effect was suggested to be mediated by an increase in lipoxin A4 

levels [135].

3.1.3.2.Lipoxygenases in prostate cancer: Four LOX isoforms (ALOX5, ALOX15, 

ALOX15B, ALOX12) have been implicated in the pathogenesis of prostate cancer and pro- as 

well as anti-carcinogenic effects have been reported. As pro-inflammatory enzyme ALOX5 

was suggested to be pro-carcinogenic. The enzyme is overexpressed in prostate 

adenocarcinoma [136] but the molecular mechanisms for the pro-carcinogenic effects are 

not completely understood. Inhibition of the enzyme triggers apoptosis in different types of 

prostate cancer [137–139] and pharmacological interference with other constituents of 

leukotriene signaling induced similar effects [140]. For instance, the cysteinyl leukotriene 

receptor 1 (cysLTR1) is overexpressed in prostate cancer and cysLTR1 antagonists inhibit 

prostate cancer cell growth by up-regulating apoptotic cell death [141]. Moreover, 

downregulation of the OXE receptor for 5-oxo-ETE reduced prostate cancer cell survival 

[142].

ALOX15 is expressed at variable levels in different prostate carcinoma cell lines [143] and 

formation of 13-HODE suggested functional activity of the enzyme [144]. Forced 

overexpression of ALOX15 in cultured human prostate cancer cells augmented the rate of 

cell proliferation and subcutaneous transplantation of ALOX15-transfected PC3 cells into 

athymic nude mice increased the frequency of tumor formation and tumor size [102]. 

Similarly, conditional expression of human ALOX15 in mouse prostate induces prostatic 

intraepithelial neoplasia [145]. Taken together, these data suggest a pro-carcinogenic 
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character of this enzyme. On the other hand, ALOX15-mediated metabolism of 

docosahexaenoic acid is required for apoptosis in prostate cancer cells [146] and ALOX15 

metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and cell 

survival [147]. Hence, in the presence of DHA the enzyme might exhibit anti-carcinogenic 

properties.

ALOX15B is expressed in normal human adult prostate and its expression is impaired in 

prostate intraepithelial neoplasia and in prostate cancer [148]. In normal prostate cells the 

enzyme has been identified as negative cell cycle regulator and consequently, a function of 

ALOX15B as tumor suppressor has been suggested in prostate carcinoma [149]. Although 

the molecular basis for the tumor suppressive activity is not completely understood some 

mechanistic scenarios have been suggested. 15S-HETE inhibits proliferation in PC3 prostate 

carcinoma cells and this effect involves activation of peroxisome proliferator-activated 

receptor gamma by the ALOX15 product 15S-HETE [150]. Since 15-HETE can also be 

formed by ALOX15 these two enzymes may contribute to this protective effect. Expression 

of ALOX15B is cell-autonomously up-regulated in cultured prostate cells, and induction of 

enzyme expression was associated with cell senescence [151]. Moreover, transgenic 

expression of human ALOX15B in mouse prostate leads to hyperplasia and cell senescence 

[152]. It should be stressed at this point that the product specificity of mouse and human 

ALOX15B are different. For the human enzyme 15-HETE is the exclusive arachidonic acid 

oxygenation product [22], whereas mouse alox15b makes 8-HETE [23]. Thus, induction of 

cell senescence by ALOX15B overexpression may not be related to the formation of 

arachidonic acid oxygenation products. Expression of ALOX15B is tightly regulated in 

prostate cancer and several mechanisms have been described. The reaction product of 

human ALOX15B catalyzed arachidonic acid oxygenation (15-HETE) activates enzyme 

expression via activation of peroxisome proliferator activated receptor gamma (PPARγ) 

[153]. However, it remains unclear if similar observations can be made in murine 

experimental setups. Because of the different reaction specificities of human and mouse 

ALOX15B 8-HETE should be the preferred activator of murine PPARγ. Unfortunately, to 

the best of our knowledge such experimental data are currently not available. In addition, the 

tumor suppressive effects of ALOX15B may be related to the down-regulation of vascular 

endothelial growth factor in prostate carcinoma and to induction of tumor dormancy by the 

enzyme [154]. In other words, loss of ALOX15B functionality was suggested to represent a 

key step for prostate cancer cells to exit from dormancy and embark on malignant 

progression [154]. In prostate cancer expression of ALOX15B is strongly down-regulated but 

the underlying molecular mechanisms are not completely understood. Recently, it has been 

reported that glucocorticoid signaling may be involved in ALOX15B expression regulation 

and these data might be relevant for prostate cancer [155].

ALOX12 exhibits pro-carcinogenic activities in the prostate. It stimulates tumor growth and 

neoangiogenesis [101], increases the metastatic potential [156] and promotes tumor cell 

survival [157]. Although the mechanistic reasons for the tumor-promoting effects have not 

been studied in detail this activity might involve NFκB signaling [158, 159].

Most naturally occurring polyenoic fatty acids serve as LOX substrates and the biological 

activity of the products formed from a certain fatty acid may differ from that formed by the 
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same LOX isoform from a different fatty acid. For instance, the major ALOX15 product of 

arachidonic acid metabolism (15-HETE) might exhibit different biological effects than the 

major ALOX15 product of docosahexaenoic acid (17-HDHE). Thus, the alimentary supply 

of polyenoic fatty acids might modify the overall character of LOX isoforms in prostate 

cancer [160–162].

3.2. Lipoxygenases in inflammation

According to the classical concept of the arachidonic acid cascade LOXs are key enzymes in 

the biosynthesis of linear eicosanoids and related mediators originating from other polyenoic 

fatty acids (leukotrienes, lipoxins, resolvins, maresins, hepoxilins, eoxins etc.) and these 

compounds [6–11] been implicated as promoting and/or protecting against pathogenic 

inflammation. However, the patho-physiological role of LOX may not be restricted to the 

formation of signaling lipids. LOXs are lipid peroxidizing enzymes and their catalytic 

activity may impact the cellular redox state. Since the redox state is an important regulator 

of the cellular gene expression pattern the catalytic activity of the enzyme may alter the 

functional phenotype of mammalian cells [163]. In fact, transfection-induced overexpression 

of ALOX15 in U937 cells alters the gene expression pattern (GSE8173) but the 

physiological consequences of these expression alterations have not been characterized in 

detail.

3.2.1. Pro-inflammatory properties of lipoxygenases—Inflammation is a protective 

response of the organism aimed at fighting inflammation inducers. This fight requires a 

balanced activity of various cellular and humoral constituents of the adaptive and innate 

immune system, and inflammatory mediators have coordinating functions. There is a large 

array of lipid and non-lipid mediators regulating acute inflammation as well as its 

inflammatory resolution. Leukotrienes (LT) are classical pro-inflammatory mediators 

originating from the ALOX5 pathway [2, 164]. They are biosynthesized in different types of 

leukocytes and other immune competent cells from free arachidonic acid. The key enzyme 

in the biosynthetic cascade is ALOX5 [2, 165], which catalyzes the first two steps of 

leukotriene biosynthesis (oxygenation of arachidonic acid to 5S-HpETE and conversion of 

5S-HpETE to LTA4). The leukotriene biosynthetic cascade has extensively been reviewed 

before [33, 166] and most enzymes and regulators involved in this pathway have been well 

characterized with respect to their structural and functional properties [2]. There are two 

principal classes of LTs (peptido LTs and peptide-free LTs) and additional non-LT ALOX5 

products such as 5-HETE, and 5-oxo-ETE [167]. The various LTs (Fig. 5) exhibit different 

bioactivities and preferentially act on different cells types:

i. Peptido-LTs: The cysteinyl LTs (LTC4, LTD4, LTE4) are constituents of the slow-

reacting substance of anaphylaxis and play an important role for the pathogenesis 

of allergic diseases, such as bronchial asthma [168], rhinitis [169] and allergic eye 

disease [170]. On the molar basis cysLTs are at least 1000-times more effective as 

bronchoconstrictor than histamine [171], and nanomolar concentrations of cys-LTs 

cause plasma leakage and cell adherence in postcapillary venules leading to 

bronchial edema [172]. In addition, cysteinyl LTs induce mucus secretion in vitro 

and in vivo [173, 174] and may also alter mucus viscosity [174]. Taken together, 
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these effects implicated leukotrienes in the pathogenesis of pulmonary dysfunction, 

and after leukotriene synthesis inhibitors [175] and leukotriene receptor antagonists 

[176, 177] became available as drugs, anti-leukotriene therapy has been employed 

in the clinic to supplement glucocorticoid-base therapeutic schemes [178]. 

Nevertheless, as monotherapy, inhaled corticosteroids display superior efficacy to 

anti-leukotrienes in patients with persistent asthma and this superiority is 

particularly evident in patients with moderate airway obstruction [179]. Asthma 

patients who continue to experience symptoms despite being on regular inhaled 

corticosteroids represent a management challenge, and long-acting beta(2)-agonists 

or anti-leukotrienes are two treatment options that could be considered as add-on 

strategies. Direct comparison of these two therapeutic approaches suggest that 

long-acting beta(2)-agonist treatment might be superior to anti-leukotriene therapy 

in reducing oral steroid treated exacerbations [180]. However, the differences in 

lung function and quality of life scores were rather moderate but there was 

evidence of increased risk of serious adverse events under long-acting beta(2)-

agonist treatment. In general, the beneficial effects of anti-leukotriene therapy have 

recently been challenged. On one hand, this therapeutic concept brings remarkable 

ease of anti-inflammatory treatment, administration and symptom improvement 

with minimal side effects to the management of adult asthma [181]. On the other 

hand, it was suggested to limit anti-leukotriene therapy to asthmatics, who are 

refractory to inhaled corticosteroids or cannot use inhalant devices. Considering the 

low incidence of these circumstances oral anti-leukotrienes should be more 

carefully considered for treating asthma in the clinical environment but several 

clinically relevant issues (effects of anti-leukotriene medication on peripheral 

airways and on airway remodeling, alternative administration concepts) remain to 

be clarified before anti-leukotriene therapy could serve as a more effective strategy 

in the treatment of bronchial asthma in adults [177]. In children the beneficial 

effects of anti-leukotriene therapy for bronchial asthma are even more difficult to 

evaluate because the number and the size of clinical trials carried out so far is rather 

limited [182]. The currently available data of randomized studies suggest that there 

is no firm evidence supporting the suggestion that adding leukotriene receptor 

antagonists (montelukast) to inhaled corticosteroid therapy is safe and effective to 

reduce the occurrence of moderate or severe asthma attacks in children taking low-

dose inhaled corticosteroids [183]. After being on the market for more than 10 

years, the limited number of available studies testing anti-leukotrienes in children, 

the absence of data on preschoolers, and the inconsistency of available trials 

reporting of efficacy and safety of clinical outcomes is disappointing and limit 

general conclusions [183]. However, considering the pro-inflammatory effects that 

leukotrienes have in experimental setups, it is rather surprising that the outcome of 

anti-leukotriene treatment are not better and that in some clinical trials only a 

minority of patients could be classified as full responders. This discrepancy might 

be explained by additional LT receptors that are not affected by the current drugs. 

In addition, there may be different phenotypes of bronchial asthma and some of 

them might involve LT to a lesser degree [182, 183].
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ii. Peptide-free LTs: Leukotriene B4, the major bioactive peptide-free leukotriene, is a 

strong endogenous stimulator of the innate immune response [184]. It is released 

from polymorphonuclear leukocytes, monocytes and macrophages and induces cell 

aggregation and increases vascular permeability [185]. It stimulates chemotaxis and 

adherence of neutrophils to the vascular wall [186, 187]. It also binds to two major 

types of cell surface receptors (BLT1, BLT2) and induces G-protein dependent 

intracellular signaling cascades leading to activation of inflammatory cells [188, 

189]. Although LTB4 is one of the most powerful pro-inflammatory mediators, 

neither LTB4 synthesis inhibitors (inhibitors of ALOX5 or LTA4 hydrolase) nor 

BLT1/BLT2 receptor antagonist turned out to be effective anti-inflammatory drugs.

3.2.2. Anti-inflammatory properties of lipoxygenases—Termination of acute 

inflammation was previously considered a passive process, which became possible because 

of the decay of pro-inflammatory signals. However, during the past decade there has been a 

change in this paradigm. Today we consider inflammatory resolution an active process, 

which proceeds according to a biological program, aimed at reestablishing normal tissue 

homeostasis [190]. Inflammatory resolution is initiated by alterations of the cellular 

composition in the inflamed tissue (neutrophils and pro-inflammatory M1 macrophages are 

replaced by anti-inflammatory M2 macrophages that clean up the battle field) and by a 

switch in inflammatory signaling. For instance, formation of pro-inflammatory lipid 

mediators (prostaglandins, leukotrienes) is down-regulated whereas biosynthesis of anti-

inflammatory (proresolution) mediators is switched on. Endogenous pro-resolving lipid 

mediators include a number of LOX products such as lipoxins [7, 191], resolvins [192], 

protectins [11], maresins [193], and others. The specific interaction of the pro-resolution 

mediators with G protein-coupled receptors (GPCR 32, ALX, BLT1) on the surface of 

immune cells induces a number of pro-resolution processes. For instance, leukocyte 

migration is reduced [194], vascular permeability returns to normal [195], pro-inflammatory 

neutrophils undergo apoptosis [196] and M2 macrophages phagocytose apoptotic 

neutrophils, bacterial remnants and necrotic debris [197]. While adequate inflammatory 

resolution prevents tissue injury leading to restitutio ad integrum, inadequate resolution 

results in chronic inflammation.

The proresolving eicosanoids and docosanoids are multiple oxygenation products of three 

major polyenoic fatty acids (arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid) 

that are biosynthesized by a concerted activity of various LOX isoforms with different 

positional specificity (ALOX12, ALOX15, ALOX15B, ALOX5). Since aspirin-treated COX2 

exhibits a 15R-LOX activity [198] it also participates in the biosynthesis of these mediators 

[199] and the anti-inflammatory effect of aspirin may partly be related to this mechanism. In 

vivo, lipoxins are formed from arachidonic acid via transcellular biosynthetic mechanisms 

involving 5-, 12- and 15-lipoxygenating LOX isoforms [200]. However, LxB4 can also 

formed by double oxygenation of 15S-HETE methyl ester by purified rabbit ALOX15 alone 

[201]. Resolvins and protectins are biosynthesized from the omega-3 fatty acids mainly from 

eicosapentaenoic and docosahexaenoic acid. These fatty acids occur in high concentrations 

in marine organisms (fish oil) and their anti-inflammatory properties [202, 203] are well 

known. Lipoxins, they are biosynthesized via multiple oxygenations of arachidonic acid by 

Kuhn et al. Page 14

Biochim Biophys Acta. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aspirin treated COX-2 and/or several LOX-isoforms (ALOX12, ALOX15, ALOX15B). 

Protectins, previously called neuroprotectins since they were discovered in the brain [204], 

have been implicated in resolution of neuroinflammation. However, they also occur in 

peripheral tissues. Maresins are macrophage-derived mediators of inflammatory resolution 

[205], which are mainly formed from docosahexaenoic acid. Their name is an acronym for 

macrophage mediator in resolving inflammation, and as resolvins they exhibit potent anti-

inflammatory properties. For instance, they prevent infiltration of pro-inflammatory 

neutrophils into inflamed tissues and stimulate phagocytosis of apoptotic neutrophils and 

cell debris by M2 macrophages [205]. In two different experimental models of arthritis 

systemic functional silencing of the ALOX15 gene induced uncontrolled inflammation and 

tissue damage. These data are consistent with an anti-inflammatory and tissue-protective 

role of the enzyme [206]. Although peritoneal macrophages of these animals produced 

significantly reduced levels of lipoxin A4 it remains unclear whether the formation of these 

pro-resolving mediators is the major reason for the anti-inflammatory effect. Alternatively, it 

was suggested that ALOX15 may play an important role in development of osteoclasts but 

here again the molecular mechanisms are not well understood [207].

The anti-inflammatory properties of certain LOX isoforms (ALOX12, ALOX15, ALOX15B) 

should not be limited to their involvement in the biosynthesis of pro-resolving eicosanoids 

since alternative concepts may also be applicable. The primary products of linoleic acid and 

arachidonic oxygenation by ALOX15 and ALOX15B (13S-HpODE, 15S-HpETE) exhibit 

anti-inflammatory activities in various inflammation models [208]. Moreover, LOX 

metabolites may activate PPAR signaling [209, 210] stimulating anti-inflammation via this 

pathway [211]. Oxidized phospholipids, which may be formed by ALOX15 catalyzed 

oxygenation of membrane lipids [74], are capable of preventing the binding of agonists to 

toll-like receptors and thus, prevent activation of the innate immune response [212]. 

Unilateral somatic gene transfer of ALOX15 in an experimental model of 

glomerulonephritis suppresses inflammation and preserved kidney function in the 

transfected kidney [213]. Although the mechanism of this effect has not been explored in 

detail the data are consistent with an anti-inflammatory effect of ALOX15.

3.3. Lipoxygenases in the cardio-vascular system

3.3.1. Lipoxygenases in blood pressure regulation and hypertension—15-

lipoxygenating LOX-isoforms (ALOX15, ALOX15B) have been implicated in regulation of 

vascular tone and thus, may play a role in blood pressure regulation and hypertension [214–

216]. More than 20 years ago it was reported that arachidonic acid induces endothelium-

dependent relaxation of rabbit aorta [217]. Since this effect was not seen in the presence of 

the unspecific LOX inhibitor nordihydroguaiaretic acid LOX metabolites have been 

suggested as molecular inducers of vasorelaxation. Similar effects have been reported for 

bovine coronary arteries [218] and later on these metabolites have been identified as 

11,14,15- and 11,12,15-trihydroxyeicosatrienoic acids [219]. Although the source of these 

metabolites has not been identified at this stage of research [219] later expression silencing 

studies [220] and adenovirus mediated somatic gene transfer [221, 222] suggested the 

involvement of ALOX15. Interestingly, chronic hypoxia and hypercholesterolemia enhanced 

ALOX15 mediated vasorelaxation in rabbit arteries [223, 224]. More direct evidence for the 
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in vivo relevance of ALOX15 in blood pressure regulation was recently provided by 

experiments with ALOX15-deficient mice [225]. Although systolic blood pressures did not 

differ between these mice and wild-type controls Alox15−/−-mice exhibited higher resistance 

towards L-NAME- and high-salt-induced hypertension than corresponding controls. The 

ALOX15 inhibitor nordihydroguaiaretic acid attenuated this resistance suggesting the 

involvement of lipid peroxidation. The molecular basis for this effect has not been explored 

and it remains unclear whether or not it is related to the vasomotor properties of ALOX15 

products. Interestingly, injection of wild-type peritoneal macrophages, which are a major 

source of ALOX15 in mice, into ALOX15-deficient animals abolished their resistance 

toward L-NAME-induced hypertension. Inversely, wildtype mice acquired resistance to L-

NAME-induced hypertension after depletion of macrophages by clodronate injection [225].

3.3.2. Lipoxygenases in atherogenesis—Three different LOX-isoforms (ALOX5, 

ALOX15, ALOX15B) have been implicated in the pathogenesis of atherosclerosis [226–228]. 

ALOX5 and ALOX15B are expressed at high levels in advanced atherosclerotic lesions 

whereas ALOX15 mRNA was only present in small amounts [229]. However, low levels of 

lesional expression of ALOX15 in advanced human plaques do not necessarily exclude 

involvement of the enzyme in atherogenesis. If ALOX15 is involved in maturation and 

differentiation of macrophages it might contribute to atherogenesis without being expressed 

in the lesion: i) If the enzyme is involved in early stage of hematopoietic differentiation 

(monocyte/macrophage maturation), which proceeds in the bone marrow, functionally 

different macrophages are likely to be generated and thus, foam cell formation may be 

impacted. ii) If the enzyme is expressed in cells not present in the lesions it might contribute 

to systemic (not local) LDL oxidation, which is considered a risk factor for atherogenesis. 

iii) If ALOX15 is only involved in early stages of lesion formation [230, 231] it may be 

absent in advanced lesions but still might contribute to early stages of lesion development. 

In all these cases expression silencing and pharmacological intervention with ALOX15 

pathway may impact lesion formation without lesional expression of the enzyme.

3.3.2.1. ALOX5, leukotriene signaling and vascular inflammation: Already 25 years ago 

the formation of LTB4 in human atherosclerotic lesions was demonstrated [232]. Moreover, 

in human atherosclerotic coronary arteries key enzymes of leukotriene biosynthesis (ALOX5, 

ALOX5AP, LTA4H) have been detected and the arteries exhibited a contractile response 

when challenged with LTC4 and LTD4 [233]. More recently, high levels of expression of all 

enzymes of the leukotriene biosynthetic cascade were found in human atherosclerotic 

plaques and the expression levels of ALOX5 and LTA4H correlated with symptoms of 

lesional instability [234].

In different murine atherosclerosis models variable and inconclusive data were obtained 

with respect to the patho-physiological relevance of leukotriene signaling. For instance, 

when fed a lipid rich diet ALOX5-deficient mice are not protected from lipid deposition in 

the vessel wall but show an increased tendency for the development of aortic aneurysms 

[235]. These data link the leukotriene pathway to inflammatory disturbance of vessel wall 

remodeling [236] rather than to lipid homeostasis However, in another mouse model of 

aneurysm formation (angiotensin II treatment) genetic and pharmacological interference 
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with leukotriene biosynthesis did not show significant effects [237]. Deletion of the BLT1 

receptor reduced lesion formation during early stages of plaque development, but was 

without any effect at more advanced disease stages [238]. On the other hand, BLT1 deficient 

mice were protected from aortic aneurysm formation in the angiotensin II model [239] and a 

selective BLT1 antagonist protected against the early phase aneurysm development [240]. 

For the time being it remains unclear what might be the reasons for the inconsistent effects 

observed in humans and mouse atherosclerosis models. It is well known that hyperlipidemic 

mouse atherosclerosis models do not adequately mirror all aspects of human atherosclerosis. 

Thus, more relevant animal atherosclerosis models (non-human primates) and more detailed 

clinical trials are required to assess the therapeutic potential of anti-leukotrienes therapy in 

treatment and prevention of human atherosclerosis, aortic aneurysms and myocardial 

infarction.

3.3.2.2. ALOX15 and lipoprotein modification: In the early 1990s the LDL oxidation 

hypothesis was introduced [241, 242] and its refined version was more recently critically 

reviewed [243]. This hypothesis suggested that oxidized LDL exhibits strong pro-

atherogenic activities because it is rapidly taken up by macrophages via scavenger receptor 

mediated pathways. Since these pathways are not feedback-controlled excessive intercellular 

lipid deposition may occur and macrophages develop into lipid-laden foam cells. These cells 

then accumulate in the subendothelial space of the arteries to form fatty streaks which are 

considered early atherosclerotic lesions [244]. Since ALOX15 is capable of modifying LDL 

[245] and other lipoproteins [246] by oxidizing their ester lipids the enzyme has been 

implicated in atherogenesis. In atherosclerotic lesions of rabbits [231] and humans [230, 

247] esterified specific LOX-products (mainly 13S-HODE) have been detected but the 

biosynthetic origins of these products have not been explored in detail. In particular, the 

question whether they are formed by ALOX15, ALOX15B, or alternative biosynthetic 

pathways has not been answered conclusively. Several studies employing ALOX15 deficient 

mice supported a pro-atheorgenic role of ALOX15 [248–253]. On the other hand, 

overexpression of ALOX15 in two rabbit and one mouse atherosclerosis models suggested 

anti-atherogenic effects [254–256]. In one of these studies it was suggested that ALOX15 

activity in the local milieu afforded atheroprotection via the formation of proresolving lipid 

mediators [256] and this was later on suggested as more general paradigm [257]. Taken 

together, as discussed for the ALOX5 pathway the role of ALOX15 in atherosclerosis is 

controversial [258, 259] and this may be related to mechanistic differences of the various 

animal atherosclerosis models.

3.3.2.3. ALOX15B in atherogenesis: As indicated above gene expression studies in 

advanced human atherosclerotic lesions suggested high-level expression of ALOX15B [229, 

260] and these data suggested a role of this LOX isoform in atherogenesis. Macrophage 

expression of ALOX15B has been reported under hypoxic conditions [261] and hypoxia 

inducible factor (HIF) has been implicated [260]. Catalytic activity of this enzyme was 

related to chemokine release [262] and the enzyme has been suggested as tissue marker for 

atherosclerotic carotid artery [263]. More recently, polymorphisms in the ALOX15B gene 

have been associated with coronary artery disease [228] but the underlying molecular 

mechanisms remain unclear. Functional characterization of the mutant enzymes did not 
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reveal major defects and thus, ALOX15B products might not be involved [228]. 

Nevertheless, lesional expression of ALOX15B, which accepts arachidonic acid, linoleic acid 

and other polyenoic fatty acid as substrate [264, 265], may contribute to the formation of 

specific LOX products detected in the lesion lipids [230, 231, 247].

3.3.3. Lipoxygenase in platelet function and atherothrombosis—Two LOX 

isoforms (ALOX12, ALOX15B) have been suggested to impact platelet function and 

atherothrombosis. The first LOX-isoforms detected in animals was the ALOX12, which is 

present in large amounts in human platelets [266]. Unfortunately, the precise role of this 

enzyme for blood platelet physiology is still a matter of discussion since pro- and 

antithrombotic activities have been reported. Blood platelets of ALOX12-deficient mice 

exhibited an increased sensitivity for ADP-induced aggregation suggesting the ALOX12 

pathway as down-regulator for platelet aggregation (anti-thrombotic effect) [92]. In contrast, 

more recent studies suggested that ALOX12-derived 12-HETE [267] and possibly other 

oxylipins [268] may play an important role as prothrombotic mediators in atherothrombosis. 

Although the molecular basis for the anti-thrombotic effect of the ALOX12 pathway has not 

been studied in detail at this time more recent data suggest the involvement of protein kinase 

C. To determine the functional interaction between protein kinase C and ALOX12 during 

platelet activation pharmacological interventions studies were carried out using specific 

modulators of the two pathways [269]. Separate inhibition of ALOX12 and PKC resulted in 

impaired secretion of dense granule and in attenuation of both aggregation and αIIbβ(3) 

activation. However, activation of PKC downstream of ALOX12 inhibition rescued agonist-

induced aggregation and integrin activation. Inhibition of ALOX12 had no effect on PKC-

mediated aggregation indicating that ALOX12 is localized upstream of PKC in the signaling 

cascade. Taken together these studies support an essential role for PKC downstream of 

ALOX12 activation in human platelets and suggest ALOX12 as a possible target for 

antiplatelet therapy [269]. In a similar study pharmacological interference with ALOX12 

activity resulted in attenuation of platelet aggregation, selective inhibition of dense granule 

secretion, and inhibition of platelet adhesion [270]. ALOX12-deficient mice showed 

attenuated integrin activity. These data confirm the role of ALOX12 in regulating platelet 

function and thrombosis and provide the basis for the development of innovative strategies 

for the therapy of thrombosis [270, 271]. Moreover, dihydroxylated metabolites derived 

from alpha-linoleic acid inhibit platelet function [272] and a geometric isomer of protectin D 

also prevented platelet aggregation at submicromolar concentrations when induced by either 

collagen, arachidonic acid or thromboxane [273].

Although ALOX15B is not expressed in human platelets this enzyme has recently been 

implicated in the regulation of platelet functionality [274]. Impedance aggregometry 

indicated that the major oxygenation products of arachidonic acid conversion by ALOX15B 

(15-HETE, 15-HpETE) stimulated platelet aggregation. Moreover, platelet aggregation was 

augmented by the addition of cell lysates of ischemic human macrophages, which express 

large amounts of ALOX15B, whereas platelet aggregation was reduced when lysates of 

ALOX15B siRNA treated macrophages were used. These data suggest that ALOX15B 

expression in human plaques may be involved in thrombus formation [274].
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3.4. Lipoxygenases in the central nervous system

3.4.1. Physiological roles of lipoxygenases in the CNS

3.4.1.1. Lipoxygenase expression in the CNS: ALOX15 is the major LOX isoform in both 

rat [275] and canine brain [276]. Various cell types in the brain express ALOX15 [276], but 

the expression levels under normal conditions are rather low. Depending on disease state 

and type of oxidative stress, it can also be up-regulated in different cell types (see below). In 

contrast to ALOX15, ALOX12 does not appear to be expressed in significant amounts in rat 

brain [275, 277]. The mouse ortholog of human ALOX12B was reported to be expressed in 

adult brain cortex, however its possible function there remains elusive [278]. In zebrafish, an 

atypical 12-lipoxygenating enzyme species was found to be essential for normal brain 

development, but it is at present unclear which mammalian LOX-isoform this enzyme 

corresponds to [279].

3.4.1.2. 12-HETE and 12-HpETE as second messengers of semaphorin signaling: 
interactions with the actin cytoskeleton and growth cone turning/collapse: Both 12-

HETE and 12-HpETE have been implicated separately as signaling mediators in axon 

guidance, indicating a direct function of 12-lipoxygenating LOX isoforms in brain 

development [280–283]. These eicosanoids function as classic second messengers [284], 

relaying and amplifying the signal produced by external stimuli including the axon guidance 

molecule semaphorin 3A (Sema3A) [280]. We recently showed that both 12-HETE and 12-

HpETE can function as potent messengers in the Sema3A pathway, with 12-HpETE being 

the more efficient [285]. 5-HETE was not able to replace 12-HETE and 12-HpETE in this 

assay. 12(R)-HETE and 15-HETE have not been tested. At present, the further components 

downstream of 12-HETE/12-HpETE are not clear; both direct binding of 12-HETE to the 

actin cytoskeleton [286], and the involvement of the monooxygenase MICAL (Molecule 

Interacting with CasL) as mediator [287] have been documented. A separate line of evidence 

suggests the involvement of a protein kinase C (PKCε and MARCKS [288].

In addition to these effects on neuronal architecture, ALOX15 influences synaptic signaling 

by its effects on long-term depression [289–291] and long-term potentiation [292, 293], 

which are core elements of interneuronal communication. The latter effect was mediated by 

12-HpETE acting on L-type calcium channels [290]. Nonetheless, ALOX15 knockout mice 

do not show any overt behavioral defects, suggesting that either these effects can be 

bypassed, or the knockouts have found a way to compensate, for example by up-regulating 

one of the other 12-lipoxygenating isoforms. In line with this latter possibility, the brains of 

ALOX15(−/−) mice still generate 12-HETE, albeit at much reduced levels [291]. Residual 

12-HETE appears to be the (S)-isomer, according to our findings using a stereospecific 

enzyme immunoassay (Pekcec and van Leyen, unpublished results).

3.4.2. Patho-physiological roles of lipoxygenases in the CNS (ischemia, 
neurodegeneration)—Neurons are especially vulnerable to oxidative stress, and 

oxidative stress-related pathology is a hallmark of several CNS diseases, including stroke, 

Parkinson’s, and Alzheimer’s Disease. LOXs are both activated by and contribute to 

oxidative stress, and are thus likely to be major players in these pathologies. ALOX15 has 

been linked to apoptotic cell death in cultured primary neurons [22, 294–296] as well as 
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several brain-derived cell lines, including the human neuroblastoma cell line SH-SY5Y 

[297, 298] and the mouse hippocampal cell line HT22 [22, 299, 300]. The mechanism is 

apoptotic, but likely mediated by mitochondrial damage and apoptosis-inducing factor 

(AIF), rather than by caspase activation [299, 301, 302]. Similar damaging effects can be 

elicited in vivo by direct injection of arachidonic acid into the brain, which causes edema 

[303, 304]. Injecting glutathione disulfide, which is the oxidized version of glutathione, 

likewise induces brain damage via 12/15-LOX [305].

3.4.2.1. Oxidative stress and ALOX15 in the developing brain: periventricular 
leukomalacia: Periventricular leukomalacia (PVL) is a white matter injury in infants that is 

the dominant pathological factor in determining long-term cognitive and motor deficits in 

premature infants. It is characterized by necrotic lesions, and a diffuse type of injury 

involving microglia. In a recent study, we showed that ALOX15 expression is increased in 

the brains of PVL infants [306]. Several cell types were affected, including microglia (Fig. 

6) and oligodendrocyte precursor cells. Importantly, some of these cells were TUNEL-

positive, indicating these were injured cells and suggesting that ALOX15 contributed to 

disease pathology. This hypothesis is supported by cell culture studies, where 

oligodendrocyte precursors are vulnerable to an ALOX15-dependent form of cell death when 

cultured in the absence of cysteine [307, 308]. Similarly, LOX inhibitors protect 

oligodendrocytes against hyperoxia [309]. The mechanism is likely similar to that in 

neurons, with AIF translocation to the nucleus as apoptotic effector [310]. It will be 

interesting to see if LOX inhibitors are protective in animal models of PVL.

3.4.2.2. Genetic associations with stroke: In 2004 polymorphisms in the gene encoding 

ALOX5 activating protein (ALOX5AP) were linked to an increased risk for ischemic stroke 

[311]. The protein encoded by ALOX5AP is required for ALOX5 activity [312]. In the 

aftermath, numerous replication studies were carried out in several different ethnic 

populations, with variable outcomes. For example, the findings originally made in the 

Icelandic cohort were replicated in Scottish and Spanish [313], but not in a Swedish [314] 

population. One U.S.-based study did not confirm this connection [315], while another 

found an association for Americans of European, but not of African descent [316]. 

Similarly, studies of Chinese populations in some cases confirmed the original results, in 

others did not; but a recent meta-analysis concluded that the link could be confirmed in the 

Chinese population [317]. A genetic study of English and German patients reported 

significant associations for several genes of the leukotriene pathway [318]. It should be 

emphasized that increased risk of stroke does not imply an increased severity of strokes as 

well. Those types of study, which could uncover target genes relevant for treatment of 

stroke, are very difficult to carry out, and none have so far been reported.

3.4.2.3. ALOX15 in stroke: The strongest evidence for any LOX isoform causing injury to 

the CNS exists in stroke. Early studies in the 1970s showed an increase in free fatty acids 

including arachidonic acid in a rat model of ischemia [319], an indication of phospholipase 

activity that suggested proteins of the arachidonic acid cascade might contribute to ischemic 

injury. In 1984, Moskowitz and colleagues reported increased levels of leukotrienes, as well 

as the Alox15 metabolite 12-HETE, in the brains of gerbils subjected to forebrain ischemia 
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[320]. A large body of evidence has since then accumulated to demonstrate the involvement 

of ALOX15 in causing brain injury following stroke [321]. Several events converge to favor 

the activation of ALOX15. Arachidonic acid liberated from phospholipids by cytosolic 

phospholipase A2 (cPLA2) provides additional substrate and, together with increased levels 

of reactive oxygen species (ROS) activates ALOX15 [322]. Glutathione levels drop, 

removing one of the antioxidant pathways that serve to keep ALOX15 activity in balance 

[323]. Conversely, intracellular calcium rises, favoring membrane binding of the activated 

enzyme [324]. In addition, the protein levels of ALOX15 increase specifically in the 

penumbra region surrounding the core infarct, the brain region which is vulnerable to 

delayed cell death [325]. The factors leading to transcriptional up-regulation in the ischemic 

brain have not been determined yet, but may include members of the STAT family of 

transcriptional activators, which regulate ALOX15 expression in several other cell types 

[326–328].

Increased ALOX15 in the ischemic cortex is accompanied by increased pro-apoptotic AIF, in 

both human stroke patients [329], as well as mouse models of stroke [301]. ALOX15 also co-

localizes with MDA2, an antibody that recognizes malonedialdehyde-modified lysisne 

residues, indicative of phospholipid oxidation [329]. Taken together, these findings 

document that ALOX15 is part of a major cell death pathway that is activated in the ischemic 

brain. Consistent with these observations, ALOX15 gene knockout protects mice against 

stroke [325, 330], and also reduces leakage of the blood-brain barrier and edema formation 

[331]. Importantly, these protective effects could be replicated by pre-treatment with LOX 

inhibitors. While those early inhibitors also had strong antioxidant activity, we have since 

introduced newer inhibitors with low antioxidant activity [308, 332], and found those to be 

protective even when given four hours after onset of the experimental stroke [329]. These 

compounds may be clinically useful in treating stroke.

3.4.2.4. ALOX5 in stroke: Early reports of LOX activity in animal models of stroke 

emphasized ALOX5 products over those of ALOX15, although the latter were also detected 

[320]. The increased leukotrienes were later shown to be blood-derived, rather than being 

formed in the brain parenchyma [333]. Several ALOX5 inhibitors were reported to be 

neuroprotective, but these were typically strong antioxidants, which lack major isoform-

specificity [334]. A later study showed that in two different ischemia models, ALOX5 

knockout mice had an equal amount of injury compared to wild-type mice [335]. Since then, 

the focus has shifted more to ALOX15 and its effects on stroke severity. Nonetheless, it is 

not unlikely that ALOX5 and its products are involved in specific subsets of stroke 

pathology, especially those featuring an increased inflammatory component.

3.4.2.5. Neuroprotection through lipoxygenase metabolites in stroke: In contrast to the 

damaging effects of LOX activity, a separate line of investigations is exploring the 

restorative potential of LOX-derived mediators including lipoxins and protectins. For 

example, neuroprotective effects of rosiglitazone were related to ALOX5-dependent 

formation of lipoxin A4 [336]. In line with these findings, an agonist of the lipoxin A4 

receptor provided neurovascular protection in a rat model of ischemic stroke [337]. This was 
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accompanied by a reduction of the matrix metalloproteinase MMP-9, which was also 

diminished in another study by administration of lipoxin A4 methyl ester [338].

An extensive body of work has accumulated to demonstrate the potential of protectins, 

specifically neuroprotectin D1 (NPD1), to reduce injury in animal models of stroke [339]. 

The underlying principle is the conversion of docosahexaenoic acid to NPD1 by a 

succession of LOX-mediated oxidation reactions, and infusion of DHA has been shown to 

be protective in experimental stroke [340]. Intriguingly, a closely related isomer termed AT-

NPD1 can be generated in situ in the brain by administration of aspirin with 

docosahexaenoic acid, and this AT-NPD1 also has equivalent neuroprotective properties 

[341].

3.4.2.6. Lipoxygenase involvement in Alzheimer’s and other neurodegenerative 
diseases: In Alzheimer's, both ALOX5 and ALOX15 have been implicated, but their precise 

roles are far from clear. ALOX15 expression is increased in the brains of Alzheimer's 

patients [342], along with increased levels of 12- and 15-HETE in the cerebrospinal fluid of 

patients with Alzheimer's or mild cognitive impairment pathology [343]. Consistent with a 

damaging function of ALOX15 in Alzheimer's, degenerative defects in the transgenic 

Alzheimer's mouse model tg2576 were reduced when ALOX15 was absent [344]. 

Conversely, in another study ALOX15 expression was reduced in the hippocampus of 

Alzheimer's patients [345] and this effect was paralleled by reduced neuroprotectin D1 

levels. In contrast, ALOX5 was increased in hippocampus and cortex of Alzheimer's patients 

[346]. Rao et al. found elevated levels of ALOX12 and ALOX15, but no increase in ALOX5 

when comparing Alzheimer’s brains to those with no pathology [347]. There are several 

possible reasons for these discrepancies, which may be related to the complexity of disease 

progression. Other factors may include small sample size, differences in brain regions and 

different techniques used for analysis. Further studies are needed to get a clearer picture of 

differential LOX expression and its consequences in Alzheimer's brains.

In cell culture models, an amyloid beta-derived peptide was found to cause cell death in 

primary neurons. This effect was blocked by inhibition of ALOX15 and ALOX12 with 

baicalein, and similar protective effects were observed when an antisense oligonucleotide 

targeting ALOX15 expression was employed [348, 349]. Again somewhat at odds with these 

findings, another line of experiments suggested that miRNA125b, a micro-RNA that binds 

at the 3'-UTR of ALOX15 mRNA and down-regulates its translation, was increased in 

Alzheimer's patients. In primary neuronal-glial cells treated with IL1β and amyloid β1–42, 

an increase of miRNA125b led to down-regulation of ALOX15 [350]. An antagomir to 

miRNA125b that restored ALOX15 protected these cells. In both of these cases, a direct 

causative link to Alzheimer's pathology remains to be established.

In other CNS Diseases, much remains to be studied about possible LOX involvement in the 

respective pathology. Somewhat surprisingly, in a mouse model of multiple sclerosis, 

experimental allergic encephalomyelitis, knockout mice deficient in either ALOX5 or 

ALOX15 actually do worse [351]. After spinal cord injury, ALOX15 was increased 25-fold 

in rats, compared to a 1.7-fold up-regulation detected for COX-2 [352]. But whether or not 

this increase contributes to the injury is presently unknown.
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3.5. Lipoxygenases in metabolic disorders

3.5.1. Diabetes—A number of LOX metabolites and several LOX isoforms have been 

implicated in the pathogenesis of diabetes. Both ALOX5 generated leukotriene B4, and 12-

HETE generated by either ALOX15 or ALOX12 was elevated in diabetic patients with severe 

cardiac ischemia [353]. Especially for ALOX15 a substantial body of evidence has 

accumulated to link the enzyme to the pathogenesis of diabetes [354–362]. Since LOXs are 

pro-oxidative enzymes producing hydroperoxy lipids, LOX-induced oxidative stress and 

subsequent mitochondrial dysfunction might account for much of the increased pathology 

detected in diabetic cardiomyopathy and other vascular diseases [363]. Increased levels of 

12S-HETE were linked to coronary artery disease in type 2 diabetic patients [364]. More 

generally, ALOX15 has been shown to be up-regulated in both cell culture and animal 

models of diabetes [365].

Insulin secretion of cultured human islet cells was reduced by nanomolar concentrations of 

12(S)-HETE and 12HpETE. These data suggest that 12(S)-HETE reduces insulin secretion 

in human islets but it remains unclear, which LOX-isoforms contribute to the in vivo 

production of 12S-HETE [354]. Hepoxilin A3, generated from 12-HpETE by hepoxilin A3 

synthase, can induce insulin secretion in pancreatic beta cells and islets [366]. Furthermore, 

HXA3 protects the rat insulinoma cell line RINm5F against oxidative stress-induced cell 

death, although the mechanism needs further study [367].

3.5.1.1. LOX in Type 1 diabetes: There is only limited information currently available on 

the potential role of LOX isoforms in type-1 diabetes. Female nonobese diabetic (NOD) 

mice are a suitable model for this disease [368]. Remarkably, the NOD-ALOX15null strain, 

in which ALOX15 is absent, is almost completely protected [369]. These results suggest 

ALOX15 contributes to the pathology, and may be related to effects of ALOX15 on islet cell 

and/or macrophage functionality [370]. Similarly, Alox15(−/−) mice are resistant to induction 

of Type 1 diabetes by streptozotocin [357]. In addition, increased levels of ALOX5 

metabolites have been detected in diabetic rats [371], but the biological relevance of this 

observation remains unclear. To the best of our knowledge there is no detailed study 

currently available characterizing the role of any LOX-isoform in type-1 diabetes in humans.

3.5.1.2. LOX in Type 2 diabetes: Nadler and colleagues investigated the role of ALOX15 in 

adipocytes in vivo and in cultured cells [372]. The enzyme is induced in white epididymal 

adipocytes in mice fed a high-fat diet. On a cellular level, a similar up-regulation can be 

seen when 3T3-L1 adipocytes, which are treated with palmitate. The ALOX15 products 12-

HETE and 12-HpETE diminish the response of 3T3-L1 adipocytes to insulin, consistent 

with the resistence to insulin characteristic of type 2 diabetes [372].

3.5.2. Lipoxygenase isoforms in adipocyte maturation, obesity and metabolic 
syndrome—Adipocytes, the major cell type of adipose tissue, differentiate from 

mesenchymal stem cells via fibroblasts. A complex regulatory network controls 

adipogenesis, and PPARγ is a decisive factor in this process. 3T3-L1 cells are frequently 

employed as cellular model of adipocyte differentiation [373] and the LOX inhibitors 

nordihydroguaiaretic acid and baicalein inhibit adipocyte maturation of 3T3-L1 cells in vitro 
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[374]. The inhibitory effect of baicalein was prevented by administration of the PPARγ 

agonist rosiglitazone implicating LOX-isoforms and PPARγ in adipocyte maturation in this 

in vitro model [374]. Gene expression profiles indicated the presence of Alox15, Alox12 and 

Aloxe3 in white and brown adipose tissue, but among them only Aloxe3 is expressed at high 

levels in 3T3-L1 cells. Forced expression of this LOX isoform or addition of ALOXE3 

products (hepoxilins) stimulated adipogenesis and RNAi-mediated expression knockdown 

prevented adipocyte differentiation [374]. Although these data need to be confirmed for in 

vivo development of adipocytes the results suggested that ALOXE3 might constitute an 

important player in adipogenesis and that specific ALOXE3 inhibitors might be useful to 

interfere with this process.

In addition of ALOXE3 other LOX-isoforms, such as ALOX15, ALOX12 and ALOX5 have 

been implicated in adipogenesis [375]. 15-HETE, the major arachidonic acid oxygenation 

product of ALOX15 and ALOX15B, induced angiogenesis in adipose tissue and thus, has 

been implicated in growth of adipose tissue [376]. In a limited (1215 subjects) Chinese 

genetic correlation study a polymorphism in the ALOX12 gene (rs2073438) was 

significantly associated with total and percentage fat mass (p=0.007 and p=0.012, 

respectively) suggesting that ALOX12 might contribute to the variation of obesity 

phenotypes in young Chinese men [377]. Unfortunately, the underlying molecular basis has 

not been explored and it remains to be clarified whether there is a causal relation between 

ALOX12 expression and body fat mass. Since adipositas is currently considered a chronic 

inflammation of the adipose tissue [378] the ALOX5 pathway has also been implicated in the 

pathogenesis of this disorder. Blockade of leukotriene signaling by treatment with LOX 

inhibitors and leukotriene B4 antagonists as well as RNAi-induced expression silencing of 

leukotriene B4 receptors in human and mouse preadipocytes isolated from native adipose 

tissues showed acceleration of differentiation into mature adipocytes [379]. From these data 

the authors concluded that leukotriene B4 signaling may negatively regulate preadipocyte 

differentiation via induction of transforming growth factor expression [379].

Nonalcoholic fatty liver disease (NAFLD) is a major hepatic consequence of the metabolic 

syndrome. ALOX15 mRNA is up-regulated in ApoE(−/−) mice, which are frequently 

employed as model for NAFLD [380]. These days adipositas is considered a chronic low 

grade inflammatory disorder of the adipose tissue and the inflammatory activities of 

ALOX12 and ALOX15 in the adipose tissue have recently been reviewed [375]. Consistent 

with the inflammation hypothesis increased levels of ALOX5 products have been interpreted 

as signs of low-grade inflammation in adipose tissue, which could contribute to pre-diabetic 

pathology [381]. Adipose tissue and adipocytes from obese Zucker rats, a model for 

metabolic syndrome, featured both increased ALOX15 and ALOX5 levels, as well as their 

eicosanoid products [382].

An important question is how the ALOX15 expression is up-regulated in these low-grade 

inflammatory models. It is known that in several cell types including macrophages, IL-4 and 

IL-13 regulate ALOX15 levels [326, 383]. The transcription factor PPARγ might be involved 

in expression regulation of ALOX15. Since this transcription factor is activated by the 

ALOX15 metabolites 12- and 15-HETE there may exist a damaging feed forward 

mechanism [384].
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Catalytic activity of ALOX15 is tightly regulated on transcriptional, translational, and post-

translational levels and anti-oxidative enzymes such as glutathione peroxidases GPX-1 and 

-4 have been implicated [385]. In the absence of GPX4 the activity of ALOX15 is increased 

and may lead to cell death in a cellular model system [323]. However, it remains to be 

shown whether this is also the case in vivo. In any case, these findings along with loss of the 

glutathione substrate may be an important factor in the oxidative tissue damage found in 

metabolic syndrome.

4. Lipoxygenase isoforms in infectious diseases

When entering the body pathogenes induce an inflammatory host response and LOX 

products have been implicated as signaling molecules in this protective reaction complex [2, 

33, 166]. In principle, the severity of the inflammatory response depends on the balance of 

pro- and anti-inflammatory mediators and both, hosts and pathogens may contribute to this 

equilibrium of signaling molecules. For the time being little is known about the role of 

different LOX-isoforms in infectious diseases and only scattered experimental data are 

currently available for viral, bacterial and parasite infections as well as for mycosis.

4.1. Lipoxygenase isoforms in viral infections

The human immune system responds to viral infections with an activation of inflammatory 

cells, and leukotrienes as classical inflammatory mediators [2, 33] have been implicated in 

this defense reaction. Although no functional LOX sequences have currently been described 

in major pathogenic viruses eicosanoid production of hosts cells might impact the infection 

process. The Epstein-Barr Virus (EBV) up-regulates the formation of pro-inflammatory 

leukotrienes in human peripheral mononuclear cells [386]. Moreover, EBV infection 

triggers malignant transformation of lymphocytes to Burkitt’s lymphoma cells, which are 

characterized by an increased resistance to apoptosis [387]. Such apoptosis-resistant cells 

overexpressed ALOX5 and ALOX15 and Inhibitor studies as well as cell incubation in the 

presence of 5-HETE suggest that ALOX5 and to a lesser extent other LOX-isoforms might 

be involved in EBV-mediated lymphoma progression [387].

A further example for the involvement of the ALOX5 pathway in the pathogenesis of virus 

infection is the human cytomegalovirus (HCMV). In vitro, HCMV infection of human 

vascular smooth muscle cells strongly increased the expression of ALOX5 mRNA (170-fold) 

and protein [388]. In vivo, HCMV-infected vascular smooth muscle cells express the 

ALOX5 protein and these data suggest that leukotriene signaling might be upregulated 

during HCMV infections. However, it remains unclear whether ALOX5 expression in vivo is 

directly induced by the virus or whether ALOX5 expression is just a consequence of the 

accompanying inflammatory response.

When human neutrophils are infected in vitro with the dengue virus (DENV-2), ALOX5 

expression is upregulated and the cells biosynthesize significantly more leukotriene B4 

[389]. In the presence of MK886 (ALOX5 activating protein antagonist) the increase in 

leukotriene B4 biosynthesis is reduced indicating the relevance of the ALOX5 pathway in 

dengue virus infection. Consistent with this conclusion is the observation that in vivo plasma 
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levels of leukotriene B4 were significantly elevated during the febrile stages of dengue 

infections [389].

The respiratory syncytial virus (RSV) induces bronchiolitis [390] and the resolution of this 

respiratory disorder is mediated by alternatively activated M2-macrophages. RSV infection 

of ALOX5 and ALOX15 deficient macrophages and mice failed to elicit differentiation of 

M2 macrophages. Interestingly, treatment of Alox5-deficient macrophages with lipoxin A4 

and resolvin E1, but not with leukotriene B4 or leukotriene D4, restored the expression of 

M2-macrophage markers. From these data the authors concluded that patients with RSV 

infections might benefit from treatment with proresolving eicosanoids.

4.2. Lipoxygenase isoforms in bacterial infections

LOXs occur in selected bacteria [15] but other bacterial pathogens do not contain functional 

LOX sequences. For those bacteria carrying functional LOX genes [391] the corresponding 

enzymes may contribute to systemic eicosanoid formation during host-pathogen interaction. 

Puerperal sepsis is the leading cause of maternal mortality worldwide and Streptococcus 

pyogenes is the major etiologic agent of severe postpartum sepsis [392]. Mice lacking the 

Alox5 pathway were significantly more vulnerable to puerperal sepsis when compared with 

corresponding wild-type controls [393]. Although the mechanistic basis of this deleterious 

effect of Alox5 expression silencing has not been explored the failure of Alox5-deficient 

mice to synthesize pro-inflammatory leukotrienes may contribute to the increased 

vulnerability.

Acute pulmonary infection by Streptococcus pneumoniae is characterized by high bacterial 

numbers in the lung and a robust alveolar influx of polymorphonuclear leukocytes. S. 

pneumoniae infection induced expression of 12-lipoxygenating LOX isoforms in cultured 

pulmonary epithelium and in the lungs of infected mice [394]. Pharmacological (inhibitors) 

and genetic (Alox15 knockout mice) interference with the Alox15 pathway reduced lung 

inflammation in vivo [394] and mechansitic studies suggest that pneumococcal pulmonary 

inflammation is paralleled by disruption of the lung epithelium via Alox15 dependent 

hepoxilin A3 production. In the absence of Alox15 lower amounts of hepoxilins were 

detected, which was suggested to contributed to reduced pathology [394]. In pneumococcus-

induced otitis media Alox5 appears to be of major patho-physiological relevance [395]. In an 

in vivo rat model of this disease Alox5 expression was strongly upregulated and this effect 

was paralleled by an increase in middle ear fluid. Here again, the mechansitic details have 

not been explored but the data relate alox5 expression to the pathogenesis of pneumococcus 

induced otitis media.

Anti-inflammatory lipoxins, which are biosynthesized in vivo by a concerted activity of 

various LOX-isoforms (Alox5, Alox12, Alox15), are key mediators in the resistance of host 

cells to M. tuberculosis infection [396]. High levels of lipoxin A4 were detected in the blood 

of infected wild-type mice but significantly lower levels were quantified in Alox5 deficient 

animals. Bacterial burdens in Alox5 deficient lungs were significantly lower than in the 

organs of wildtype controls and the increased the resistance of Alox5−/− mice was 

counteracted by administration of a stable lipoxin A4 analog. From these data the authors 

concluded that the anti-inflammatory lipoxins negatively regulate the protective Th1 
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response against mycobacterial infection and suggested that inhibition of lipoxin 

biosynthesis could serve as a strategy for enhancing host resistance towards M. tuberculosis 

[396].

4.3. Lipoxygenase isoforms in parasite infections and mycosis

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii and up to 

one third of the world's human population is estimated to carry a Toxoplasma infection 

[397]. The human ALOX12 gene has susceptibility alleles for human congenital 

toxoplasmosis and RNAi-mediated expression knockdown of this gene attenuated 

progression of T. gondii infection [398]. These data implicate ALOX12 in host defense 

against T. gondii but the underlying molecular mechanisms remain unclear.

Schistosoma are parasitic flatworms. They induce Schistosomiasis, which is considered by 

the WHO the second most socioeconomically devastating parasitic disease (after malaria) 

with hundreds of millions infected people worldwide [399]. Periovular granuloma formation 

during S. mansoni infection is a complex immunologic response and LOX inhibitors reduced 

granuloma formation [400]. At the acute stage of infection, when granuloma formation is 

usually maximal, Alox5 deficient mice developed smaller granulomas around liver-

deposited schistosome eggs compared with wild type and Alox15 deficient mice. These data 

suggest that Alox5 but not Alox15 may play a role in the host responses to schistosomiasis.

Paracoccidioidomycosis is a systemic mycosis caused by the thermodimorphic fungus 

Paracoccidioides brasiliensis. When Alox5 deficient mice and corresponding wild-type 

controls were intravenously inoculated with P. brasiliensis they exhibited an increased 

survival rate [401]. The disease resistance was associated with augmented nitric oxide 

production, reduced number of CD4(+)-CD25(+) regulatory T cells and higher levels of 

gamma interferon as well as interleukin-12 levels in the lungs. These results suggest that 

expression of Alox5 increased the susceptibility of mice for P. brasiliensis suggesting that 

this pathway might constitute a potential target for therapeutic intervention.

Candida albicans is an opportunistic fungal pathogen that resides commensally on epithelial 

surfaces, but can cause severe inflammation in immunocompromized patients [402]. C. 

albicans is capable of biosynthesizing anti-inflammatory resolvins (RvE1) but in contrast to 

human cells there is not transcellular biosynthesis [403]. Although the biosynthetic 

mechanisms have not been clarified RvE1 in vitro enhanced phagocytosis of C. albicans by 

human neutrophils and augmented intracellular ROS generation and killing. Moreover, in a 

mouse model of systemic candidiasis RvE1 stimulated clearance of the fungus from 

circulating blood suggesting a possible role for RvE1 and its biosynthesizing machinery in 

C. albicans infections.

5. Lipoxygenase inhibitors as potential drugs

Since LOX isoforms have been implicated in the pathogenesis of major human diseases 

LOX inhibitors are of medical interest. According to their inhibitor mechanisms LOX 

inhibitors can be classified into 5 principal groups (Fig. 7): i) Redox inhibitors interfering 

with the valency change of the nonheme iron during the catalytic cycle. ii) Iron chelators 
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complexing the iron ion at the active site. iii) Active site probes competing with substrate 

fatty acids in the substrate binding pocket, iv) Suicide substrates leading to irreversible 

inactivation of the enzyme; v) Allosteric inhibitors that bind to a site other than the substrate 

binding pocket. Although a number of pharmaceutical companies including Abbott, Merck, 

Wellcome and ICI initiated LOX inhibitor programs the only LOX inhibitor that has made it 

to the clinics is the ALOX5 inhibitor zileuton [175]. This drug has been approved as anti-

asthmatic but owing to its unfavorable pharmacokinetics and its side effects it has not 

reached wide spread acceptance. Originally, zileuton was available in two formulations 

under the brand names ZYFLO and ZYFLO CR. The immediate-release formulation 

ZYFLO is given at a dosage of 600 mg four times per day. The extended-release 

formulation (ZYFLO CR) is taken twice daily. Although there have been a number of 

promising LOX-inhibiting compounds other than zileuton their therapeutic potential was 

disappointing. Moreover, evaluation of the recent patent activities revealed only compounds 

with moderate inhibitory potency [404]. The most promising advances in drug development 

have been made for FLAP (ALOX5 activating protein) antagonists and it might well be that 

such compounds will enter the market as anti-asthmatics [404]. There are a number of recent 

reviews summarizing the current knowledge in the field of LOX inhibitors [2, 404–406] and 

there is no need for re-reviewing them. However, we would like to briefly discuss three 

problems that might have contributed to the fact that LOX inhibitors have performed rather 

weakly in the clinics despite their promising experimental potential.

5.1. Isoform-specific LOX inhibitors

As indicated in Table 1 six functional LOX isoforms exist in humans. In the murine genome 

there are seven functional LOX genes. Although except for the ALOXE3 the different human 

LOX isoforms catalyzed the same principal reaction (oxygenation of polyenoic fatty acids) 

they have been implicated in different physiological and patho-physiological processes. 

Consequently, inhibitors that impact the catalytic activity of several LOX isozymes are 

likely to have unwanted side effects. For instance, an ALOX5 inhibitor, aimed at developing 

an anti-asthmatic drug [404], should not significantly impact the activity of ALOX12B. 

Otherwise problems with skin development may occur [84, 85]. This functional multiplicity 

of LOXs requires the development of isoform-specific inhibitors. Most experts working in 

this field are well aware of this problem and test the isoform-specificity of their compounds 

in different assay systems. However, the assay systems employed in the past are not strictly 

comparable and thus, the data might be misleading: i) The purified rabbit ALOX15 has 

frequently been employed as model enzyme for the corresponding human ortholog but it still 

remains unclear whether the two enzymes have similar inhibitor sensitivities. The two 

ALOX15 orthologs share a high degree of amino acid conservation (>80%) but there are 

amino acid differences that might impact inhibitor sensitivity. ii) In the past, impure enzyme 

preparations (cell lysates of different cells) were employed as enzyme sources for activity 

assays. For instance, lysates of rat basophilic leukemia cells were used as ALOX5 source and 

platelet lysates were employed as source for human ALOX12 [407]. Unfortunately, these 

assay systems are not strictly comparable since foreign proteins may bind the inhibitors, 

which impacts IC50 values. To circumvent these problems inhibitor studies should always 

be carried out with purified recombinant human enzyme preparations [408, 409]. 

Unfortunately, some human LOX-isoforms (ALOXE3, ALOX12B) are not well expressed as 
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recombinant proteins making this strategy difficult to follow. Alternatively, all LOX 

isoforms should be expressed in a single eukaryotic overexpression system (such as COS or 

HEK cells) and the cellular lysate may be employed as enzyme source. Recently, a 

systematic study was carried out, in which all rat 12-lipoxygenating LOX isoforms were 

overexpressed in HEK cells and an array of commercially available LOX inhibitors was 

tested using the cell lysates [410]. The data obtained indicate that the commercial LOX-

inhibitors (NDGA, CDC, AA861, baicalein, PD146176) only exhibited a low degree of 

isoform specificity although some of them have previously suggested as isoform-specific 

LOX inhibitors. Most surprisingly, PD146176, which has been employed in experimental 

strategies as ALOX15 specific inhibitor [323, 407, 411], did not at all inhibit rat ALOX15 

[410]. For the time being, it remains unclear why this compound effectively inhibits rabbit 

and human ALOX15 [407] and not the rat ortholog [410] but it may be related to the fact that 

rat ALOX15 is a 12-lipoxygenating enzyme [34] whereas rabbit and human orthologs are 15-

lipoxygenating [35]. However, to avoid misinterpretations of experimental data it is most 

important to make sure that human ALOX15-inhibitors, which are scheduled to be employed 

as mechanistic probes in murine systems, have been tested for LOX inhibition in these 

experimental setups (rat, mouse or other species). It might well be that an inhibitor that 

effectively inhibits human ALOX15 does not at all inhibit the orthologous enzymes of other 

species. Thus, effects of such compounds in mouse or rat experimental systems are probably 

due to off-target effects of the compounds although they might be interpreted as 

consequence of ALOX15 inhibition.

5.2. Species-specific differences of LOX orthologs

To explore the patho-physiological roles of different LOX-isoforms murine disease models 

are required. Unfortunately, some murine LOX isoforms have different properties than their 

human ortholog and these differences may impact inhibitor sensitivity. For instance, murine 

Alox15 isoforms (mouse, rat) are 12-lipoxygenating enzymes [34] whereas the human 

ortholog is 15-lipoxygenating [35, 412]. The molecular basis for this functional difference 

has previously been explored [44] and appears to be related to the volume of the substrate-

binding pocket [1]. If this hypothesis is correct it may explain the differences in inhibitor 

sensitivity of rat [410] and human ALOX15 orthologs [407]. There is a second species-

specific difference between mouse and human LOX orthologs. Human ALOX15B converts 

arachidonic acid almost exclusively to 15-HpETE whereas the mouse ortholog is 8-

lipoxygenating [45]. Here again, mutagenesis studies indicated that two critical amino acids 

make the functional difference between 15S- and 8S-lipoxygenation. Although there are 

currently no detailed experimental data comparing the inhibitor sensitivities of mouse and 

human ALOX15B it might be speculated that the differences in reaction specificity may also 

impact this enzyme property.

5.3. Off-target effects of LOX-inhibitors

Some LOX inhibitors, such as NDGA or propylgallate contain catechol structures and thus, 

exhibit anti-oxidative properties. Thus, in addition to being LOX inhibitors they may 

directly impact the redox homeostasis in biological systems. Since the cellular redox 

homeostasis is important for regulating the gene expression pattern on genetic [413] and 

epigenetic [12, 414] levels, it is difficult to discriminate which of the two functions (LOX 
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inhibition vs. redox activity) is the major reason for a biological effect. Consequently, 

results obtained with these types of LOX inhibitors need to be interpreted with care and to 

avoid misinterpretation inhibitor studies should always be confirmed by alternative loss-of-

function strategies such as siRNA induced expression silencing and/or the use of genetic 

knock-out models.

6. Concluding remarks and perspectives

Because of the proposed biological roles of LOXs and their implication in the pathogenesis 

of public health-relevant human diseases these enzymes have received significant attention 

over the past decades. Although most human LOX isoforms can be expressed as 

recombinant proteins and have been well characterized with respect to their structural and 

functional properties there are a number of caveats that need to be addressed in the future. If 

one considers rabbit ALOX15 as suitable structural model for the human ortholog, crystal 

data are now available for four (ALOX15, ALOX12, ALOX5, ALOX15B) of the six human 

LOX isoforms. Although there are subtle differences between the different isoforms the 

general fold of the enzymes is similar and on the basis of the current structural data reliable 

models may be constructed for the remaining LOX isoforms (ALOX12B, ALOXE3). When 

compared with other LOX isoforms the oxygenase activity of ALOXE3 is limited and thus, 

the enzyme has been suggested to function as fatty acid peroxide isomerase. Although some 

studies have been performed to explore the molecular reasons for the lacking oxygenase 

activity of ALOXE3 [415, 416] the structural basis remains unclear. Crystal data for 

ALOXE3 might shed some light on this mechanistic detail. Furthermore, although 

dimerization of various LOX isoforms has recently suggested [64, 65] the mechanistic and 

biological consequences of this effect have rarely been studied. It might well be that enzyme 

dimerization may contribute to the allosteric properties that have been described for various 

LOX isoforms [62, 265]. Another problem in molecular LOX research is lacking direct 

structural information on LOX-substrate complexes. The currently available structural data 

on enzyme-ligand complexes [46–51] do not conclusively answer the questions on the 

structural basis for the reaction specificity of the different LOX-isoforms.

Although knockout mice are currently available for 5 LOX isoforms (Alox5, Alox15, 

Alox12, Alox12b, Aloxe3) the biological roles of ALOX15 and ALOX12 are not well 

understood. ALOX12 and ALOX15 knockout mice are viable and although irregular 

epididymal maturation has been reported for ALOX15-deficient sperms the animals breed 

well and corresponding mouse colonies can be established easily. On the other hand, 

challenging experiments suggest the involvement of the two enzymes in physiological 

processes. It might well be that the mild phenotypes of Alox15, Alox12 and Alox5 knockout 

mice may in part be related to the fact that no conditional knockouts are currently available 

for these two enzymes. One problem with non-conditional knockout mice is that their 

creation is somewhat selective (only embryonic stem cells that survived the genetic 

manipulation were selected for blastocyst injection) and that compensatory mechanisms 

during early embryogenesis cannot be ruled out. To overcome these problems inducible 

knockout systems should be established but such experiments are time consuming and quite 

expensive.
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One of the most serious problems in LOX research in the past decade has been the lack of 

sensitive (in vivo IC50 in the lower nanomolar range) isoform-specific inhibitors that could 

be employed in animal disease models or in experimental clinical studies in humans. There 

are a large number of LOX inhibitor structures in the chemical databases but for most of 

them isoform-specificity has not been explored in strictly comparable assay systems. Only 

recently this problem was partly overcome [408, 409], but the new compounds have not yet 

reached widespread acceptance. In addition, the different functional characteristics of LOX 

orthologs in different mammalian species (12-lipoxygenating Alox15 in mice vs. 15-

lipoxygenating ALOX15 in humans) make the situation even more complex. A broad 

experimental screening program for isoform-specific LOX inhibitors employing high 

throughput systems, which are based on purified recombinant human LOX isoforms, would 

help to approach these problems. Of course, such experiments and the following refinement 

strategies are time consuming and expensive and for the time being the pharmaceutical 

industry appears to be not interested in such strategies because of the controversial reports 

on the bioactivity of various LOX isoforms. However, the recent experimental data on the 

involvement of certain LOX isoforms in neurological disorders (especially ALOX5 and 

ALOX15) and the potential use of ALOX15 inhibitors for anti-stroke therapy [332] might 

change this situation.
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Fig. 1. Simplified scheme of the lipoxygenase reaction
LOXs convert polyenoic fatty acids containing at least one 1,4-pentadiene system to their 

corresponding hydroperoxy derivatives. Atmospheric oxygen serves as second substrate.
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Fig. 2. Biological function of lipoxygenase
Lipoxygenases may exhibit their biological functionality via three different mechanistic 

scenarios. i) Formation of bioactive lipid mediators, ii) Structural modification of complex 

lipid-protein assemblies. iii) Modification of the cellular redox homeostasis, which alters the 

gene expression pattern.
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Fig. 3. Distribution of lipoxygenases in the kingdoms of terrestrial life
Lipoxygenase genes have been detected in two (bacteria, eukarya) of the three kingdoms of 

terrestrial life. Although LOX-like sequences have also been described in archaea, no 

functional LOX enzyme has been reported to occur.
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Fig. 4. Crystal structure of the stabilized version of human ALOX5
The N-terminal β-barrel domain is shown in yellow, the flexible inter-domain linker (D113-

L118) in magenta, the C-terminal catalytic domain in green and the iron liganding residues 

in red. The residues mutated in wild-type ALOX5 to get the stabilized version of the enzyme 

suitable for crystallization are indicated in blue. The image was constructed from the X-ray 

diffraction data using the PyMol software package.
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Fig. 5. Classification and structure of leukotrienes
A) Leukotriene biosynthesis, B) Structure of leukotrienes.
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Fig. 6. Co-localization of ALOX15 with the microglial/macrophage marker CD163
Depending on disease state, various cell types can show increased ALOX15. Shown here in 

A and B are two examples of brain tissue from infants with periventricular leukomalacia, 

where ALOX15 (12/15-LOX) co-localizes with the microglial/macrophage marker CD163, 

suggesting a role in disease pathology. ALOX15 in these brains was also increased in 

oligodendrocytes (courtesy of Dr. Robin Haynes, Children’s Hospital Boston)
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Fig. 7. Principal modes of action of lipoxygenase inhibitors
NDGA - nordihydroguaiaretic acid, HODE - hydroxy octadecadienoic acid, ETYA - 

5,8,11,14-eicosatetraynoic acid, ODYA - 9,12-octadecadiynoic acid, OPP - 4-(2-

oxapentadeca-4-yne)phenylpropanoic acid,
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