
RESEARCH ARTICLE

A Modeling Approach on Why Simple Central
Pattern Generators Are Built of Irregular
Neurons
Marcelo Bussotti Reyes1,2*, Pedro Valadão Carelli1,3, José Carlos Sartorelli1, Reynaldo
Daniel Pinto1,4

1 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil, 2 Centro de Matemática, Computação e
Cognição, Universidade Federal do ABC, Santo André, Brazil, 3 Departamento de Física, Universidade
Federal de Pernambuco, Recife, Brazil, 4 Instituto de Física de São Carlos, Universidade de São Paulo, São
Carlos, Brazil

* marcelo.reyes@ufabc.edu.br

Abstract
The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endoge-

nously provides periodic motor patterns. Even after about 40 years of intensive studies, the

rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of

neurons with irregular intrinsic activity. Using mathematical models we addressed the ques-

tion of using a network of irregularly behaving elements to generate periodic oscillations,

and we show some advantages of using non-periodic neurons with intrinsic behavior in the

transition from bursting to tonic spiking (as found in biological pyloric CPGs) as building

components. We studied two- and three-neuron model CPGs built either with Hindmarsh-

Rose or with conductance-based Hodgkin-Huxley-like model neurons. By changing a mod-

el’s parameter we could span the neuron’s intrinsic dynamical behavior from slow periodic

bursting to fast tonic spiking, passing through a transition where irregular bursting was ob-

served. Two-neuron CPG, half center oscillator (HCO), was obtained for each intrinsic be-

havior of the neurons by coupling them with mutual symmetric synaptic inhibition. Most of

these HCOs presented regular antiphasic bursting activity and the changes of the bursting

frequencies was studied as a function of the inhibitory synaptic strength. Among all HCOs,

those made of intrinsic irregular neurons presented a wider burst frequency range while

keeping a reliable regular oscillatory (bursting) behavior. HCOs of periodic neurons tended

to be either hard to change their behavior with synaptic strength variations (slow periodic

burster neurons) or unable to perform a physiologically meaningful rhythm (fast tonic spiking

neurons). Moreover, 3-neuron CPGs with connectivity and output similar to those of the py-

loric CPG presented the same results.
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Introduction
Central Pattern Generators (CPGs) are small neural networks specialized in endogenously pro-
viding periodic and reliable patterns to generate rhythmic motor activity [1–3] such as chew-
ing, walking, flying, breathing, etc. They work in an almost autonomous fashion in which the
supervision of higher centers mostly consists in shaping or fine-tuning the patterns to a specific
purpose. Studying simpler CPGs can bring some light on how larger circuits (e.g. in the brain)
generate spatio-temporal patterns [4, 5]. Some CPGs produce the very similar activity in the
living animal and “in vitro”, thus being especially suitable for studies in neurophysiology. One
of these remarkable circuits is the pyloric CPG of the crustacean stomatogastric ganglion
(STG) [6–8]. This network has been widely studied for more than 35 years and most of its
physiological details are known. Several pattern generation mechanisms have been proposed
[9–13] but the genesis of the motor patterns is still not rigorously understood [14].

Crustacean pyloric CPGs are extremely robust, in the sense that they have the property of
keeping generating a functional pattern when subject to physiological or environmental
changes [15–18]. The pyloric CPG is robust under strong changes in neuromodulation [19,
20], excitability [21], synaptic strengths [22], and temperature [23].

Nevertheless, the pyloric CPG, when submitted to environmental, physiological or modula-
tors changes, also have the property of easily changing its activity, what is usually referred to as
flexibility [24–28]. Experimental data from the pyloric circuit shows that these CPGs are highly
flexible, being able to present up to 5-fold changes in their bursting frequency “in vitro” [21,
29] and 3-fold changes “in vivo” [30], while keeping their relative bursting phase of
the neurons.

Reductionist attempts to understand the genesis of robust and flexible rhythms in apparent-
ly simple circuits, such as the pyloric CPG, have failed because of the complex nature of the
mechanism [14]. It has been found in experiments that similar network performance is ob-
tained from highly variable sets of network parameters [31, 32], the same results were reported
using a database of models based in STG neurons [33]. These findings have been considered as
evidences of the role of homeostasis in shaping intrinsic and network parameters to compen-
sate for variability while achieving functional robustness [5]. In spite of all biophysical variabili-
ty, most of the CPG motor neurons present a similar chaotic-like bursting behavior when
isolated from the network [14, 34–36]. This findings suggest a relation between the intrinsic
dynamical behavior of neurons and the set of rhythms that emerges as a collective property of
the complex CPG. Moreover it raises a question: Why to use irregular neurons to generate
rhythmic activity?

Appealing ideas such as the control of chaos [37, 38], in which the stabilization of any peri-
odic orbit out of an infinite number of unstable periodic orbits embedded in a phase space
could be reliably achieved either by slightly changing the value of some relevant control param-
eter or simply by applying a small perturbation, led some researchers to hypothesize that the
main role of chaos in the isolated neurons is to provide a neural network with both flexibility
and reliability [14, 39, 40].

Here we addressed the hypothesis about the flexibility and robustness of CPG’s built on ir-
regular neurons. We used CPGmodels with two and three neurons and two types of neural
models, one phenomenological Hindmarsh-Rose-like [41–44] and one realistic conductance-
based Hodgkin-Huxley-like model [45, 46]. Here we adopted the amplitude of frequency
changes as a function of synaptic strength as a measure of flexibility. The robustness was as-
sessed by the standard deviation of the burst duration and the absence of non-oscillatory be-
havior. These choices are not unique, but they seemed to be good approximations to those
complex concepts.
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We analyzed how these objective measures were influenced by changes on the intrinsic ex-
citability of neurons. We found that in order to obtain the more flexible and robust CPGs one
have to tune the intrinsic parameter of the neurons in a narrow range of values were they pres-
ent irregular bursting in the transition to tonic behavior and not in any other parameter range.

Materials and Methods
We used two model neurons: a four-dimensional Hindmarsh-Rose-like model (HR4) [41, 42,
44] and a two-compartment model (HH2C) based on a twelve-dimensional Hodgkin-Huxley-
like model (HH) [45–47]. Results from an improved HH2C model, inspired in previous works
on the role of the hyperpolarization-activated current (IH) [12, 48–50], in which the IH dynam-
ics was changed are also presented.

Synaptic connections were implemented by using a first order kinetic model of neurotrans-
mitter release [51, 52]. The integration was performed using an adaptive-step 6th order Runge-
Kutta algorithm. The numerical integration error at each step was kept smaller than 10-6 mV.
The first 10 seconds of each simulation were discarded to eliminate the transient behavior and
the following 60 seconds of activity were considered for analysis.

At the end of each simulation the last state of the variables were saved and used as initial
conditions for the next integration. We also compared the parameter space built by sequential-
ly incrementing the parameters with the one built by randomly choosing both the parameters
and the initial conditions of the neurons to ensure no hysteresis is present.

Hindmarsh-Rose-like model (HR)
The HR model was chosen because it is the one of the simplest neuron models that is able to
qualitatively mimic both the behavior of STG isolated neurons as well as the behavior of pair of
neurons connected by mutual inhibition [44]. Furthermore, experiments have shown that this
model successfully replaced a damaged neuron in the pyloric circuit [43].

The HR model we used is given by:

_x ¼ Ay � Cx3 þ Bx2 � Dz þ I þ Isyn

_y ¼ E � Fx2 � y � Gw

_z ¼ m Sðx þ HÞ � zð Þ
_w ¼ nðRðy þ LÞ � KwÞ

where A = 1, B = 3, C = 1, D = 0.99, E = 1.01, F = 5.0128, G = 0.0278, H = 1.605, K = 0.9573,
L = 1.619, μ = 0.0021, ν = 0.0009, R = 3, S = 3.966.

The x variable represents the membrane potential, while I represents a DC current injected
in the neuron. The y variable represents a fast component of the total current trough the mem-
brane and z and w are the slow components responsible for the bursts. Isyn is the dynamic
postsynaptic current due to the connections. The parameter I was used to adjust the intrinsic
behavior of the model from periodic spiking to chaotic bursting and finally tonic spiking.

Hodgkin-Huxley-like model (HH2C)
Our HH2C model was based on a single compartment HHmodel that was first developed and
then updated to better represent the ion channels and their dynamics as observed in voltage-
clamp experiments with STG neurons in primary culture [45–47].

We modified this HHmodel in order to include deeper long lasting spontaneous hyperpo-
larizations, which are not only a very important characteristic of STG bursting neurons, but
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they also allow one to design networks using graded synaptic connections, believed to play cru-
cial roles in CPG pattern formation [7, 53–57].

Since most works on modeling STG neurons are based in whole cell voltage clamp experi-
ments of cultured neurons and there are not enough data to decide, without speculative as-
sumptions, neither how many compartments are needed, nor how to segregate or how to split
the many different conductances among compartments, we decided to modify the model in the
simplest possible way yet capable to perform deeper hyperpolarizing behavior. Our modifica-
tion consisted in splitting the different ion channel conductances of the HH2C model neuron
in two compartments: an axonal compartment where the spike generating fast Na+ and K+

plus a passive leakage currents are located, and a somatic/neuropil compartment that includes
all slow conductances of the model as well as the synaptic input current. The two compart-
ments were connected by a passive electrical conductance adjusted in such a way that the burst-
ing behavior of the model is similar to the one found in STG neurons.

The membrane potential dynamics of the two compartments are given by:

C
dV
dt

¼ �ð�Isyn þ ICaT þ ICaS þ IA þ IKCa þ IH þ Ileak þ GVV V � VAxð ÞÞ

CAx

dVAx

dt
¼ � INa þ IKd þ IleakAx þ GVV VAx � Vð Þð Þ

where C = 0.628 nF is the capacitance of the soma whose area is 0.628×10-3 cm2, CAx = 0.2 nF
is the capacitance of the axon of area AreaAx = 0.2×10-3 cm2, GVV = 200 nS is the conductance
coupling the two compartments. These values are based on STG neurons properties.

Besides the separation of the model in two compartments, we kept all the remaining param-
eters as shown by Prinz et al. [45], with the exception of the Eleak that was slightly decreased to
produce the desired deeper hyperpolarizations.

The currents are described by

Ii ¼ gim
gi
i h

di
i V � Eið ÞAc

where gi is the maximal specific conductance: gNa = 120 mS/cm2; gCaT = 1.0 mS/cm2; gCaS =
11.0 mS/cm2; gKCa = 1.22 mS/cm2; gKd = 36 mS/cm2. Ac is the area of the corresponding com-
partment (soma or axon). The reversal potentials are: +50 mV for Na, -80 mV for the three po-
tassium currents, -20 mV for IH, and -60 mV for Ileak. The calcium reversal potential was
calculated by the instantaneous intracellular calcium concentration and an extracellular calci-
um concentration [Ca]ext of 3 mM, by means of the Nernst equation, at 17°C. The values for
the integer exponents γi and δi are given in Table 1. The activation and inactivation variables
mi and hi change according to:

tm
dm
dt

¼ m1 �m

th
dh
dt

¼ h1 � h

where τm,m1, τh and h1 are voltage-dependent, as shown in Table 1. The internal calcium
concentration dynamics is given by

tCa
d Caþ2½ �

dt
¼ �f ICaT þ ICaSð Þ � Caþ2½ � þ Caþ2½ �0
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where τCa = 200 ms is the Ca+2 buffering time constant, f = 14.96 M/nA, and [Ca+2]0 = 0.05 M
is the internal calcium concentration for which there is no calcium flux through
the membrane.

The dynamical variables related to the soma currents are calculated considering the poten-
tial V, and the axon currents considering Vax.

In this model the calcium-dependent potassium conductance gKCa was used to control the
level of excitation of the neurons because it regulates the outflow of potassium during the spik-
ing onset, thus it was the intrinsic parameter for the HH-based model CPGs. Varying this con-
ductance the neuron electrical activity could be smoothly changed from rhythmically bursting
to tonic spiking (Fig. 1).

Hodgkin-Huxley-like model with increased hyperpolarization-activated
current (HHIH)
The HHIH model was obtained from a modification of our previous HH2C model that con-
sisted in changing the dynamics and increasing the value of the hyperpolarization activated
current IH. Several facts guided this modification. First, several studies show that this conduc-
tance is important in rhythm generation [12, 48, 50]. Also, differenty from all other original
HH model conductances [45] that were based on voltage-clamp data from isolated stomatogas-
tric neurons [46, 47], the dynamics of IH conductance, was taken from guinea pig thalamic
relay neurons [58]. Finally, we were also inspired in previous experimental results [49] and
consisted in the intensification of the IH conductance and also in making it active for more
depolarized potentials.

The modification were: the conductance and the reversal potential were increased (gH = 0.5
mS/cm2; Vrev = 20mV) and the activation current function was slightly displaced 5mV towards
more depolarized values. The modifications were made to intensify the current and to make it
active for more depolarized potentials, inspired in previous experimental results [49].

The parameters for the HHIH model are: EH = 20 mV, gH = 0.5 and

mH
1 ¼ 1

1þ exp
V þ 70

5:5

� �

Table 1. Voltage dependence of the model currents.

γi δi m1 h1 τm τh

INa 3 1 1

1þe
Vþ25:5
�5:29ð Þ

1

1þe
Vþ48:9
5:18ð Þ 2:64� 2:52

1þe
Vþ120
�25ð Þ 1:34

1þe
Vþ62:9
�10ð Þ 1:5þ 1

1þe
Vþ34:9
3:6ð Þ

� �
ICaT 3 1 1

1þe
Vþ27:1
�7:2ð Þ

1

1þe
Vþ32:1
5:5ð Þ 43:4� 42:6

1þe
Vþ68:1
�20:5ð Þ 210� 179:6

1þe
Vþ55
�16:9ð Þ

ICaS 3 1 1

1þe
Vþ33
�8:1ð Þ

1

1þe
Vþ60
6:2ð Þ 2:8þ 14

e
Vþ27
10ð Þþe

Vþ70
�13ð Þ 120þ 300

e
Vþ55
9ð Þþe

Vþ65
�16ð Þ

IA 3 1 1

1þe
Vþ27:2
�8:7ð Þ

1

1þe
Vþ56:9
4:9ð Þ 23:2� 20:8

1þe
Vþ32:9
�15:2ð Þ 77:2� 58:4

1þe
Vþ38:9
�26:5ð Þ

IK(Ca) 4 0 ½Ca�
½Ca�þ3

1

1þe
Vþ28:3
�12:6ð Þ

� �
180:6� 150:2

1þe
Vþ46
�22:7ð Þ

IKd 4 0 1

1þe
Vþ12:3
�11:8ð Þ 14:4� 12:8

1þe
Vþ28:3
�19:2ð Þ

IH 1 0 1

1þe
Vþ70
5:5ð Þ

2

e
Vþ169:7
�11:6ð Þþe

V�26:7
14:3ð Þ

doi:10.1371/journal.pone.0120314.t001
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Fig 1. Bifurcation diagrams of the interspike intervals (ISIs) as a function of the intrinsic parameter in
the regions that contained the transition from bursting to tonic spiking behavior. (A) HRmodel neuron:
up to I*3.1 the number of spikes per burst increased with I in a period adding bifurcation; for I>3.15 the
neuron was tonic. (B) The HH2Cmodel presented tonic behavior for values of the intrinsic parameter
gKCa<1.21, while for gKCa>1.21 a bursting behavior was observed. For gKCa>1.45 an inverse period adding
bifurcation took place. (C) HHIH model: as in the HH2Cmodel the transition from bursting to tonic behavior
happened when the control parameter was decreased.

doi:10.1371/journal.pone.0120314.g001
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All the remaining equations are the same as in the HH2C model. In the HHIH model the
calcium-dependent potassium conductance gKCa was also chosen as the intrinsic parameter for
the model CPGs.

Chemical synapses
The model neurons were connected by chemical synapses implemented using a model that
mimics the release and the diffusion of the neurotransmitter in the synaptic cleft according to a
simple first order kinetic description [51, 52]. The postsynaptic current is given by:

Isyn ¼ gsynSðtÞ Vrev � VposðtÞ
� �

where gsyn is the maximal synaptic conductance, Vrev is the reversal potential for the synapse,
and Vpos is the membrane potential of the post-synaptic cell. The dynamical variable S(t) is the
voltage-dependent activation that mimics the kinetics release and the binding of the neuro-
transmitter at the synaptic cleft, and it is given by

1� S1 Vpre

� �� �
tS
dSðtÞ
dt

¼ S1 Vpre

� �
� SðtÞ

� �
where S1 is given by

S1 Vpre

� �
¼

tanh
VpreðtÞ � Vthres

Vslope

 !
; if Vpre > Vthres

0 ; otherwise

8>><
>>:

Table 2 shows the synaptic parameters used in the simulations for all models.

Results

Intrinsic properties of the model neurons
We characterize the intrinsic behavior of the model neurons by plotting series of interspike in-
tervals (ISIs) as a function of the intrinsic parameter. The bifurcation diagrams show many
qualitatively different behaviors the models present as the intrinsic parameter is changed
(Fig. 1). In spite of each model’s particularities, all of them showed a similar sequence of dy-
namical states: they present a region where a period-adding bifurcation is observed and a tran-
sition from periodic bursting to tonic spiking. However, in the HR and HHIH models the
transition corresponds to a band of chaotic behavior with irregular number of spikes/burst and
burst duration, while in the HH2C model the transition from periodic bursting to tonic spiking
is a point of accumulation of the period-adding bifurcation in which the number of spikes/
burst successively increases toward infinity and the tonic behavior takes place.

Table 2. Synaptic parameters used for the simulations with the HR, HH2C and HHIHmodels.

Parameter HR (a.u.) HH (2C and IH) (mV)

Vthres -0.8 -45

Vslope 2.0 40

Vrev -1.58 -80

doi:10.1371/journal.pone.0120314.t002
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Half-center oscillators
The parameter space for the HR model is shown in Fig. 2, where we observe that when the neu-
rons are intrinsic periodic bursters (lower values of I) the frequency of the network is very close
to the frequency of the isolated neuron and it is almost insensitive to changes in the
synaptic strength.

On the other hand, when the neurons are intrinsically tonic (higher values of I) the rhythm
of the network is substantially changed by the synaptic connection. One can observe a 5-fold
modification in the rhythm, which goes from 0.5 Hz (when neurons are strongly connected) to
2,5 Hz (for lower synaptic coupling) in agreement with what is experimentally observed [21,
29, 30].

We inferred the network flexibility for a given value of I by computing the difference be-
tween the maximal and the minimal bursting frequency the network reached for the whole set
of synaptic coupling (Fig. 3A). The robustness of the CPG for a given I was estimated by ob-
serving the average standard deviation of the bursting frequency over the synaptic strength
(Fig. 3B): if the rhythm becomes irregular and the CPG fails in functionality, the bursting fre-
quency will present large variations that will be revealed by the average of the standard devia-
tions; conversely a robust CPG will generate periodic rhythms over all the values of the
synaptic strength and will present only small standard deviations of its bursting frequencies.

In this context the more tonic were the neurons intrinsically, the more flexible was the net-
work, as shown in Fig. 3A. However, the robustness of the CPG decreases as the neurons go
from bursting to tonic, i.e., as we increased I (Fig. 3B). As the neurons became intrinsically
more tonic, there was a stronger competition for firing, and the rhythm became unstable in a
larger area over the parameter space as it can be seen in Fig. 2B. Moreover, when neurons were
intrinsically tonic, for small synaptic strengths the network behavior is non oscillatory (white
regions in Fig. 2A).

Based on these observations we argue that the best balance between flexibility and robust-
ness is achieved when the neurons are in the transition from bursting to tonic behavior. This is
the range where the model neurons present chaotic behavior when isolated.

In order to verify if these results were model-independent, we repeated the same analysis
with CPGs built with HH2C model neurons, which were originated from electrophysiological
measurements of STG cultured neurons.

To obtain the parameter space of the HH2C-based CPGs (Fig. 4A), we used the calcium-de-
pendent potassium conductance (gKCa) as the intrinsic parameter while keeping the synaptic
strength (gsyn) as the synaptic parameter.

Fig. 4A shows that these CPGs are rather insensitive to changes in the synaptic conductance,
no matter what was the intrinsic behavior of the neurons. Moreover, the changes in the fre-
quency as a function of gsyn (shown in Fig. 4B) occurred in the opposite direction than the ob-
served in experiments [12]. Furthermore, the CPG stops the rhythm generation when the
neurons intrinsic behavior is tonic (gKCa�1.25). So, in spite of the stronger biological appeal of
the HH2C in comparison to the HR model, it was not able to provide a realistic dynamical rep-
ertory of the biological CPGs.

Such discrepancy might be attributed to two factors: the model neuron was extremely sensi-
tive to current injection, easily going to a silent state while inhibited; the model present a weak
post inhibitory rebound, meaning that the activity after the release from inhibition is not in-
creased in comparison to the ordinary activity.

One of the reasons for the HH2C model be very sensitive to inhibition is that it presents a
small overall conductance during hyperpolarization, so a small current is enough to keep the
neuron in the silent state. Based on these observations and in a few previous modeling and
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Fig 2. Characterization of the dynamic as a funtion of the intrinsic current and the synaptic strengh.
(A) Parameter space of the bursting frequency for a two-HRmodel neurons half-center oscillator. The
parameter I (horizontal axis) represents the intrinsic behavior of the neurons and the parameter gsyn (vertical
axis) represents the maximal synaptic conductance between neurons. (B) Standard deviation of the bursting
frequency for the same parameter space. The network is unstable for small values of the synaptic coupling
when neurons become intrinsically more excited (tonic).

doi:10.1371/journal.pone.0120314.g002
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experimental works, we propose a way to improve the behavior of the model, as shown in the
next section.

Increasing the effect of IH conductance in the HHmodel
The parameter space for the HHIH-based CPG model is shown in Fig. 5. The alteration in the
IH conductance corrected the dependence of the CPG frequency on the synaptic strength gsyn,

Fig 3. Flexibility and robustness of the network. (A) The difference between the maximal and the minimal
frequencies the GPG reaches for the whole set of synaptic conductances as a function of the intrinsic
parameter I. (B) The mean standard deviation of the bursting frequency (averaged over all the values of the
synaptic coupling) as a function of the intrinsic parameter I. From (A) we can infer that the flexibility of the
CPG increases with I, since the range of frequencies that the same neurons are able to generate is also
increasing. However, in (B) we observe that the behavior of the CPGs becomes more irregular as we
increase I, as it can be seen by the increase in the average standard deviation of the bursting frequency.

doi:10.1371/journal.pone.0120314.g003
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meaning that the frequency of oscillation now decreased as gsyn was increased, as observed for
the HR model and in experiments. Furthermore, the frequency gradient increased, and so the
flexibility of the CPG. Finally, the changes in IH also provided the network with more stability,
since the network oscillatory behavior is stable for a larger area of the parameter space.

It is worthy noting that there was a range of values of the intrinsic parameter gKCa close to
the transition from bursting to tonic intrinsic behavior in which the CPG had the best flexibili-
ty and it was also robust, as pointed out in Fig. 5 (the dashed line).

Fig 4. Analysis of the dynamics of the HH2C-basedmodel. (A) Parameter space for the CPG.
For smaller values of the intrinsic parameter the neurons behave tonically and do not provide usable CPGs
(white region). (B) The frequency dependence on the synaptic strength for the line showed in (A) (gKCa =
2.5 mS/cm2).

doi:10.1371/journal.pone.0120314.g004
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A three-neurons model CPG
We also simulated some more realistic model CPGs to mimic the pyloric activity of the spiny
lobster Panulirus interruptus. The scheme of the network is shown in Fig. 6 and it is based on
the fact that food is filtered/pumped in a cycle that always preserve the same firing sequence: a
cycle starts with the firing of the group formed by the Lateral Pyloric (LP) and the Inferior Car-
diac (IC) neurons, on the sequence the Ventricular Dilator (VD) and the 8 Pyloric (PY) neu-
rons fire, finally the cycle is reset by the firing of the pacemaker group formed by the Anterior
Burster (AB) and the two Pyloric Dilator (PD) neurons [7, 33, 59]. Since inside each group the
neurons fire with very small phase differences, in our model pyloric CPG we represented each
group by a single model neuron. We also considered that all neurons have the same intrinsic
properties, however we used different synaptic strengths to include the fact that in the real
CPG some connections are stronger than others.

In Fig. 7 we show the typical phase lags observed in our simulated model CPGs, as well as
the respective temporal series obtained in a HR-based 3-neuron CPG.

The parameter spaces obtained as function of I and gsyn for the HR-based 3-neuron model
CPG are shown in Fig. 8. For values of gsyn<3 the results were similar to the ones obtained for
the half-center oscillators: a change from 1Hz to 2Hz in the CPG frequency with the increase
of gsyn is observed for values of the intrinsic parameter I*3.1 (Fig. 8A) which is in the transi-
tion from bursting to tonic behavior where the model neurons are intrinsically chaotic. Around
I*3.1, and again considering only the region of the parameter space where gsyn<3, are also
found the smaller values of the standard deviation of the CPG frequencies computed from the
time series of the AB/PD model neuron (Fig. 8B). For smaller values of I, where the neurons
are intrinsically periodic bursters, the frequency is less sensitive to changes in gsyn so the CPGs
are less flexible; conversely, for bigger values of the parameter I, where the neurons are intrinsi-
cally tonic, the CPG lost its robustness as it can be seen by the larger standard deviations of the

Fig 5. Parameter space of the burst frequency as a function of the gKCa and gsyn for the HHIH-based
CPGmodel. The burst frequency has its greatest gradient in the region of the transition between bursting to
tonic intrinsic behavior as pointed by the dashed line.

doi:10.1371/journal.pone.0120314.g005
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CPG frequencies (as shown in Fig. 8B). For values of gsyn>3 the results are strongly biased by
the limitations of the HR model concerning the strong PIR. In these region we found several
non-physiological behaviors: the presence of a series of Arnold tongues that correspond to
high bursting frequencies that are very stable as it can be seen in the white regions of Fig. 8B,
and a reverse dependence of the CPG frequency on gsyn.

This discrepancies for higher values of the synaptic conductance can be understood by con-
sidering that the bursting genesis in the HR model is provided by a slow adaptation current
that depends linearly on the membrane potential, instead of presenting a sigmoidal saturation
as observed in biological neurons [42]. With this non-saturation characteristic of the post-in-
hibitory rebound (PIR) it is difficult to obtain patterns that present duty cycles much smaller
than 50%, specially when a strong inhibition enhances the PIR response of the neurons. This
can be seen in the region shown in Fig. 8C where the strong PIR presented by the AB/PD and
VD/PY neurons prevent the LP/IC neuron of firing, disrupting the three phase rhythm of the
CPG.

The parameter space obtained for a HH2C-based 3-neuron model CPG is shown in Fig. 9.
In this case we observed that either no rhythm is produced by the CPG (when the neurons are
set in a range of the intrinsic parameter gKCa where they are intrinsically tonic), or the CPGs
present almost no flexibility to changes in the synaptic conductance (for gKCa in a range that
corresponds to intrinsic bursting behavior).

We also studied the parameter space obtained from model CPGs based on our HHIH
model neurons, where we increased the influence of the IH current. The results are shown in
Fig. 10. Similarly to what happened with the half-center oscillator the modification brought
some flexibility to our three-neurons CPG model, and the area of the parameter space where
the network produces a three phase rhythm was also increased.

Fig 6. Scheme of the three phases CPGmodel. The connections between neurons represent the inhibitory
synapses. In each synapse it is shown the value of the relative synaptic strength.

doi:10.1371/journal.pone.0120314.g006
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Discussion
One of the main questions in neuroscience is to identify to which degree one can infer the be-
havior of a neural network just by investigating the isolated behavior of its neurons and the
sinaptic connectivity. Not only the dynamical properties of the neurons are quite complex but
the neuromodulation produces yet another layer of complexity, by changing both the intrinsic

Fig 7. Dynamics of the 3-neuronmodel CPG. (A) Phase diagram showing the sequence of bursts (grey
boxes) and (B) example of time series for the HR-based 3-neuron CPG. LP/IC and PY/VD bursts are
superimposed as usually found in experiments. The PY/VD burst is interrupted by AB/PD and the
cycle restarts.

doi:10.1371/journal.pone.0120314.g007
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Fig 8. Parameter spaces as function of I and gsyn for a HR-based 3-neuron model CPG. (A) Bursting
frequency for the AB/PDmodel neuron. (A) Standard deviation of the bursting frequency for the same neuron.
(C) The grey regions correspond to sets of parameters where the CPG completely loses its robustness: the
LP/IC neuron does not fire during the activity of the network.

doi:10.1371/journal.pone.0120314.g008
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Fig 9. Parameter space of the bursting frequency as a function of I and gsyn for the HH2C-based 3-
neuron CPGmodel. For lower values of gKCa the CPG do not provide a three phase rhythm (blank region).

doi:10.1371/journal.pone.0120314.g009

Fig 10. Parameter space of the bursting frequency as a function of gKCa and gsyn for the HHIH-based
3-neuron CPGmodel. In comparison to the parameter space of the HH2C-based CPG the region that
corresponds to bursting behavior is enlarged and a greater frequency variation is obtained in the region of
gKCa close to the transition between bursting to tonic behavior.

doi:10.1371/journal.pone.0120314.g010
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parameter of the neurons and their connectivity [60]. We tried to shed some light into this
question by simulating the behavior of two- and three-neuron networks, investigating their
output as the intrinsic dynamics of the neurons and the synaptic strength are changed. Our in-
vestigations reveal the mechanism and the key elements for the proper establishment of the
rhythmic oscillations and its modulation by the synaptic strength.

Using reduced neural networks to investigate the dynamical properties neurons has been a
successful approach to uncover features that would be hidden if the neural models were not in-
serted in a network. This is specially useful for understanding small GPG circuits where the
number of neurons is reduced and hence the role of each individual cell is important. Connect-
ing a neural model in a, network can be interpreted as a challenge to the model, and might re-
veal possible weaknesses. We believe that was the case here. A very important model (HH2C)
could be improved because of a “dynamical test” under which it was subjected.

For a given value of the models intrinsic parameter we tried to assess how flexible that CPG
is by changing the synaptic maximum conductance and measuring the range of bursting fre-
quencies obtained, a common way of investigating the dynamical propperties of the CPGs [21,
29]. We evaluated the stability of a CPG through two main aspects: if a proper bursting rithms
was established for all sinaptic strengths and and if the rithm had a low standard deviation of
the bursting period. Even though a CPG does not requre a great amount of periodicity as for
example can be obtained with computational simulations, a fair degree of periodicity is ob-
served in biological CPGs, even when important parameters are changed [22]. Furthermore,
CPGs are attached to muscles whose activation depends on a sustained activity of these neu-
rons, and hence the muscular activity can be affected if a certain level of stability is
not achieved.

Half-Center Oscillators
For HCO based on the phenomenological HR neuron model the best relation between flexibili-
ty and robustness was obtained when the intrinsic parameter of the neurons was set in a region
close to the transition between bursting and tonic spiking behaviors, as it was found in neurons
isolated from the biological CPGs [36].

The original HH-like model was not able to produce half-center oscillations when the neu-
rons were set in intrinsically tonic spiking state. Moreover, in their intrinsic bursting region
they were not flexible (the frequency was not sensitive to synaptic changes). This failure in pro-
viding good models of half-center oscillators clearly shows that sometimes a successful model
of an isolated neuron is not able to mimic the collective dynamics, because of the complex na-
ture of the CPG.

We modified the HHmodel by changing its IH conductance for experimental and theoreti-
cal reasons main reasons (see methods session). The CPGs with the resulting (HHIH) model
presented three main improvements. A larger area of the parameter space became functionally
meaningful, so the robustness was increased; The range of frequencies of the CPG when the
synaptic parameter is changed also increased, adding flexibility to the model; It corrected the
gradient of the frequency as a function of the synaptic conductance was corrected (it was re-
versed in the CPGs built with the original HH model).

In the improved HHmodel, the flexibility was maximum around the transition from burst-
ing to tonic spiking intrinsic behavior. CPGs with tonic spiking intrinsic neurons were also less
robust than those with bursting intrinsic neurons.

According to our results, when the model neurons intrinsic behavior is set to regular burst-
ing they are able to establish anti-phase oscillations with minimal synaptic current.
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If the neurons do not have a strong PIR, as soon as they achieve the anti-phase oscillatory
regime, the bursting frequency is no longer influenced by changes of the synaptic conductance.
On the other hand, if the neurons are intrinsically tonic, one neuron will keep firing until the
other neuron escapes from the inhibition (due to IH current, for example) and starts to fire. If
the neurons have a weak PIR the CPG will become unstable or will not produce
any oscillations.

Three-neurons CPGs
We also presented some results obtained from 3-neurons CPG, built either with HR or HHIH
models, to provide a three phase rhythm, similar to the one found in the pyloric circuit
of crustaceans.

Similarly to the results obtained for HCOs, in 3-neurons model CPGs, the parameter ranges
that showed the best balance between flexibility and robustness were those corresponding to
intrinsic behavior in the transition from bursting to tonic spiking, the same regions where the
chaotic behavior can be found in the isolated neuron models. This is again in agreement with
the observation of chaotic-like dynamics in the behavior of isolated biological neurons [14, 34,
35].

Our previous discussion of the role of the PIR should be also valid for CPGs made by three
or more neurons, since the competition for firing also holds. Evidently, these networks exhibit
much richer behavior, since there is a stronger dependence on the connectivity. However, the
general oscillating properties can still be revealed with our analysis.

Presence of chaotic-like behavior in models and biological neurons
When pyloric STG neurons (with the exception of the AB) are isolated from the circuit, they
usually behave irregularly, presenting chaotic-like bursting behavior, close to a transition to
tonic spiking [14, 34–36]. The hypothesis that the main role of chaos in the isolated neurons is
to provide a CPG with both flexibility and reliability is an interesting theoretical framework.
Unfortunately, it only applies rigorously to isolated chaotic systems and it is challenging to
show that these arguments can be extended to systems made of two or more coupled chaotic
oscillators, particularly when they are strongly connected, as it is the case of the neurons of a
CPG.

Here we showed that the ranges in the intrinsic parameter of the models that correspond to
the best CPGs, regarding our measures of flexibility and robustness, are those where the isolat-
ed models are near a transition from bursting to tonic spiking, where a range of complex be-
haviors can be easily found: windows of periodic behavior, spike adding transitions, and also
chaotic behavior.

However, we did not find any direct relation between the presence of chaotic behavior (at a
specific values of the intrinsic parameters) and special increases on the flexibility (robustness)
of the CPGs. According to our results, as the neuron models were tuned from periodic bursting
to tonic spiking, the flexibility increased smoothly.

Instead of being an indicator of the role of chaos in CPGs, the fact that we always find irreg-
ular, chaotic-like behavior, in biological isolated neurons, might be rather explained by the nat-
ural biological variability and noise [36] that act by mixing different regimes of oscillation.

If the best CPGs are those made of model neurons tuned at the transition from periodic
bursting to tonic spiking, where a rich variety of dynamical behaviors are found, variability and
noise are able to mix several windows of periodic behavior, spike-adding transitions, and cha-
otic windows, providing an irregular time-series that is comparable to the ones from biological
isolated neurons.
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The main question, however, might be the biological meaning underlying these findings,
which suggest that neurons are in a very particular dynamical state, i.e., in a narrow range in
the transition between two distinct modes of operation (bursting and tonic). Hence, such deli-
cate balance must be sustained by a sort of homeostatic process that keeps these neurons in
such state. In one hand, there are experimental evidences that general dynamical properties
can be maintained even with disparate individual features [22]. On the other hand, evidences
suggest that from different individuals neurons can present very different parameters and yet,
keep the same dynamical properties [33, 61]. These evidences, along with our results, suggest
that there might be a “target dynamics” instead of a target parameter, in which a particular
mode of operation is maintained. The way the phisiological mechanisms act to maintain such
balance is still to be uncovered.
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