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Abstract

Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy 

homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food 

intake, respectively, we examined whether water intake during the light and dark phase is altered 

in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages 

was measured by weighing the water bottles at the beginning and end of the light phase during 4 

consecutive days. Control, Y2 and Y4 receptor knockout mice did not differ in their water intake 

during the light phase. However, during the dark phase Y2 and Y4 receptor knockout mice drank 

significantly more (46-63 %, P<0.05) water than the control mice. The total daily water intake 

over 24 h was also enhanced. The enhanced water intake during the dark phase was not altered by 

the β-adrenoceptor antagonist propranolol or the angiotensin AT1 receptor antagonist telmisartan 

(each injected intraperitoneally at 10 mg/kg). These data indicate that NPY acting via Y2 and Y4 

receptors plays a distinctive role in the regulation of nocturnal water consumption. While β-

adrenoceptors and angiotensin AT1 receptors do not seem to be involved, water intake in Y2 and 

Y4 receptor knockout mice may be enhanced because presynaptic autoinhibition of NPY release 

and inhibition of orexin neurons in the central nervous system are prevented.
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Introduction

Neuropeptide-Y (NPY) is involved in the regulation of food intake and energy homeostasis. 

For instance, deletion of the NPY Y2 and Y4 receptor gene increases and decreases food 

intake, respectively [14,25,30,31,33]. In contrast, the drinking of water provided ad libitum 

has not yet been systematically investigated in NPY receptor knockout mice. Thiele et al. 
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[33] have reported that in an ethanol/water preference test Y2 receptor knockout (Y2−/−) 

mice drink more water, but less ethanol, than wild-type controls. When one of us (S.D.) 

noted that a colony of Y4 receptor knockout (Y4−/−) mice drank more water than the 

respective controls, we decided to carry out an explorative study of the spontaneous drinking 

behaviour in both Y2−/− and Y4−/− mice. Three particular aims were pursued. Firstly, we 

recorded the water intake during the light and dark phase and estimated the total daily intake 

of water in Y2−/− and Y4−/− mice relative to their controls. Secondly, we investigated 

whether the increase in dark phase water intake observed in Y2−/− and Y4−/− mice was 

inhibited by the β-adrenoceptor antagonist propranolol. This possibility was envisaged 

because β-adrenoceptor agonists stimulate water intake [20,23] and NPY is associated with 

noradrenergic neurons of the central and sympathetic nervous system [16,22]. Thirdly, we 

examined whether the enhanced water intake in Y2−/− and Y4−/−mice is normalized by the 

angiotensin AT1 receptor antagonist telmisartan, given that angiotensin II is a central 

messenger that stimulates drinking [3,12].

Materials and Methods

Experimental animals

This study was approved by an ethical committee at the Federal Ministry of Education, 

Science and Culture of the Republic of Austria and conducted according to the Directive of 

the European Communities Council of 24 November 1986 (86/609/EEC). The experiments 

were carried out with female germline Y2−/− and Y4−/− mice and non-induced conditional 

Y2 and Y4 receptor knockout (FY2 and FY4) mice (Department of Pharmacology, Medical 

University of Innsbruck, Austria) weighing 16-24 g. The generation of Y2−/−, Y4−/−, FY2 

and FY4 mice and the demonstration of the absence or presence of Y2 and Y4 receptors 

have been described previously [30,31]. Germline Y2−/− mice were generated from the 

same founders on the same mixed C57BL/6–129SvJ background as the conditional FY2 and 

FY4 knockout mice. Non-induced conditional FY2 and FY4 knockout mice were used as 

controls in all experiments and termed control mice throughout the paper.

Experimental protocols

The mice were housed in groups of 3-4 per cage under controlled temperature (21 °C) and a 

12 h light/dark cycle (lights on at 6:00 AM, lights off at 6:00 PM). Tap water and standard 

laboratory food were provided ad libitum throughout the study. Since only a limited number 

of female control, Y2−/− and Y4−/− mice was available for the study, four experiments 

were carried out with most mice at 1 week intervals, if not stated otherwise. In experiment 1 

the water intake during the light phase of 4 consecutive days and the 3 intervening periods 

of dark phase was estimated. To this end, the weight of the water bottles of each cage was 

determined at 7:45 AM and 4:30 PM. The water bottles were cleaned and refilled every 

second day. Experiment 2 was carried out to test whether intraperitoneal (IP) injection of 

vehicle (physiological saline) would alter drinking during the dark phase. To this end the 

water intake during the dark phase of 3 consecutive days was estimated. On the second day, 

physiological saline (0.15 M NaCl, 2 ml/kg) was injected IP at 5:30 PM and 11:30 PM. 

Experiments 3 and 4 were identical with the second experiment, except that instead of 

vehicle two doses of propranolol (each dose at 10 mg/kg; experiment 3) and telmisartan 
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(each dose at 10 mg/kg; experiment 4) were injected IP at 5:30 PM and 11:30 PM. An 

interval of 2 weeks was allowed between the third and fourth experiment to ensure complete 

washout of propranolol. The experiment involving telmisartan was repeated with naïve Y2−/

−, Y4−/− and control mice in order to prove that previous treatment with vehicle and 

propranolol did not modify the effect of telmisartan (experiment 5). These additional mice 

were injected either with telmisartan (10 mg/kg IP at 5:30 PM and 11:30 PM) or its vehicle.

The experimental design entailed that the water intake per cage (i.e., per 3-4 mice) was 

determined. Since, in addition, the weight of the mice was recorded at the beginning of each 

experiment, the water intake during the light and dark phase was expressed relative to body 

weight. The total intake of water per day was calculated by summing up the water intake of 

one light phase and the following dark phase.

Drugs

(±)-Propranolol hydrochloride (Sigma, Vienna, Austria) was dissolved in saline at a 

concentration of 5 mg/ml and injected IP at a volume of 2 ml/kg. Telmisartan (gift of 

Boehringer Ingelheim, Biberach, Germany) was dissolved in 0.15 M NaOH, the pH of this 

solution being adjusted with 0.15 M HCl to 9.5 [12]. The injection solution contained 5 

mg/ml telmisartan and was administered IP at a volume of 2 ml/kg. The vehicle solution was 

prepared in an analogous manner.

Statistics

Statistical evaluation of the results was performed on Statistica (StatSoft Inc., Tulsa, OK, 

USA) with two-way analysis of variance (ANOVA) for repeated measures (to identify 

differences between genotypes over time) or three-way ANOVA for repeated measures (to 

identify differences between genotypes and treatments over time). Since no significant effect 

of time and treatment and no significant interaction between time, genotype and treatment 

were found, the data were reevaluated with one-way ANOVA and significant differences 

between the genotypes identified with the Holm-Sidak method (SigmaStat, SPSS Inc., 

Chicago, IL, USA). All data are presented as means ± s.e. mean, n referring to the number of 

cages in the respective group. Probability values of P < 0.05 were regarded as significant.

Results

The water intake of control (FY2 and FY4) mice during the light phase was in the range of 

0.057-0.077 ml/g (Figure 1A) while that during the dark phase was in the range of 

0.112-0.119 ml/g (Figure 1B) and significantly higher (P<0.05) than during the light phase. 

Y2−/− and Y4−/− mice did not significantly differ from control mice in their water intake 

during the light phase (Figure 1A). During the dark phase, however, Y2−/− mice drank 

significantly more water than the control mice as recorded over 3 consecutive days (Figure 

1B). The total daily (24 h) intake of water was also significantly increased in Y2−/− mice 

during this observation period (Figure 2). Y4−/− mice likewise drank more water during the 

dark phase than control mice, but this difference was statistically significant only on the 

second and third day of the 3 day recording period (Figure 1B). A similar observation was 
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made for the total daily (24 h) intake of water which in Y4−/− mice was elevated only on the 

second and third day of the 3 day recording period (Figure 2).

IP injection of physiological saline (the vehicle for propranolol) at 5:30 PM and 11:30 PM 

had no significant influence on the water intake during the dark phase, although the injection 

tended to reduce the drinking of water (Figure 3A). Importantly, the difference in the water 

intake during the dark phase between Y2−/− and Y4−/− mice, on the one hand, and control 

mice, on the other hand, was maintained after IP injection of vehicle (Figure 3A). The same 

observation was made after IP injection of propranolol (10 mg/kg at 5:30 PM and 11:30 PM) 

which did not prevent Y2−/− and Y4−/− mice from drinking significantly more water during 

the dark phase than the control mice (Figure 3B).

Since the results of experiments 4 and 5 involving telmisartan were indistinguishable, they 

were combined and are presented as one experiment. The vehicle for telmisartan (injected IP 

at 5:30 PM and 11:30 PM) did not influence the water intake during the dark phase (Figure 

4A). As after injection of vehicle, analysis of the water intake following injection of 

telmisartan (10 mg/kg injected IP at 5:30 PM and 11:30 PM) failed to reveal any significant 

effect of treatment over time (Figure 4B). For this reason it cannot be deduced that the lack 

of a significant difference in the nocturnal water intake between control mice and Y2−/− 

mice (day 3) as well as Y4−/− mice (days 2 and 3), as shown in Figure 4B, reflects an effect 

of telmisartan.

Discussion

The results of the present study demonstrate that Y2−/− and Y4−/− mice consume 

significantly more water during the dark phase than control mice, whereas the water intake 

during the light phase is unchanged. Our finding obtained with Y2−/− mice is consistent 

with the report of Thiele et al. [33] that, in an ethanol/water preference test, Y2−/− mice 

drink more water, but less ethanol, than wild-type controls during a 24 h observation period. 

The present data significantly extend this observation and reveal an implication of both Y2 

and Y4 receptors in the circadian control of spontaneous water intake. The enhancement of 

nocturnal water consumption by Y2 and Y4 receptor gene knockout is reminiscent of the 

ability of Y1 and Y5 receptor blockade to inhibit feeding preferentially during the dark 

phase [7,15]. Being night-active animals, mice normally have a higher food and water intake 

during the dark phase than during the light phase. Although in Y2−/− mice water intake is 

enhanced in parallel with an increase in food intake [25,30,33], it is thought that the 

orexigenic effect of NPY takes place independently of its effect on drinking behaviour 

[24,28,32,33]. Such a relationship can be ruled out in Y4−/− mice in which water intake is 

enhanced despite reduced food consumption [14,31].

Hints at the mechanisms whereby Y2 and Y4 receptor gene knockout boosts nocturnal 

drinking may be deduced from the ability of intracerebroventricular and intrahypothalamic 

administration of NPY to augment spontaneous water intake in rabbits, rats and mice, an 

action that involves Y4 receptors [4,28,29,32,34]. As discussed by Thiele et al. [33], the 

increased water consumption seen in Y2−/− mice could be related to the function of Y2 

receptors as presynaptic autoreceptors that inhibit NPY release [2]. If so, knockout of the Y2 
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receptor would remove any feedback inhibition of the release of NPY and, consequently, 

enforce postsynaptic transmission via NPY. This argument is supported by the finding that 

Y2 autoreceptor stimulation inhibits the release of NPY from neurons in the rat 

hypothalamus [17]. Furthermore, Y2 receptors are expressed in several brain regions 

relevant to the regulation of drinking behaviour [10], including area postrema, nucleus of the 

solitary tract, paraventricular nucleus of the hypothalamus, preoptic nucleus, bed nucleus of 

stria terminalis and amygdala [9,13,26,27].

Whether the rise in nocturnal water intake observed in Y4−/− mice can be explained in an 

analogous manner awaits to be determined. It is worth noting that Y4 receptors are 

expressed by orexin-containing neurons in the lateral hypothalamus [4], and that 

intracerebroventricularly administered orexin is known to increase water intake [18]. There 

is electrophysiological evidence that NPY inhibits orexin neurons in the murine 

hypothalamus by multiple pre- and postsynaptic mechanisms [11]. The postsynaptic 

receptors depressing the activity of orexin neurons are of the Y1 type, while the receptors 

mediating presynaptic inhibition have tentatively been classified as Y2/Y5 receptors [11] but 

remain to be fully characterized. It is thus conceivable that Y2 and, speculatively, Y4 

receptor gene knockout removes an inhibitory drive on hypothalamic orexin neurons, which 

in turn results in stimulation of water consumption.

In explaining as to how Y2 and Y4 receptor gene knockout enhances water intake during the 

dark phase, several other factors have to be taken into account. In particular, changes in the 

intestinal ion and water transport, alterations of renal function and modifications in various 

messenger systems relevant to water homeostasis need to be considered. NPY is known to 

inhibit intestinal ion and water secretion, an action that in the mouse and human colon 

involves Y1, Y2 and Y4 receptors [5,6]. In the kidney, NPY is known to induce 

vasoconstriction via Y1 receptor activation and to elicit diuresis via stimulation of Y2 and 

Y5 receptors [1]. While investigation of intestinal and renal factors was beyond the scope of 

this explorative study, we addressed the possibility that β-adrenoceptors and angiotensin 

AT1 receptors, two interrelated systems known to stimulate water intake, may contribute to 

the increase in nocturnal water intake seen in Y2−/− and Y4−/− mice.

The involvement of β-adrenoceptors was considered because NPY is associated with 

noradrenergic neurons in the central and sympathetic nervous system [16,22]. β-

Adrenoceptor agonists stimulate water intake through activation of the renin-angiotensin 

system [20,23). In addition, β-adrenoceptors play a role in the dipsogenic effect of 

angiotensin II in the preoptic area and hypothalamus [3,8]. However, our data obtained with 

propranolol rule out any implication of β-adrenoceptors in the increased nocturnal 

consumption of water exhibited by Y2−/− and Y4−/− mice. We think this conclusion to be 

valid because (±)-propranolol injected systemically at doses in the range of 10 mg/kg 

reaches and blocks both peripheral and central β-adrenoceptors of mice without causing 

sedation [21,36].

Although angiotensin II is a potent dipsogenic messenger in the brain [3,12], we do not think 

that this peptide contributes to the elevated nocturnal water consumption seen in Y2−/− and 

Y4−/−mice. This conjecture is deduced from the failure of the angiotensin AT1 receptor 
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antagonist telmisartan to normalize the increase in nocturnal water intake caused by Y2 and 

Y4 receptor knockout. The validity of our conclusion is based on the reported ability of 

telmisartan (10 mg/kg administered systemically) to abolish the dipsogenic response to 

intracerebroventricular injection of angiotensin II, an effect that is sustained for 24 h [12]. 

The lack of involvement of angiotensin II in the enhanced drinking behaviour shown by 

Y2−/− and Y4−/− mice is in keeping with the finding that NPY and angiotensin II activate 

different neurons in the paraventricular nucleus of the hypothalamus [19]. This instance 

suggests that NPY and angiotensin II regulate disparate mechanisms of water homeostasis. 

A downstream mediator of angiotensin II is vasopressin which affects drinking indirectly 

through promotion of water reabsorption in the kidney, and it awaits to be determined 

whether this pathway contributes to the alterations observed here.

Because of its exploratory nature, the current study has some limitations which need to be 

addressed in interpreting the implications of the findings. The present experiments were 

initiated following the discovery of a differential water consumption in a colony of female 

control, Y2−/− and Y4−/− mice that were obtained to study gastric nociception [35]. Thus, 

the experimental design was confined by the number of female animals available for the 

study, which explains the sequential rather than parallel study design. Although the data 

collected in a sequential protocol might be complicated by alterations of water intake over 

time, we are confident that such temporal changes did not occur because the differences in 

the nocturnal water intake between control, Y2−/− and Y4−/−mice were consistently seen in 

the sequential study runs (compare Figures 1B, 3A and 4A). We are likewise certain that 

telmisartan, relative to vehicle, failed to abrogate the increase in nocturnal water intake seen 

in Y2−/− and Y4−/− mice. This inference is based on the data of two studies which were 

combined because the number of cages used in each study alone was too small to allow for a 

statistical analysis by two-way ANOVA. In neither of the two studies had telmisartan any 

effect different from that of the vehicle. We did not measure food intake in control, Y2−/− 

and Y4−/−mice, because these parameter has already been examined [14,25,30,31,33]. A 

follow-up study, however, is warranted to simultaneously monitor the spontaneous food and 

water consumption in individual mice so that any impact of Y2 and Y4 receptor function on 

the relationship between water and food homeostasis can be analyzed. Given that functional 

changes produced by germline gene knockout may be masked by compensatory changes and 

that the metabolic set-points are subtly different in germline versus conditional F2Y mutants 

[30], it will also be important to confirm the present observations by appropriate NPY 

receptor antagonists as they become available. Unfortunately, the Y2 receptor antagonist 

BIIE0246 does not cross the blood-brain barrier (personal communication by H.N. Doods, 

Boehringer Ingelheim) at effective and selective doses as confirmed in a recent study [35].

In summary, our study has shown that Y2 and Y4 receptor gene knockout leads to enhanced 

consumption of water specifically during the dark phase. Although we cannot rule out that 

the knockout approach causes compensatory changes in multiple messenger systems 

relevant to drinking, our data reveal that endogenous NPY acting via Y2 and Y4 receptors 

plays a distinctive role in nocturnal water homeostasis. We hypothesize that Y2−/− and 

Y4−/− mice drink more water than control mice because they lack presynaptic 

autoinhibition of NPY release and NPY-mediated inhibition of orexin neurons in the central 

nervous system, whereas β-adrenoceptors and angiotensin AT1 receptors are not involved.
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Figure 1. 
Water intake in control, Y2−/− and Y4−/− mice during the light phase (A) of 4 consecutive 

days and the 3 intervening periods of dark phase (B). The water intake is expressed as ml 

per g body weight. Means ± s.e. mean, n=6. * P<0.05, ** P<0.01 versus control.
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Figure 2. 
Total daily (24 h) water intake in control, Y2−/− and Y4−/− mice during 3 consecutive days. 

The water intake is expressed as ml per g body weight. Means ± s.e. mean, n=6. * P<0.05, 

** P<0.01 versus control.
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Figure 3. 
Effect of vehicle (A) and propranolol (B) on water intake in control, Y2−/− and Y4−/− mice 

during the dark phase of 3 consecutive days. Vehicle (2 ml/kg) or propranolol (10 mg/kg) 

was injected intraperitoneally at 5:30 PM and 11:30 PM of the second day. The water intake 

is expressed as ml per g body weight. Means ± s.e. mean, n=4. * P<0.05, ** P<0.01 versus 

control.
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Figure 4. 
Effect of vehicle (A) and telmisartan (B) on water intake in control, Y2−/− and Y4−/− mice 

during the dark phase of 3 consecutive days. Vehicle (2 ml/kg) or telmisartan (10 mg/kg) 

was injected intraperitoneally at 5:30 PM and 11:30 PM of the second day. The water intake 

is expressed as ml per g body weight. Means ± s.e. mean, n=7-9. * P<0.05, ** P<0.01 versus 

control.
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