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Abstract

Up to now, several clinical studies have been started investigating the relevance of receptor
tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tu-
mors. However, single targeted kinase inhibition failed, possibly due to tumor resistance
mechanisms. The present study will extend our previous observations that vascular endo-
thelial growth factor receptor (VEGFR)-2, platelet derived growth factor receptor (PDGFR)
B, Src, the epidermal growth factor receptor (ErbB) family, and hepatocyte growth factor re-
ceptor (HGFR/cMet) are potentially drugable targets in pediatric low grade astrocytoma and
ependymoma with investigations concerning growth-factor-driven rescue. This was investi-
gated in pediatric low grade astrocytoma and ependymoma cell lines treated with receptor
tyrosine kinase (RTK) inhibitors e.g. sorafenib, dasatinib, canertinib and crizotinib. Flow cy-
tometry analyses showed high percentage of cells expressing VEGFR-1, fibroblast growth
factor receptor (FGFR)-1, ErbB1/EGFR, HGFR and recepteur d’origine nantais (RON) (re-
spectively 52-77%, 34-51%, 63-90%, 83-98%, 65-95%). Their respective inhibitors induced
decrease of cell viability, measured with WST-1 cell viability assays. At least this was par-
tially due to increased apoptotic levels measured by Annexin V/Propidium lodide apoptosis
assays. EGF, HGF and FGF, which are normally expressed in brain (tumor) tissue, showed
to be effective rescue inducing growth factors resulting in increased cell survival especially
during treatment with dasatinib (complete rescue) or sorafenib (partial rescue). Growth-fac-
tor-driven rescue was less prominent when canertinib or crizotinib were used. Rescue was
underscored by significantly activating downstream Akt and/or Erk phosphorylation and in-
creased tumor cell migration. Combination treatment showed to be able to overcome the
growth-factor-driven rescue. In conclusion, our study highlights the extensive importance of
environmentally present growth factors in developing tumor escape towards RTK inhibitors
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in pediatric low grade astrocytoma and ependymoma. It is of great interest to anticipate
upon these results for the design of new therapeutic trials with RTK inhibitors in these pedi-
atric brain tumors.

Introduction

Low grade astrocytomas (WHO grade I-II) are the most frequent brain tumors in children.
Ependymoma (WHO grade II-IIT) accounts for 6-12% of all pediatric brain tumors and is the
fourth most common brain tumor in children, after low grade astrocytoma, medulloblastoma
(WHO grade IV) and high grade astrocytoma (WHO grade III-IV).[1] Although the 5-year
survival of patients with pilocytic astrocytoma (WHO grade I) is around 90%, morbidity can
be serious mainly because of the tumor localization and the change of surgical morbidity.[2,3]
Moreover, despite developments in neurosurgery, chemotherapy and radiation, the 5-year sur-
vival of pediatric ependymoma is approximately 57%.[4] Therefore, a search for new targeted
therapies has started. With kinome profiling we previously identified vascular endothelial
growth factor receptor 2 (VEGFR-2), platelet derived growth factor receptor p (PDGFR), Src,
the epidermal growth factor receptor family (ErbB1-4), and hepatocyte growth factor receptor
(HGFR/cMet) as potentially drugable targets in these pediatric brain tumors.[5] Potential in-
teresting inhibitors for these targets are sorafenib, dasatinib, canertinib and crizotinib respec-
tively (overview in Fig. 1). Today, still very limited data is published about the clinical use of
inhibitors targeting these receptor tyrosine kinases (RTKs) in pediatric brain tumors, and even
less is known in low grade astrocytoma and ependymoma.

Up to now, mainly pediatric high grade astrocytomas and just a few ependymomas were in-
cluded in phase I studies analyzing erlotinib, an ErbB1/EGFR TK inhibitor as a single agent
and in combination with chemotherapy or radiation.[6-8] Erlotinib was well tolerated in chil-
dren, as were other ErbB family inhibitors including gefitinib and lapatinib.[6-10] The only
published phase II study showed unfortunately no increase in progression free survival or over-
all survival with gefitinib and radiation in malignant pediatric brain tumors.[10] Currently,
erlotinib is under investigation in pediatric low grade astrocytoma and ependymoma in phase I
and II trials respectively. As the ErbB TK family comprises four members, canertinib, a new
pan-ErbB TK inhibitor showing anti-proliferative and pro-apoptotic effects on tumor cells,[11]
could be more interesting. Canertinib has not been investigated in pre- or clinical pediatric
brain tumor studies. Sorafenib has been described in clinical trials, yet only restricted to adult
brain tumors. Limited activity was reported of sorafenib in recurrent glioblastoma and in the
first-line therapy for glioblastoma.[12-14] Recently, sorafenib, crizotinib and dasatinib have
been introduced in pediatric brain tumors.[15,16] Overall, the preliminary results of single re-
ceptor tyrosine kinase targeted tumor therapies are disappointing.

Although in chronic myeloid leukemia, single kinase targeted therapy, for oncogenic acti-
vated BCR/ADbI has proven very successful,[17] more recent trials in other malignancies failed
to show prolonged responses. It is thought that tumor progression is the net result of signaling
through various protein kinase mediated networks driving tumor cell proliferation and surviv-
al. The signaling networks can be reflected by oncogenic mutations, silence tumor suppressor
mutations, epigenetic changes and stromal interaction and crosstalk, such as in angiogenesis.
Important tumor related growth factors which are normally expressed in the developing brain
binding RTKs include VEGF, EGF, HGF, FGF and PDGF. Altogether these changes result in
specific signaling profiles which promote tumor cell growth (Fig. 1).
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Fig 1. RTK signaling pathways. Schematic illustration showing important growth factors in brain tumors that can bind RTKs activating downstream
pathways which contributes to tumor cell survival. These potential drugable targets can be inhibited by e.g. sorafenib, dasatinib, canertinib and crizotinib.

doi:10.1371/journal.pone.0122555.g001

In various tumor types, it has been shown that single targeted kinase inhibition failed due to
tumor escape mechanisms through alternate routes of kinase pathway activation.[18] For ex-
ample, RTK upregulation has been observed following targeted inhibition of selective kinases.
This kinome reprogramming circumvents inhibition of proto-oncogenic kinases as for instance
described for oncogenic RAS.[19] Furthermore, inhibition of specific RTKs could trigger the
tumor to upregulate RTK ligands.[20,21] An increase in RTK ligands through autocrine
tumor-cell production, paracrine contribution from tumor stroma or systemic production,
could eventually contribute to tumor resistance to the RTK inhibitor with a similar signaling
output as shown recently by Wilson et al in oncogenic mutated cell lines.[22] The moderate
preliminary results of single RTK inhibitors in pediatric brain tumors could possibly be due to
resistance mechanisms. The present study will extend our previous observations with investiga-
tions concerning growth-factor-driven rescue in pediatric low grade astrocytoma and ependy-
moma treated with RTK inhibitors e.g. sorafenib, dasatinib, canertinib and crizotinib.

Materials and Methods

Cell cultures

Three pediatric low grade astrocytoma cell lines (WHO grade I: Res-186, grade II: Res-259 and
UW-467) and one ependymoma cell line (Res-196) were evaluated. These cell lines were kindly
given by Dr. Michael S. Bobola (Seattle Children’s Hospital Research Institute, USA).[23] All
cell lines were cultured in DMEM/F12 (Life Technologies, Carlsbad, CA, USA) containing 5%
fetal calf serum (FCS). Cell cultures contained 100 units/ml penicillin and 100 ul/ml streptomy-
cin (PAA Laboratories, Les Mureaux, France).
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Flow cytometry analyses

Cells were blocked by PBS 1% BSA (Bovine Serum Albumin, Sigma Aldrich, St Louis, MO,
USA), and stained with anti-VEGFR-1 (Sigma Aldrich), anti-VEGFR-2-PE (Sigma Aldrich),
anti-VEGFR-3-APC (R&D Systems, Minneapolis, MN, USA), anti-EGFR (Abcam, Cambridge,
UK), anti-ErbB2-PE (R&D Systems), anti-ErbB3-APC (R&D Systems), anti-ErbB4 (R&D Sys-
tems), anti-HGFR/cMet-FITC (R&D Systems), anti-RON-APC (R&D Systems), anti-FGFR-1
(Cell Signaling, Danvers, MA, USA), anti-FGFR-2 (R&D Systems), anti-PDGFRa.-biotin (BD
Biosciences, San Jose, CA, USA), anti-PDGFRB-PE (BD Biosciences). Primary FGFR-2, ErbB4
antibodies were visualized using a Rabbit anti-Mouse PE-conjugated secondary antibody
(Dako Cytomation, Glostrup, Denmark), and FGFR-1 with a FITC-conjugated Swine anti-
Rabbit secondary antibody (Dako Cytomation). Primary EGFR was visualized using Alexa
Fluor 488 conjugated anti-Rat secondary antibody (Cell Signaling) and PDGFRa. antibody was
visualized using streptavidin FITC (BD Biosciences). IgG-FITC/PE/APC and secondary anti-
bodies were used as negative (isotype) controls. Expression was analyzed using LSRII (BD
FACS DIVA software, BD Biosciences). The data was eventually developed using FlowJo soft-
ware (Tree Star Inc., Ashland, OR, USA). Expression levels above 5% were considered as actual
membrane protein expression, reaching above isotype controls.

Human growth factor antibody array

Human growth factor antibody array membranes (Abcam) were used to measure growth factor
protein profile of the used low grade astrocytoma and ependymoma cell lines following manu-
facturer’s protocol. Each protein specific antibody is spotted in duplicate on a nitrocellulose
membrane. Equal amounts of proteins were applied to the array. Levels of proteins were as-
sessed using a horseradish peroxidase (HRP-)conjugated Streptavidin followed by chemilumi-
nescence detection. Signal intensities were analyzed using ScanAlyze array software (Eisen Lab
Software). Normalized signal intensity was calculated with the formula: X(y) x P1/P(y).

P1 = mean signal density—background of positive control spots on culture medium array used
as reference array, P(y) = mean signal density—background of positive control spots on array
of specific cell line, X(y) = mean signal density—background for spot X (protein of interest) on
array for sample y (specific cell line).

Cell viability assays

Crystal violet staining was used to analyze the effect of growth factors on the different pediatric
low grade astrocytoma and ependymoma cells. Furthermore, WST-1 colorimetric viability as-
says were performed for studying effects of RTK inhibitors and growth factors on tumor cell vi-
ability following the protocol described by the manufacturer (Roche, Basel, Switzerland). Cells
were seeded in 96-wells plates at a density of 15 x 10> per well in medium (1% FCS). After cell
adhesion, growth factors including VEGF-A, EGF human, HGF human, FGF basic, PDGF-AB
(all 100 ng/ml, Life Technologies)[22,24] were added. To determine single effects of these
growth factors on tumor cell count after 48h, cells were fixed with 4% formaldehyde. After 20
minutes, cells were washed followed by incubation with 0.04% crystal violet in 4% ethanol for
30 minutes. Then again cell washing, air dried and incubated with 1% SDS solution on a shaker
for 1h. Optical density was measured at 595 nm in a microplate reader (Bio-Rad Laboratories,
Hercules, CA, USA) and tumor cell count was calculated using an internal calibrator.

During WST cell viability assays, tumor cells were treated after adhesion with sorafenib (0-
8 uM), dasatinib (0-1000 nM), canertinib (0-10 uM) or crizotinib (0-12 uM) for 48h, in which
the doses were based on literature.[5,25-30] In the combination treatments, the second inhibi-
tor was added at the following concentrations: sorafenib 2 uM, canertinib 4 uM or crizotinib 3
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uM. Sorafenib, dasatinib, canertinib and crizotinib (LC laboratories, Woburn MA, USA) were
dissolved in sterile dimethyl sulfoxide (DMSO) and stored at -20°C. Similar growth factors as
described previously were added 1h after incubation by the inhibitor. After addition of the
WST-1 cell survival reagent the absorbance was measured at 450 nm in a microplate reader
(Bio-Rad Laboratories). In every assay, per growth factor or inhibitor, each concentration con-
tains equal concentrations of DMSO. For each concentration 6 replicates were included. Simi-
lar conditions were maintained for different combination treatments. Growth-factor-driven
rescue during RTK inhibition was calculated with the formula: ((A = LC50 of cells treated with
inhibitor plus growth factor)-(B = LC50 of the inhibitor-treated cells only)) / B x 100% if
(A—standard deviation (SD))-(B + SD) > 0, otherwise it was defined as ‘no rescue’. If addition
of the growth factor did affect the LC50 during RTK inhibition, this was marked as ‘partial res-
cue’. Complete rescue was noted as A > 10x B.[22]

Apoptosis assays

For detection of (early) apoptotic and necrotic cells, Annexin V-FITC and Propidium Iodide
(PT) were used. Cells were seeded in 6-wells plates at a density of 4.5 x 10° per well in medium
(1% FCS). After adhesion, sorafenib (0-8 uM), dasatinib (0-800 nM), canertinib (0-10 uM), or
crizotinib (0-12 uM, LC laboratories) were added. In the combination treatments, the second
inhibitor was added at the following concentrations: sorafenib 2 uM, canertinib 4 uM or crizo-
tinib 3 uM. 1h after incubation of the inhibitor(s) growth factors including VEGF-A, EGF,
HGF, FGF or PDGF (100 ng/ml, Life Technologies) were added. After 48h, cells were harvested
and stained with Annexin V-FITC and PI according to the manufacturer's protocol. Quantita-
tive analysis was conducted by flow cytometry. The data was eventually developed using
FlowJo software (Tree Star Inc).

Cell migration assays

Cell migration was analyzed using a scratch test. Cells were seeded in 6-wells plates at a density
of 4.5 x 10° per well in medium (1% FCS). Following adhesion, medium was removed and a
horizontal ‘scratch’ was made in the cell monolayer using a 200-ul pipette tip. Then again me-
dium (1% FCS) was added. Cells were incubated with sorafenib (0-1 uM) + canertinib (4 uM),
canertinib (0-2 uM) * crizotinib (3 uM) or + sorafenib (2 uM, LC laboratories). After 1h,
growth factors including EGF, HGF or FGF (100 ng/ml, Life Technologies) were added. Cell
migration into the scratched area was observed and imaged after 24h and 48h. Medium was re-
freshed directly before imaging at the later time point.

Western blot analyses

1 x 10° cells were seeded in T25 flasks in 5 ml DMEM-F12 containing 1% FCS to which after
adhesion sorafenib 8 uM, dasatinib 1 uM, canertinib 8 uM or crizotinib 9 uM (LC laboratories)
was added. In the combination treatments, the second inhibitor was added at a lower concen-
tration: sorafenib 2 uM, canertinib 4 uM or crizotinib 3 uM. After 1h, growth factors including
EGF, HGF, FGF or PDGF (all 100 ng/ml, Life Technologies) were added for another 1h. Cells
were lysed in laemmli sample buffer (Bio-Rad Laboratories). Proteins were separated by sodi-
um dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE), and transported to ni-
trocellulose membranes. First, the membranes were incubated overnight with monoclonal
primary antibodies for phospho-Erk (pErk) and total Erk (tErk), pAkt and tAkt, actin (Cell
Signaling), followed by 1 hour incubation with HRP conjugated secondary antibodies (Dako
Cytomation). Protein bands were visualized by chemiluminescence, on an x-ray film. f-actin
was used as loading control. Normalized protein expression was calculated by dividing the
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signal intensity of the target protein by signal intensity of B-actin per sample using Image Stu-
dio Lite 4.0 software. Data was presented as normalized protein expression based on three
independent experiments.

Statistical analyses

Statistical comparisons within similar experiments were made with the non-parametric Wil-
coxon signed-rank test. The Spearman correlation test was used to compute correlations be-
tween different techniques. For all statistical analyses, a two-tailed p value of less than 0.05 was
considered significant.

Results
EGF, HGF and FGF driven rescue to various RTK inhibitors

Previously, with kinome profiling we showed PDGFR, Src, ErbB family members, and HGFR
are highly activated in pediatric low grade astrocytoma and ependymoma and were found to
be potentially drugable targets in vitro.[5] However, more recent clinical trials analyzing single
targeted therapy in pediatric brain tumors show disappointing results, possibly due to tumor
escape mechanisms when specific targets are inhibited. We started with flow cytometry analy-
ses of RTK expression. Pediatric low grade astrocytoma and ependymoma cell lines showed
high percentages of cells expressing VEGFR-1, FGFR-1, EGFR, HGFR and RON (respectively
52-77%, 34-51%, 63-90%, 83-98%, 65-95%, compared to isotype controls, Fig. 2A). Their in-
hibitors (sorafenib, dasatinib, canertinib and crizotinib respectively) showed decreased tumor
cell viability (Fig. 2B), mainly a result of tumor cell apoptosis (data not shown). As expected
canertinib and crizotinib induced lower phosphorylation levels of phosphorylated EGFR and
HGEFR respectively by western blotting (data not shown).

The growth factors, VEGF, FGF, PDGF, EGF and HGF related to the abovementioned
RTKs are normally expressed during brain development. Moreover high expression levels of
these growth factors are previously found in brain tumor bulk. It is important to take into ac-
count that these results of crude tissue might have no relation with availability on cellular level
where mechanisms of bound and soluble growth factors play an essential role related to specific
stromal crosstalk. We assessed growth factor production by our cultured tumor cells them-
selves and showed in Fig. 3A that the overall release by tumor cells was low except for FGF.
Therefore, we decided to continue these experiments by using consequent identical levels of
growth factors as has been published previously.[24] Addition of different growth factors to
the cell cultures without inhibitor showed that EGF, HGF and FGF increased cell numbers up
to 2.5 times in Res-259 cells (Fig. 3B). Interestingly, inhibition by sorafenib, canertinib and cri-
zotinib could be rescued partially, and even completely in dasatinib treated tumor cells (Fig. 3C
and D). Especially EGF, HGF and FGF showed a strong rescue potential. Expression levels of
the RTKSs were not correlated with growth-factor-driven rescue in terms of increase in LC50.

Growth factors overcome RTK-inhibited-phosphorylation of downstream
targets

We continued by assessing growth-factor-driven rescue on RTK-inhibited-phosphorylation of
downstream targets to validate the previous rescue results on cell viability level. Analyses of the
PI3K/Akt and MAPK/Erk downstream pathways, as the most commonly used survival signal-
ing pathways by RTKs (Fig. 1), indeed underscored EGF- and HGF-driven rescue during sora-
fenib treatment which resulted in phosphorylation of Akt and Erk in all cell lines (UW-467
and Res-196 are shown as examples in Fig. 4A). Furthermore, complete rescue of EGF and
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flow cytometry analyses in pediatric low grade astrocytoma (Res-186, Res-259, UW-467) and ependymoma (Res-196) cell lines. B, Cell viability assays

demonstrating the mean effect + SD of sorafenib, dasatinib, canertinib and crizotinib on pediatric low grade astrocytoma (Res-186, Res-259, UW-467) and
ependymoma (Res-196) cell lines after 48h.

doi:10.1371/journal.pone.0122555.9002
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did affect the LC50 during RTK inhibition, this was marked as ‘partial rescue’ (yellow/orange squares). Complete rescue was noted as A > 10x B (red
squares). As an internal negative control no growth-factor-driven rescue was found of the particular RTK ligand of which the receptor is inhibited. D, Cell
viability assays demonstrating various effects of growth factors on TKI-treated cells (mean + SD), with a corresponding colored bar indicating the level of
growth-factor-driven rescue.

doi:10.1371/journal.pone.0122555.g003

HGF during dasatinib treatment resulted in significant Akt and Erk phosphorylation in Res-
186 and Res-259 cells (Fig. 4B, UW-467 not shown). HGF-driven rescue, positively effecting
cell viability during canertinib, was also confirmed with overcoming the RTK-inhibited-phos-
phorylation of Akt (Fig. 4C). As internal negative control no significant Akt or Erk
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Fig 4. Growth factors overcome RTK-inhibited-phosphorylation of downstream targets. Examples of immunoblots showing effects of growth factors
(100 ng/ml) on Akt and Erk phosphorylation (p) after sorafenib (A), dasatinib (B), canertinib (C), crizotinib (D) in pediatric low grade astrocytoma and
ependymoma cells (2h). Controls represent the specific cell lines treated with DMSO. Growth-factor-driven rescue on cell viability as given in Fig. 3C and D is
indicated underneath the blots: purple squares, no rescue; yellow/orange squares, partial rescue; red squares, complete rescue. Protein expression was
normalized to -actin as loading control and derived from three independent experiments of which the mean (+ SEM) was calculated. EGF and HGF-driven
rescue resulted in significantly higher protein expression of Akt (p = 0.028) and Erk (p = 0.043) during sorafenib in both UW-467 and Res-196 cells and during
dasatinib in the low grade astrocytoma cell lines (p = 0.028 and p = 0.043). Significantly higher Akt phosphorylation was found after HGF addition during
canertinib in Res-186, Res-259 and Res-196 cells (p = 0.043) of which Res-186 is shown as an example. *Discrepancies between growth-factor-driven
rescue on cell viability level and downstream phosphorylation status.

doi:10.1371/journal.pone.0122555.9004
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phosphorylation was found with FGF or PDGF during sorafenib, EGF during canertinib, and
HGF during crizotinib treatment (Fig. 4A, C and D).

Discrepancies between growth-factor-driven rescue on cell viability level
and downstream phosphorylation status

Notably, is the apparent discrepancy of HGF-driven phosphorylation by Akt and Erk (Fig. 5)
without increased cell viability during canertinib in Res-259 cells (Fig. 3C). There was HGF-
driven rescue observed on cell viability level however at a lower dose than the LC50 and there-
fore not found in the growth-factor-driven rescue heatmap of Fig. 3C. Also, in dasatinib treated
Res-186 cells, HGF was unable to rescue cells at cell viability level despite the expression of the
RTK and observed phosphorylation of Akt and Erk. This could possibly be explained by the
various downstream targets of dasatinib with the consequence that activation of Akt and Erk is
insufficient for cell viability rescue. Vice versa, FGF-driven rescue was not confirmed with Akt
or Erk phosphorylation possibly due to involvement of other downstream pathways (Fig. 1),
that were not evaluated in this study.

Combined RTK treatment can overcome growth-factor-driven rescue

Interestingly, EGF-driven rescue during sorafenib and HGF- and FGF-driven rescue during
canertinib could be overcome by combining specific TK inhibitors. As expected, combined RTK
treatment in absence of added growth factors resulted in less viable tumor cells than in presence
of added growth factors (data not shown). By addition of crizotinib to canertinib treatment,
HGF-driven rescue could be overcome and tumor cell survival was disrupted. Moreover, signifi-
cantly less phosphorylation of Akt (p = 0.028) and Erk (p = 0.046) was observed after combina-
tion treatment in Res-196 and Res-259 cells (Fig. 5). Furthermore decrease of apoptotic cells
after HGF addition to canertinib 2 uM in Res-259 cells and after EGF addition to sorafenib 1
uM in Res-196 cells, could also be exceeded by crizotinib or canertinib respectively (61,5% and
36.9% more apoptotic tumor cells). In turn, sorafenib can overcome FGF-driven rescue during
canertinib treatment (Fig. 5). Actually as rescue by different growth factors was found during
sorafenib, including both EGF and HGF, more than one RTK inhibitor would have to be added.
Not only on cell survival but also on cell migration EGF-, HGF- and FGF-driven rescue was
found. In Fig. 6 the results of canertinib combined with HGF and crizotinib are shown.

In addition, to understand more about this shown growth factor rescue we analyzed growth
factor production differences in the absence or presence of sorafenib, canertinib or crizotinib
and can conclude that the growth factor production of cultured tumor cells does not differ
upon the addition of one of these mentioned RTK inhibitors (S1 Fig.). Moreover, we investigat-
ed the expression of the previously described RTKs in the tumor cells treated with or without
sorafenib, canertinib or crizotinib and demonstrated that no differences were observed in the
percentages of cells expressing RTKs upon inhibitor addition compared to no inhibitor (Res-
259 is shown as example in S2 Fig.).

Discussion

This study showed growth-factor-driven rescue to various RTK inhibitors in pediatric low
grade astrocytoma and ependymoma cell lines. Previously, we described several potential inter-
esting therapeutic targets upon kinome profiling in vitro e.g. VEGFR-2, PDGFRS, Src, ErbB
family members, and HGFR/cMet.[5] In the present study drugs such as sorafenib, dasatinib,
canertinib and crizotinib respectively were used to inhibit these targets. In vitro cell viability
decreased upon the single use of one of these inhibitors as expected. However, in normal devel-
oping brain and therefore, also in the brain tumor (microenvironment) several growth factors
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Fig 5. Combined RTK treatment can overcome growth-factor-driven rescue. Cell viability assays demonstrating additional effects of combination
treatment in pediatric low grade astrocytoma (Res-259) and ependymoma (Res-196) compared with single treatment (mean + SD, 48h). Immunoblots
showing effect of single RTK inhibition (8 uM), the rescue effect of growth factors (100 ng/ml) and the ability of the second inhibitor (canertinib 4 uM, crizotinib
3 uM, sorafenib 2 uM) to overcome this growth-factor-driven rescue on Akt and Erk phosphorylation (p) in pediatric low grade astrocytoma and ependymoma
cells (2h). Protein expression was normalized to 3-actin as loading control and derived from three independent experiments of which the mean (+ SEM) was
calculated. The ability of crizotinib to overcome HGF-driven rescue during canertinib treatment reached statistical significance on Akt and Erk
phosphorylation (p = 0.028 and p = 0.046 respectively).

doi:10.1371/journal.pone.0122555.9005

PLOS ONE | DOI:10.1371/journal.pone.0122555 March 23, 2015

11/16



" ®
@ ' PLOS | ONE Pediatric Brain Tumor Rescue to RTK Inhibitors

canertinib canertinib + HGF canertinib + HGF + crizotinib

F%)

24h

Fig 6. Tumor cell migration. Cell monolayers were scratched with a pipette tip to produce a clear cell-free area into which cells at the periphery could
migrate. Micrographs showing migrated Res-259 cells treated with DMSO (control), the effect on tumor cell migration of HGF (100 ng/ml), canertinib (2 uM),
HGF addition to canertinib and the combination treatment including canertinib and crizotinib (3 uM) after 24h (upper panels) and 48h (lower panels).

doi:10.1371/journal.pone.0122555.9006

including VEGF, EGF, HGF, FGF and PDGF, are commonly expressed.[31-38] Interestingly,
the growth factor receptors are found often to be present on low grade astrocytoma and
ependymoma cells.

Therefore, the present study investigated the rescue of ligand exposure to these RTK inhibi-
tors. EGF and HGF showed to be effective rescue inducing growth factors in these tumor es-
cape mechanisms acting via their RTKs resulting in increased cell survival and downstream
signaling. Interestingly, growth-factor-driven rescue measured during RTK inhibition, was
even more pronounced than the results of growth factors on cell survival in the absence of an
inhibitor. This phenomenon might be due to a stronger response in a severe stress situation
compared to more optimal culture settings. In vitro no changes in growth factor release or
RTK expression of the cultured tumor cells was found upon inhibitor addition. Combination
treatment showed enhanced decrease in viable tumor cells although a growth factor was pres-
ent. In ependymoma cells the combination of canertinib and crizotinib showed the best poten-
tial strategy, whereas in low grade astrocytoma cells the combination of both canertinib and
crizotinib or canertinib and sorafenib demonstrated the best results. These findings highlight
the potential growth-factor-induced crosstalk within RTKs that are co-expressed on these pedi-
atric low grade astrocytoma and ependymoma cells.

This is the first study to describe a RTK profile in relation to ligand exposure in low grade
astrocytoma. In pediatric ependymoma a positive correlation between higher co-expression of
ErbB2 and ErbB4 and tumor proliferative activity has been described.[39] Furthermore, li-
gand-dependent activation of ErbB receptor-signaling in cultured ependymoma cells resulted
in Akt phosphorylation and cellular proliferation that was significantly blocked in a dose-de-
pendent manner using WAY-177820, an inhibitor of ErbB2 tyrosine kinase activity.[39] The
present study showed especially EGFR expression compared with the other ErbB family mem-
bers. Moreover, EGF was shown to be a potential ligand to overcome resistance during other
RTK inhibitors in both low grade astrocytoma and ependymoma.

A limitation of the present study is that a certain amount of growth factor was used whereas
the exact amount present for interference with RTKs on a cellular level, is still unknown. We
are not aware of a study measuring growth factor’s exact availability on the cellular level and
therefore we used a dose as used previously by others.[22,24] By doing so, we were able to
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study the interference of environmental growth factors on tumor cell survival during
RTK inhibition.

The rescue by growth factors is in line with previous reports in other tumor types. Particu-
larly, HGF/Met-induced resistance to RTK inhibitors is observed in diverse tumor types, in-
cluding adult glioblastoma.[40] Further, PDGF upregulation in reaction to VEGFR inhibition
and increased FGF/FGFR expression during BRAF or EGFR inhibition may potentially con-
tribute to tumor resistance.[41-44] Recently, tumor-cell-secreted VEGF has been demonstrat-
ed as one of the growth-factor-driven rescue mechanisms through activation of VEGFR-2 and
the PI3K/Akt pathway.[45] As VEGFR-2 expression is in pediatric low grade astrocytoma
mainly limited to endothelial cells,[46] we expect that VEGF will be able to enhance tumor
growth only indirectly by inducing angiogenesis. This study underscores the previous result be-
cause the cell viability did not differ.

Until now, the first results of single RTK targeted therapy are disappointing in various
tumor types due to tumor resistance mechanisms. For pediatric brain tumors, especially low
grade astrocytoma and ependymoma only limited studies have been published.[16] ErbB TK
inhibitors combined with radiotherapy failed to show increase in progression free survival or
overall survival in malignant pediatric brain tumors.[10] Canertinib, inhibiting all four ErbB
family members, has not yet been investigated in (pre)clinical pediatric brain tumor studies.
Currently, sorafenib is analyzed in pediatric low grade astrocytoma. Although this could be in-
teresting as alterations affecting the BRAF oncogene represent the main genetic defects in pilo-
cytic astrocytoma (WHO grade I),[47,48] we showed growth-factor-driven rescue during
sorafenib in pilocytic astrocytoma cells, suggesting less potential for single application of this
RTK inhibitor. Crizotinib has been introduced recently in pediatric patients with refractory
solid tumors, showing to be well tolerated.[15] A combination of crizotinib and dasatinib is
still under investigation in a pediatric brain tumor clinical trial.

As EGFR and HGFR were highly activated in pediatric brain tumors[5] and subsequently
high percentages of pediatric brain tumor cells expressed these RTKs, these findings could pro-
vide a rational explanation of the limited efficacy of single targeted treatment in clinical trials.
Moreover the successful combination treatments to overcome these tumor escape mechanisms
support the importance for multi targeted therapy in low grade astrocytoma and ependymoma.
Therefore, it is also crucial to take into account the doses that can be achieved without causing
high toxicity and the ability of the RTK inhibitors to cross the blood brain barrier, although the
presence of an intact or leaky blood brain barrier in children with pediatric brain tumors is still
under debate. Coadministration of elacridar could substantially increase dasatinib and crizoti-
nib oral availability and delivery to the brain.[49,50] More interestingly is the finding that
canertinib could also increase brain accumulation of another RTK inhibitor in vivo.[51] Our
study highlights the extensive importance of environmentally present growth factors in devel-
oping escape mechanisms towards RTK inhibitors. It is of great importance to anticipate upon
these results for the design of new therapeutic trials with RTK inhibitors in pediatric low grade
astrocytomas and ependymomas.

Supporting Information

S1 Fig. Growth factor release in absence or presence of a RTK inhibitor. Human growth fac-
tor antibody arrays showing no differences in growth factor release by pediatric low grade as-
trocytoma (Res-259) and ependymoma cells (Res-196) in absence (DMSO) or presence of a
RTK inhibitor (sorafenib, canertinib, crizotinib, LC50, 24h). Bars represent mean signal inten-
sity minus background of the measured spot on the array (+ SD).

(TTF)
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S2 Fig. RTK expression in absence or presence of a RTK inhibitor. Scatter plots showing no
differences in percentages of pediatric low grade astrocytoma cells (Res-259) expressing RTKs
without (DMSO) or with inhibitor treatment (sorafenib, canertinib, crizotinib, LC50, 24h)
using flow cytometry analyses.

(TTF)
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