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Abstract

In the McGurk effect, incongruent auditory and visual syllables are perceived as a third, 

completely different syllable. This striking illusion has become a popular assay of multisensory 

integration for individuals and clinical populations. However, there is enormous variability in how 

often the illusion is evoked by different stimuli and how often the illusion is perceived by different 

individuals. Most studies of the McGurk effect have used only one stimulus, making it impossible 

to separate stimulus and individual differences. We created a probabilistic model to separately 

estimate stimulus and individual differences in behavioral data from 165 individuals viewing up to 

14 different McGurk stimuli. The noisy encoding of disparity (NED) model characterizes stimuli 

by their audiovisual disparity and characterizes individuals by how noisily they encode the 

stimulus disparity and by their disparity threshold for perceiving the illusion. The model 

accurately described perception of the McGurk effect in our sample, suggesting that differences 

between individuals are stable across stimulus differences. The most important benefit of the NED 

model is that it provides a method to compare multisensory integration across individuals and 

groups without the confound of stimulus differences. An added benefit is the ability to predict 

frequency of the McGurk effect for stimuli never before seen by an individual.
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When we watch someone speaking, we combine visual speech information from the talker’s 

mouth with the auditory speech information from the talker’s voice to increase recognition 

speed and accuracy. When the auditory and visual speech are incongruent, combining the 

two information sources can lead to a fused percept distinct from both the auditory and 

visual speech. This illusion, termed the McGurk effect, has been widely used to understand 

temporal constraints on audiovisual binding (Munhall, Gribble, Sacco, & Ward, 1996; 

Stevenson, Zemtsov, & Wallace, 2012) and to characterize differences in multisensory 

integration across different individuals (Green, Kuhl, Meltzoff, & Stevens, 1991; 

MacDonald & McGurk, 1978; Nath & Beauchamp, 2012; Sekiyama, 1997), different ages in 

the lifespan (Tremblay et al., 2007), and different clinical populations (Irwin, Tornatore, 

Brancazio, & Whalen, 2011; Mongillo et al., 2008; Woynaroski et al., 2013).
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Using the McGurk effect to measure multisensory integration is advantageous because it can 

be measured simply: a few repetitions of a simple language stimulus. However, the McGurk 

effect is not homogenous, and shows large differences across both different stimuli and 

different individuals. In the original report, McGurk and MacDonald (1976) found that 98% 

of adults perceived the illusion for one stimulus (reporting the fused “da” percept when 

auditory speech “ba” was dubbed onto visual speech “ga”) while only 81% perceived the 

illusion with a different stimulus (reporting the fused “ta” percept when an auditory “pa” 

was dubbed onto a visual “ka”). Across individuals, some participants almost always 

perceive the McGurk effect while others rarely do (Nath & Beauchamp, 2012; Gentiulcci & 

Cattaneo, 2005; Stevenson, Zemtsov, & Wallace, 2012).

We created a model of the McGurk effect to provide a rational description of these inter-

stimulus and inter-individual differences. If the same individual perceives different stimuli 

differently, we assume that this reflects stimulus differences; if different individuals 

perceive the same stimulus differently, we assume that this reflect individual differences.

Recent evidence suggests that individual differences in McGurk perception are linked to 

differences in brain activity in the superior temporal sulcus (STS). Nath and Beauchamp 

(2012) used blood-oxygen level dependent functional magnetic resonance imaging (BOLD 

fMRI) to show that the response amplitude in the left superior temporal sulcus (STS) was 

50% higher for individuals that frequently perceived the McGurk effect, compared to 

individuals that only infrequently perceived the illusion. Beauchamp, Nath, and Pasalar 

(2010) showed that interrupting activity in the left STS using transcranial magnetic 

stimulation reduced illusion perception by as much as 50%, while Keil, Muller, Ihssen, and 

Weisz (2012) showed that the ongoing activity in STS regions just prior to presentation of 

an incongruent stimulus predicted perception of the McGurk effect. Therefore, another goal 

of the model is to use subject-specific parameters that reflect our current understanding of 

the neural basis of multisensory integration and that have the potential to be relatable to 

neuroimaging measures of human brain function.

Studies of neural processing estimate a measure of neural activity that contains a single 

parameter, such as the neuronal firing rate in single neuron studies or the amplitude of 

activity in BOLD fMRI studies. To allow for comparison with brain activity measures, our 

model contains a single parameter describing each individual’s propensity to integrate 

auditory and visual information.

Studies of neural processing may also estimate a measure of neural variability. Even when 

the same stimulus is presented repeatedly, the neurons encoding it show variability in their 

firing patterns (Mainen & Sejnowski, 1995). This variability represents a fundamental 

limitation on the representational precision of any stimulus. To account for this noise, the 

brain is thought to use Bayesian inference: given a noisy sensory observation, the brain 

infers the most likely state of the world (Angelaki, Gu, & DeAngelis, 2009; Knill & Pouget, 

2004; Ma, Zhou, Ross, Foxe, & Parra, 2009). To aid in comparison with studies of brain 

activity (which typically report a single measure of neural variability) our model estimates a 

single sensory noise parameter for each participant.
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Different stimuli are differently able to elicit the McGurk effect (Jiang & Bernstein, 2011; 

McGurk & MacDonald, 1976). Because the stimuli used in the original McGurk and 

MacDonald study are not available, different studies commonly use different stimuli. 

Comparing the raw proportion of McGurk perception between individuals tested with 

different stimuli that likely differ in their efficacy is problematic. The NED model 

characterizes each stimulus with a single parameter termed audiovisual disparity, which 

describes the difference between the auditory and visual components of the stimulus and is 

inversely related to its ability to elicit the illusion. This gives the model the ability to 

describe individuals tested with different stimuli, even if the physical properties of the 

stimulus are unknown.

The NED model’s use of three simple parameters—sensory noise, disparity threshold, and 

stimulus disparity—highlights the differences between it and other models of the McGurk 

illusion, such as the seminal model of auditory and visual speech known as the fuzzy logical 

model of perception (FLMP; Massaro, 1998). The FLMP model creates distinct parameters 

for the auditory and visual component for each stimulus for each participant, resulting in a 

very large number of parameters (thirteen times more parameters than the NED model for 

the data described in this paper). Because each FLMP parameter represents the interaction 

between a particular stimulus and a particular individual, there is no way to use the 

parameters to separately examine individual differences and differences between stimuli.

We tested the NED model against real data and measured whether independent stimulus and 

participant parameters could explain a significant portion of the variance in McGurk 

perception. We demonstrate the utility of the model for group comparisons using published 

data on a clinical population, individuals with autism spectrum disorder.

Methods

Three types of model parameters

The noisy encoding of disparity (NED) model of the McGurk Illusion contains three types 

of parameters. The first parameter, the disparity of each stimulus (D), captures the likelihood 

that the auditory and visual components of the syllable produce the McGurk effect, averaged 

across all presentations of the stimulus to all participants.

The second parameter describes the sensory noise in each participant (σ). When an 

individual perceives multisensory speech, the auditory and visual features are measured with 

noise (Bejjanki, Clayards, Knill, & Aslin, 2011; Ma et al., 2009), resulting in variability in 

the measured stimulus disparity (Figure 1A). Across many trials, the distribution of 

measured strengths will be Gaussian in shape, centered at the true stimulus disparity, Di (i 

indexes the stimuli), with standard deviation equal to the individual sensory noise, σj (j 

indexes the participants). For any participant, the amount of sensory noise is assumed to be 

constant across stimuli.

The third parameter, the disparity threshold (T), describes each participant’s prior 

probability for fusing the auditory and visual components of the syllable by a fixed threshold 

placed along the stimulus disparity axis (Figure 1B). If the measured disparity is below this 
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threshold, the auditory and visual speech cues are fused, and the individual reports a fusion 

percept. To predict proportions of fusion perception, we calculate the probability that the 

measured disparity for a given stimulus is below a participant’s threshold (Tj; Figure 1C):

where N is the Normal (Gaussian) distribution with mean Di and standard deviation σj. The 

invariance of the disparity threshold and sensory noise across stimuli allows the model to 

predict a participant’s fusion proportion for any stimulus with known strength, even if the 

participant has not seen the stimulus. Because the stimulus disparities are fixed across 

participants, they cannot fit participant variability; stimulus disparities and participant 

disparity thresholds are independent.

Model fitting—All model fitting was done in R (R Core Team, 2012); source code for the 

NED model is freely available at http://openwetware.org/wiki/Beauchamp:NED. Fits were 

obtained by minimizing the squared error between the model predictions and the behavioral 

data (proportion of fusion responses for each stimulus across all trials). This is similar to 

fitting by maximizing the log likelihood of the model, except in the cases in which the 

model predicts a fusion proportion of 0.0 or 1.0; in which case the log likelihood may go to 

negative infinity, but the squared error remains finite. We restrict the range of the 

parameters so that the participant parameters do not go to infinity when participants have 0.0 

or 1.0 mean fusion proportion (stimulus disparities and individual thresholds: 0 to 2; sensory 

noise: 0 to 1). If parameters were allowed to go to infinity, it would not change the overall 

model fit but would make it impossible to calculate the mean or standard deviation of 

parameters, a necessity for inter-participant or inter-group comparisons.

The values for all three parameter types have the same units (disparity), but the scale of 

these units is arbitrary. The scale was fixed during the fitting process by setting initial values 

for the stimulus disparities. For each stimulus we exponentiated (base e) 1 minus the mean 

fusion proportion for each stimulus, and then subtracted 1. This transform ensures non-

negative disparity values, mapping 1.0 fusion proportions to 0 disparity and 0.0 fusion 

proportions to 1.72. Next, the participant parameters were estimated, followed by fitting 

each of the stimulus disparities. This was followed by 9 cycles of fitting the participant 

parameters and then the stimulus parameters to converge on the best-fitting parameters. To 

guard against fitting to local optima, we created 48 initial guesses for the initial vector of 

stimulus disparities using a sample from a Gaussian distribution with standard deviation 

0.05 and mean equal to the transformed stimulus fusion proportions.

Parameter testing and generalization—In order to estimate the importance of the 

three types of parameters (D, T, and σ) we calculated the fit error between the full NED 

model and three different model variants, each of which held one of the parameter types 

fixed. Additionally, a cross-validation approach was used to test the generalization of the 

individual-level parameters to untrained stimuli. During cross validation, each model was fit 

to a subset of the full dataset (the training set) and the fitted models were used to predict the 

fusion proportion on the remaining data (the testing set). The training set excluded a single 
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randomly-selected stimulus from each participant in the full dataset and the testing set was 

the fusion proportion for this held-out stimulus. We calculated the error between the model’s 

prediction for the held-out fusion proportion and the overall mean fusion proportion for each 

participant. To estimate average performance, we completed 25 cross-validation runs.

Data description—We used data from a large-scale laboratory study of college-aged 

adults that measured McGurk illusion perception (Basu Mallick, Magnotti, & Beauchamp, 

submitted). Participants completed 10 trials with each McGurk stimulus, randomly 

intermixed with trials containing congruent auditory-visual speech and incongruent (but 

non-McGurk eliciting) auditory-visual speech. N = 66 participants were tested with 14 

McGurk stimuli, N = 77 were tested with 9 McGurk stimuli and N = 22 were tested with 10 

McGurk stimuli. To fit the model, we treated the untested stimuli for each participant as 

missing data.

Results

There was a great deal of variability in the behavioral data, providing a challenge to a model 

that must use identical stimulus parameters for all individuals and identical individual 

parameters for all stimuli. As shown in Figure 2A, there was a large range of fusion 

proportions for different stimuli, from 0.17 to 0.81. Within each single stimulus, there was a 

high degree of variability across individuals, with McGurk perception varying 40% from the 

mean on average (mean SD = 0.39). This variability across participants is illustrated in 

Figure 2B, showing that participants’ mean fusion proportions across stimuli ranged from 

the lowest possible value (0.0, no fusions) to the highest possible value (1.0, 100% fusion). 

Despite these challenges, the model provided an overall good fit to the behavioral data 

(average root mean square error across stimuli, RMSE = 0.026; across participants, RMSE = 

0.032).

The NED model makes two related but distinct claims: that individual participant effects are 

consistent across stimuli, and that stimulus effects are consistent across participants. We first 

examined if participant parameters are consistent across stimuli i.e. if participant 1 has more 

fusion than participant 2 for stimulus A, then participant 1 should also have more fusion 

than participant 2 for stimulus B. We calculated each participant’s rank (out of 165) for each 

stimulus and then compared it to that participant’s overall rank (averaged across stimuli). 

There was a significant positive correlation between the participant ranks at each stimulus 

and across all stimuli (mean Spearman correlation 0.65 ± 0.04 SEM; bootstrap mean = 0.26; 

bootstrap p-value = 10−137). Next, we examined the assumption that stimulus effects are 

consistent across participants i.e. if stimulus A is weaker than stimulus B in participant 1, it 

should also be weaker in participant 2. We calculated each stimulus’s rank (out of 14) for 

each participant and then compared it to that stimulus’s overall rank (averaged across 

participants). There was a significant positive correlation between the stimulus ranks for 

each participant and across all participants (mean Spearman correlation 0.64 ± 0.02; 

bootstrap mean = 0.07; bootstrap p-value = 10−84).
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Parameter assessment

To assess the importance of the three parameters to the observed fit, we created three model 

variants, each holding a single parameter type fixed at single value (akin to testing full and 

reduced regression models). We calculated the percent reduction in fit error between the full 

NED model and the model variant with the variable held fixed to measure the importance of 

that variable (Figure 2C). Individual stimulus disparities were the most important (47% 

reduction), then individual disparity thresholds (46% error reduction), and finally individual 

sensory noise (25% reduction). Although sensory noise was less important than the other 

parameters for reducing prediction error, it was critical for realistic model predictions. 

Without the sensory noise parameter, the model would predict all-or-none fusion perception 

(0.0 or 1.0) for a given individual viewing a particular stimulus, but only 12 out of 165 

participants (7%) demonstrated all-or-none responding across stimuli. Paired t-tests 

confirmed that fixing any of the parameter types resulted in a significantly more fit error [all 

ts(164) > 13.6, ps < 10−15] across participants.

The sensory noise parameter of the model does not correspond directly to the noise along a 

single physical dimension, but rather represents the combination of noise sources from 

multiple independent sources (e.g., auditory encoding, visual encoding, varying attention). 

Figure 3 shows that the sensory noise parameter is related to the variability (mean binomial 

standard deviation across stimuli) in fusion perception (Spearman’s r = 0.59, p = 10−15), but 

not to the average fusion proportion (Spearman’s r = 0.11, p = 0.15). This dissociation 

suggests that individuals may differ not only on disparity threshold (related to mean fusion 

proportion) but also in the variability of their fusion proportion.

Predicting novel stimuli

One important advantage of the NED model is that it allows prediction of unseen stimuli; 

this can be important in behavioral training paradigms in which generalization is tested with 

new stimuli. The model was fit to the behavioral data with a random stimulus left out for 

each participant. Then, these fitted parameters were used to predict the fusion proportion of 

the left-out stimulus. Across participants the model explained 53% of the variability in 

fusion scores on the held-out stimuli (mean R2 = 0.53 ± 0.01) and individual predictions for 

novel stimuli were within 20% on average (mean absolute error = 0.19 ± 0.01).

Fitted parameter values

Next, we examined the three types of parameters used by the NED model. Although the 

absolute value of the parameters is not important because the units are arbitrary, their 

relative values across stimuli and participants are of interest for comparing individuals or 

groups. Stimulus disparity ranged from 0.26 for the strongest stimulus to 1.25 for the 

weakest stimulus with mean of 0.81. The disparity threshold parameter ranged from 0.0 for 

participants who never perceived the illusion to 2.0 for participants who always perceived 

the illusion, with a mean disparity threshold across participants of 0.72, below the mean 

stimulus disparity. The sensory noise parameter values ranged from 0.001 for participants 

with the lowest sensory noise to 1.0 for participants with the highest sensory noise. The 

distribution of sensory noise across participants was positively skewed (median = 0.12; 

mean = 0.23).
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Model application to group data

There are a number of conflicting results in the McGurk effect literature. For instance, 

several groups have reported less McGurk perception in individuals with autism spectrum 

disorder (ASD) compared to matched controls (Bebko, Schroeder, & Weiss, 2014; Irwin et 

al., 2011; Mongillo et al., 2008; Stevenson, Siemann, Schneider, et al., 2014; Stevenson, 

Siemann, Woynaroski, et al., 2014), while others have reported similar or more McGurk 

perception in individuals with ASD (Saalasti et al., 2012; Taylor, Isaac, & Milne, 2010; 

Woynaroski et al., 2013). Differences in experimental methods or statistical power might 

change the reported strength of an effect, but different directions of an effect are much more 

difficult to explain.

The NED model can explain group differences using the disparity threshold or sensory noise 

parameters with different results. A group difference in disparity threshold will result in 

changes in the proportion of McGurk perception that are in the same direction for any 

stimulus. A group difference in sensory noise will cause different effects for different 

stimuli. For stimuli with low disparity, higher noise will cause less McGurk perception (as 

noise drives the perceived disparity above threshold on some trials) while for stimuli with 

high disparity, higher noise will cause more McGurk perception (as noise drives the 

perceived disparity below threshold on some trials).

To apply the model, we selected two studies with seemingly contradictory results. Irwin et 

al. (2011) reported lower fusion proportions for ASD than TD (0.56 vs. 0.88, p = 0.01) while 

Woynaroski et al. (2013) reported higher fusion proportions for ASD and TD participants 

(0.38 vs. 0.28, p = 0.37). We assumed that both studies were representative of the larger 

ASD and typically developing (TD) populations and created two hypothetical participants 

(one ASD and one TD), assigning them each fusion proportions equal to the mean of their 

group.

Fit to these data (Figure 4), the model estimated similar disparity thresholds for the ASD and 

TD participants (difference of 0.1) but much larger sensory noise for the ASD participant (4-

fold greater). For the stimulus parameter, the model estimated a higher disparity value for 

the Woynaroski et al. stimulus (Figure 4A) than for the Irwin et al. stimulus (Figure 4B). 

The Woynaroski et al. stimulus is above threshold for both TD and ASD, but because the 

ASD participant has high sensory noise, many of the perceived disparities fall below 

threshold, resulting in a higher fusion proportion for ASD. The Irwin et al. stimulus is below 

threshold for both participants, but because of the ASD participant’s high sensory noise, 

many of the perceived disparities fall above threshold, resulting in a lower fusion proportion.

Discussion

We describe the noisy encoding of disparity (NED) model of McGurk fusion perception. 

The NED model captures both within-individual and between-individual variability using 

three types of parameters: two for each participant (disparity threshold and sensory noise) 

and one for each stimulus (disparity). The model was able to predict fusion perception on 

novel stimuli (not fit by the model for that individual) within 20% of their actual value.
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The two key assumptions of the model are that individuals have characteristics (captured by 

the disparity threshold and sensory noise model parameters) that are independent of the 

particular stimulus they are viewing, and that McGurk stimuli have intrinsic properties that 

are independent of the individual viewing them (captured by the disparity model parameter). 

These assumptions allow NED to predict fusion perception for stimuli that an individual has 

never seen. For example, it predicts that a participant with a high threshold will be likely to 

perceive the McGurk effect when shown a stimulus with low disparity.

Explanation of model parameters

The parameters used by the NED model are not response probabilities. Instead, they are the 

product of an analysis of different factors that may contribute to McGurk perception. The 

first participant parameter, amount of sensory noise, explains a notable aspect of the 

McGurk illusion: individuals do not always report the same percept when presented with the 

same stimulus. We account for this phenomenon using sensory noise because it is well 

recognized that the brain encodes external stimuli in a noisy fashion (Angelaki et al., 2009; 

Knill & Pouget, 2004; Seilheimer, Rosenberg, & Angelaki, 2014). For a stimulus that 

evokes average illusion perception, large values of sensory noise correspond to highly 

variable McGurk perception across trials. The second participant parameter, the disparity 

threshold, explains another notable aspect of the illusion: that some individuals rarely 

perceive the illusion while others often perceive it. The stimulus disparity parameter is 

necessary to explain the observation that some stimuli rarely evoke the illusion while others 

often evoke it.

By separately modeling inter-participant differences and inter-stimulus differences, NED 

can explain seemingly contradictory results in the literature on McGurk perception in 

individuals with ASD. The model fits suggest that ASD individuals have greater sensory 

noise, resulting in less McGurk perception when tested with stimuli with low disparity and 

more McGurk perception when tested with stimuli with high disparity. This suggestion is 

supported by evidence from recent functional imaging and anatomical studies (Dinstein et 

al., 2012; Geschwind & Levitt, 2007).

Utility of a simplified model of the McGurk Effect

One motivation for developing a simplified model of the McGurk effect is that existing 

models do not allow generalization (i.e. predicting what an individual will perceive before 

they have ever seen a given stimulus). To allow this, we collapse all stimulus differences 

into a single parameter, disparity. This contrasts with physical, bottom-up approaches (Jiang 

& Bernstein, 2011; Omata & Mogi, 2008) that attempt to characterize the many different 

physical dimensions across which stimuli differ. In principle, it should be possible to relate 

our single disparity parameter to the audiovisual properties of each stimulus.

The simplification of the McGurk illusion to a single dimension allows us to relate illusion 

perception across stimuli with diverse properties (e.g., syllables used, number of syllables in 

each stimulus, different talkers). Parameter values will reflect individual differences along 

this new dimension, rather than being tied to a physical measurement of the auditory or 

visual stimulus. In this way, the procedure is akin to other dimension-reduction techniques 
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(e.g., principal components analysis) that project high-dimensional data onto a lower-

dimensional space.

It is interesting to consider how common stimulus manipulations, like adding stimulus noise, 

would be handled by the NED model. Intuitively, it might seem that adding sensory noise to 

a multisensory stimulus should not change the perceived disparity, and thus the model 

parameters would remain unchanged. However, Bayes-optimal integration models predict 

that increasing noise actually increases individuals’ perception of a common cause 

(Magnotti, Ma, & Beauchamp, 2013; Shams & Beierholm, 2010), as well as changing the 

weight assigned to each cue. The model would therefore assign a different disparity rating to 

clear and noisy versions of a given stimulus. Because the model does not consider the cue 

weighting that occurs during optimal integration directly, it does not address the differential 

effect of adding visual vs. auditory noise: adding auditory noise increases McGurk illusion 

(by lowering the relative weight to the auditory cue), adding visual noise decreases McGurk 

illusion (by increasing the relative weight to the auditory cue). A two-step model that 

incorporates both causal inference and optimal integration is necessary to capture these 

effects (Kording et al., 2007; Nahorna, Berthommier, & Schwartz, 2012). For typical 

McGurk studies that neither collect unisensory recognition data nor manipulate sensory 

reliability, however, such a model could not be fit.

Comparison with other models

The most popular existing models of multisensory speech perception, the fuzzy logical 

model of perception (FLMP; Massaro, 1998) and its variants (Schwartz, 2010), fit each 

individual’s response to each stimulus independently. In addition to eliminating the ability to 

predict responses to new stimuli, the matrix of generated parameters lacks a straightforward 

interpretation. For example, with the current dataset, a comparable FLMP-type model would 

require at least 28 parameters per participant (one for the auditory and visual weights for 

each stimulus) resulting in a total of 4620 parameters. NED requires thirteen-fold fewer 

parameters (344). To fit this large number of parameters, FLMP-type models require 

collecting unisensory data for each participant/stimulus pair. For the current dataset with 14 

McGurk stimuli, FLMP-type models would require collecting data from an additional 28 

conditions, tripling data acquisition time, a potentially insurmountable problem for certain 

populations (e.g., young children, clinical populations).

The two subject parameters in the NED model are immediately relatable to studies of the 

neural underpinnings of the McGurk effect. For instance, Nath and Beauchamp (2012) 

showed that individuals with lower McGurk fusion proportions had correspondingly lower 

activity in the left STS, an area critical for multisensory integration during speech 

perception. The response amplitude from this region could provide a neural correlate of the 

disparity threshold parameter in our model. Using neuroimaging, it is also possible to 

measure trial-to-trial variability in the response to identical stimuli (Dinstein et al., 2012; 

Keil et al., 2012). This could provide a neural correlate of the sensory noise parameter in our 

model.
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Relationship to item response theory

The NED model bears some resemblance to one-dimensional item-response theory models 

(IRT; Gelman & Hill, 2007) that characterize individual ability and item difficulty. Applied 

to the McGurk illusion, an IRT model would characterize each individual with a 

susceptibility level and each stimulus with an efficacy (how strongly it elicits the illusion). 

This IRT model would predict that two participants with the same susceptibility level would 

have exactly the same amount of McGurk perception for a given stimulus. Our data suggests 

that this is not the case, and that including a sensory noise parameter (which allows 

perception to vary between individuals with the same disparity threshold) accounts for a 

significant amount of variance (Figure 2C).

Conclusion

Previous studies describing large variability of fusion perception across stimuli and 

individuals illustrate the peril of comparing raw amount of McGurk perception between 

individuals or groups: combining raw fusion proportions from different stimuli confounds 

stimulus differences and individual/group differences. The NED model provides a way to 

extract independent parameters for participants (threshold and sensory noise) and stimuli 

(stimulus disparity). This independence allows for individual and group-level comparisons 

using measures related to individual differences rather than the properties of individual 

stimuli.
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Figure 1. 
The noisy encoding of disparity (NED) model explains proportion of McGurk perception 

with three parameters, shown for two hypothetical participants (Pα, top row, green color; Pβ, 

bottom row, red color). All variables are defined in arbitrary units of disparity. A. The first 

parameter is the disparity of each stimulus. Tick mark on the x-axis shows the disparity of 

hypothetical stimulus S (identical across participants). The second parameter is the sensory 

noise (σ, standard deviation of the curve) of each participant. The measured stimulus 

disparity is a noisy approximation of the true stimulus disparity. B. The third parameter is 

the disparity threshold for each participant (T; vertical dashed lines). Participants report a 

fused percept whenever the measured stimulus disparity is below this threshold. C. 
Predicted McGurk fusion proportion (FP, shaded region) calculated by combining A and B.
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Figure 2. 
The NED model fit to real behavioral data. A. Mean fusion proportion (black lines) and 

mean model predictions (gray bars) across participants for each stimulus and the mean 

across all participants and stimuli (μ). Red lines show prediction error (across stimuli, mean 

RMSE = 0.03; overall mean RMSE = 0.001). B. Mean fusion proportion across stimuli, with 

model prediction and prediction error plotted for every participant (across participants, mean 

RMSE = 0.03). Participants ordered by mean fusion proportion. C. The percent reduction of 

total RMSE when a parameter was allowed to vary vs. when it was held fixed (across all 

participants).
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Figure 3. 
Relationship between sensory noise and McGurk fusion perception. A. Sensory noise is 

significantly correlated (Spearman correlation) with behavioral variability (mean binomial 

standard deviation across stimuli) across participants. B. Sensory noise is only weakly 

correlated to mean fusion proportion across participants.
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Figure 4. 
The NED model can explain seemingly contradictory results in studies using different 

stimuli. A. In the study of Woynaroski et al., typically-developing (TD) participants had a 

lower mean McGurk fusion proportion than participants with autism spectrum disorder 

(ASD). Two representative participants (one TD, blue; one with ASD, orange) were 

assigned the published mean fusion proportion and fit with the model. The model estimated 

the true stimulus disparity (black tick mark and vertical line) the threshold for each 

participant (dashed lines) and each participant’s sensory noise (width of curves, see Figure 

1). The stimulus disparity is above threshold for both participants, but the greater sensory 

noise for ASD leads to a higher proportion of trials with measured disparities below 

threshold (orange shaded region larger than blue shaded region). B. In the study of Irwin et 

al., TD participants had a higher mean McGurk fusion rate than participants with ASD. The 

model is fit simultaneously to the data in (A) and (B), incorporating the assumption that 

participant thresholds and sensory noise are equal across studies. The fitted stimulus 

disparity of SIrwin is lower than SWoynaroski (red arrows). The disparity of SIrwin is below the 

disparity threshold for both participants, but the greater sensory noise for the ASD 

participant leads to a lower proportion of trials with measured disparities below threshold 

(orange shaded region smaller than blue shaded region).
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