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Summary

The maintenance of gastrointestinal mucosal integrity depends on the rapid alarm of protective 

mechanisms in the face of pending injury. Two populations of extrinsic primary afferent neurons, 

vagal and spinal, subserve this goal through different mechanisms. These sensory neurons react to 

gastrointestinal insults by triggering protective autonomic reflexes including the so-called 

cholinergic anti-inflammatory reflex. Spinal afferents, in addition, can initiate protective tissue 

reactions at the site of assault through release of calcitonin gene-related peptide from their 

peripheral endings. The protective responses triggered by sensory neurons comprise alterations in 

gastrointestinal blood flow, secretion and motility as well as modifications of immune function. 

This article focusses on significant advances that during the past couple of years have been made 

in identifying molecular nocisensors on afferent neurons and in dissecting the signalling 

mechanisms whereby afferent neurons govern inflammatory processes in the gut.
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Introduction

The physiological role of the gastrointestinal (GI) tract is not only to take up and digest food 

and absorb nutrients and water, but also to sort out and eliminate harmful and useless 

material. These seemingly conflicting tasks require a molecular analysis of the luminal 

contents and the functional status of the GI tract, so that the appropriate effector 

programmes can be selected [1]. To this end, the digestive system is endowed with an 

elaborate network of surveillance systems among which sensory neurons play a particular 

role. Thus, the gut is supplied by intrinsic sensory neurons of the enteric nerve plexuses as 

well as extrinsic spinal and vagal afferent neurons which are in close contact with two 

important non-neural surveillance systems in the mucosa: endocrine and immune cells [1]. 
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With these connections and their sensory modalities, GI sensory neurons are able to 

recognize subtle changes in the chemical and physical environment within the lumen, 

interstitial space, vasculature and muscle of the gut.

Sensory neurons subserve homeostasis and protection from adverse conditions through 

several mechanisms. These include (i) sensation of pain, alterations in (ii) emotion, affect 

and cognition, induction of (iii) autonomic reflexes and (iv) neuroendocrine responses, and 

initiation of (v) protective tissue reactions at the site of assault (Figure 1). Within the gut, the 

protective mechanisms triggered by sensory neurons comprise alterations in blood flow, 

secretion and motility and modifications of immune function. Work in the past decade has 

identified a phenomenal variety of molecular sensors that are expressed by primary afferent 

neurons and enable them to carry out their surveillance tasks [2]. This gain of knowledge 

has considerably advanced the understanding of both the physiology and pharmacology of 

afferent neurons in maintaining homeostasis of the GI mucosa in the face of challenge and 

injury. The current article highlights some of the most important advances that have been 

made in this field during the past two years.

Coordinated protection of the oesophago-gastro-duodenal region

Despite its essential role in digestion, gastric acid is a constant threat to the integrity of the 

mucosa in the stomach and the adjacent oesophageal and duodenal regions. Effective 

protection from the autoaggressive potential of acid is provided by mucosal defence 

mechanisms and appropriate compartmentalisation of the oesophago-gastro-duodenal region 

(Figure 2). The latter strategy is to prevent the escape of injurious concentrations of acid 

from the stomach, the mucosa of which is most resistant to intrusion by H+. Both the lower 

oesophageal sphincter (LOS) and the pyloric sphincter are under the control of neural 

reflexes involving acid-sensitive neurons. The tone of these sphincters is adjusted such that 

the levels of acid present in the oesophagus, stomach and duodenum are balanced with the 

mucosal defence mechanisms in these compartments [3].

The pyloric sphincter controls gastric emptying and ensures that the acidified gastric 

contents are delivered to the duodenum at a rate that enables this most proximal region of 

the small intestine to cope with the imposed acid load [3]. The LOS, in turn, prevents gastric 

acid from refluxing into the oesophagus and causing damage to the oesophageal mucosa. 

Transient lower oesophageal sphincter relaxations (TLOSRs), triggered by gastric 

distension, are thought to be a major cause for gastro-oesophageal reflux disease (GORD). 

Gastro-oesophageal vagal afferents express gamma-aminobutyric acid (GABA) receptors of 

the GABAB type, activation of which reduces the mechanosensitivity of gastro-oesophageal 

vagal afferents involved in the reflex regulation of LOS tone [4]. The GABAB receptor 

agonist baclofen is very active in inhibiting TLOSRs and has been shown to ameliorate 

GORD in adults as well as children [5]. Stimulation of afferent neurons in the oesophagus 

by local administration of capsaicin improves motor performance of the oesophageal body 

in GORD patients with ineffective motility [6]. Thus, afferent neurons seem to contribute to 

the protection of the oesophageal mucosa from gastric contents in a dual manner: by 

regulating the competence of the LOS and by facilitating clearance of the oesophagus from 

refluxing acid (Figure 2).
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Spinal afferent nerve fibres as local emergency system in the 

gastrointestinal mucosa

There is ample evidence that afferent neurons originating from the dorsal root ganglia 

participate in the local regulation of GI circulation, secretion, motility, mucosal homeostasis 

and mucosal repair [1,7,8,9,10]. These tasks are accomplished by an efferent-like mode of 

operation: Calcitonin gene-related peptide (CGRP) is released from the peripheral fibres of 

sensory neurons and, in turn, modifies the activity of several GI effector systems. It has not 

yet been ascertained whether the efferent-like mode of action operates in parallel with the 

afferent mode of action of sensory neurons or whether different populations of sensory 

neurons subserve either an afferent or efferent-like function [11].

Although the local protective role of spinal afferent neurons has been demonstrated to take 

place in all regions of the GI tract from the oesophagus to the colon [7], most studies of this 

unique defensive action have been conducted in the gastroduodenal region. Here, the 

efferent-like mode of operation is best portrayed by the protective response of the gastric 

and duodenal mucosa to acid backdiffusion from the lumen into the mucosa [7,9]. If the 

mucosal barrier is disturbed or disrupted in the presence of luminal acid, the surge of acid 

intruding the lamina propria stimulates spinal afferents which via local CGRP release and 

nitric oxide (NO) formation cause prompt hyperaemia in the gastroduodenal mucosa, 

facilitate other mechanisms of defence such as bicarbonate (HCO3
−) secretion and inhibit 

gastric acid secretion [1,7,8,9,12,13].

Further study of the efferent-like defensive action of sensory neurons has shown that the 

CGRP/NO messenger system stimulates mucin synthesis in the gastric corpus mucosa [14] 

and reduces myoelectrical activity in gastric smooth muscle [15]. Importantly, stimulation of 

sensory nerve fibres also exerts an anti-inflammatory action (Figure 3) which is brought 

about by a CGRP-induced increase in prostacyclin (PGI2) formation and a decrease in 

tumour necrosis factor-alpha release and tissue accumulation of neutrophils [16]. Through 

this action, sensory nerve stimulation reduces stress-related gastric mucosal damage and 

ischaemia reperfusion-induced liver injury [16,17,18,19]. The protective role of sensory 

neurons is gender-dependent, given that oestrogen enhances the expression of CGRP in 

dorsal root ganglion cells and the availability of releasable peptide in the stomach, whereas 

ovariectomy reduces the expression of CGRP and makes the mucosa more vulnerable to 

stress-induced injury [17,19].

It is intriguing to note that some gastroprotective agents such as the histamine H2 receptor 

antagonist lafutidine are able to stimulate sensory neurons, which may contribute to their 

gastroprotective effect [20,21]. The molecular mode of action whereby lafutidine excites 

sensory neurons, causes CGRP release and attenuates ethanol- and stress-induced gastric 

injury is different from that of capsaicin [20,21] but has not yet been elucidated. Sensory 

neuron dysfunction, to the contrary, impairs GI mucosal protection [7]. For example, the 

dwindling capacity of the gastric mucosa to defend itself against injury in ageing rats is 

associated with a reduced number of mucosal CGRP-containing nerve fibres and with a 

decreased ability of CGRP to facilitate gastric mucin synthesis [14]. Chronic gastritis 

appears to be associated with an enhanced expression of CGRP in the human stomach [22] 
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and, in patients infected with Helicobacter pylori, symptoms of functional dyspepsia have 

been correlated with enhanced expression of CGRP and substance P in the antral mucosa 

[23]. The pathogenic relevance of these findings to the local inflammatory process awaits to 

be determined.

Molecular acid sensors of afferent neurons involved in the protection of the 

gastroduodenal mucosa

Most sensory neurons respond to extracellular acidosis. There is emerging evidence that the 

acid-sensitive ion channel TRPV1 (transient receptor potential vanilloid-1) plays a role in 

signalling for duodenal hyperaemia in the face of luminal acidification [24,25]. TRPV1 is 

expressed by many afferent neurons innervating the rodent and human GI tract 

[26,27,28,29,30,31,32]. Since TRPV1 is located on sensory nerve terminals in the lamina 

propria behind the epithelium, the mucosal acid signal must be transduced across the 

epithelium (Figure 3). This transepithelial signalling pathway involves CO2 which is formed 

when excess luminal H+ combines with HCO3
− secreted into the mucosal gel layer [24,25]. 

Easily traversing the apical plasma membrane of epithelial cells, CO2 is hydrated by 

carbonic anhydrase to carbonic acid which dissociates into HCO3
− and H+. H+, in turn, exits 

via the basolateral sodium-proton exchanger-1 and lowers interstitial pH, which activates 

TRPV1-bearing sensory nerve fibres that release the vasodilator peptide CGRP [24,25].

The implication of TRPV1 in neural acid sensing has previously been envisaged from the 

effect of capsaicin, a ligand known to stimulate TRPV1 [26]. Thus, the capsaicin-evoked 

gastric hyperaemia [33] gastric mucosal protection [34,35] and gastroduodenal bicarbonate 

secretion [12,36] are antagonized by the TRPV1 blocker capsazepine. Unlike the acid-

induced hyperaemia in the duodenum [24], the acid-evoked secretion of bicarbonate [12] 

and hyperaemia in the rat stomach [33] remain unaltered by capsazepine. This finding does 

not totally rule out any implication of TRPV1 because capsazepine is a class B blocker of 

TRPV1, inhibiting channel activation by capsaicin more potently than that by acid. It is, 

however, conceivable that there are regional differences in the receptor mechanisms 

whereby acid challenge activates sensory neurons, a conjecture that is in keeping with the 

multiplicity of acid-sensing ion channels expressed by sensory neurons [37].

Acid-sensing ion channels (ASICs) comprising ASIC1, ASIC2 and ASIC3 represent another 

class of molecular acid sensors present on primary afferent neurons in the GI tract [27,38]. 

While ASIC3 participates in the inflammation-induced hypersensitivity of vagal afferents to 

gastric acid [39] and spinal afferents to colorectal distension [40], it has not yet been 

examined whether sensory neuron-mediated GI mucosal protection involves ASIC3.

Mucosal factors stimulating afferent neurons involved in gastric mucosal 

protection

Bradykinin, ghrelin and melatonin have been identified as factors that facilitate GI mucosal 

protection through sensory neuron-dependent mechanisms. The effect of bradykinin to 

stimulate gastroduodenal HCO3
− secretion through an action involving sensory neurons is 

mediated by bradykinin B2 receptors and prostaglandin E2 [12,13]. Ghrelin is produced by 
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endocrine cells of the gastric mucosa and known to excite vagal afferents which express 

ghrelin receptors [41]. The ability of this peptide to attenuate ischaemia reperfusion-induced 

injury in the gastric mucosa involves activation of sensory neurons and formation of NO 

[42]. Melatonin, which likewise is a GI hormone, attenuates stress-induced gastric lesions 

through stimulation of melatonin MT2 receptors and CGRP-releasing sensory neurons [43].

Pro-inflammatory effects mediated by sensory neurons in the gut

Despite the evidence that primary afferent neurons releasing CGRP contribute to GI 

mucosal defence, this functional implication must not be generalized because there is 

evidence that under certain conditions sensory neurons exacerbate inflammatory tissue 

reactions. For instance, gastritis induced by iodoacetamide or diquat is significantly reduced 

by capsaicin-induced ablation of sensory neurons [44] and colitis evoked by dextrane sulfate 

sodium is attenuated by TRPV1 blockers [45]. Likewise, ileitis induced by Clostridium 

difficile toxin A or the endocannabinoids anandamide and 2-arachidonoyl glycerol is 

ameliorated by capsazepine [46], and pancreatic islet inflammation in an experimental 

model of type-1 diabetes is inhibited by ablation of TRPV1-expressing sensory neurons 

[47]. In contrast, the effect of dinitrobenzene sulfonic acid to induce colitis and disturb 

colonic smooth muscle activity is increased in TRPV1 knockout mice [48].

The proinflammatory role of TRPV1-bearing sensory neurons in the ileitis evoked by 

Clostridium difficile toxin A is thought to arise from the formation of endocannabinoids 

which stimulate TRPV1 and thereby cause the release of substance P from sensory nerve 

fibres [46]. Substance P, in turn, activates enteric neurons and immune cells, which 

ultimately results in hypersecretion, inflammation and mucosal damage [46]. Whether 

hydrogen sulfide contributes to these processes awaits to be determined. Formed by 

cystathionine gamma-lyase and cystathionine beta-synthase in enteric neurons, hydrogen 

sulfide enhances intestinal chloride secretion via an action involving TRPV1 and capsaicin-

sensitive afferent neurons [49].

The vagal anti-inflammatory reflex

Cytokine-responsive vagal afferent neurons participate in the communication between the 

peripheral immune system and the brain [50,51]. This function is supported by a particular 

proximity of vagal afferent nerve fibres to immunologically relevant structures such as 

hepatic Kupffer cells (macrophage-like cells), paraganglia and connective tissue containing 

macrophages and dendritic cells [50,51]. Bacterial lipopolysaccharide (endotoxin) is able to 

cause release of interleukin-1beta from these cells, the cytokine in turn leading to excitation 

of vagal afferents [50,51].

Through these properties, vagal afferents are thought to mediate a vago-vagal anti-

inflammatory reflex (Figure 4). Peripheral immune and inflammatory signals trigger an 

input to the brain both via vagal afferents and circumventricular organs that are devoid of a 

blood-brain barrier. These signals are processed by the brainstem and central autonomic 

circuitries to provide an output via cholinergic vagal efferents [52]. Acetylcholine, released 

from efferent axons in the periphery, activates alpha7 subunit-containing nicotinic receptors 

on tissue macrophages and other immune cells (Figure 4), which results in inhibition of pro-
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inflammatory cytokine release and suppression of inflammation [52,53]. The specific 

involvement of alpha7 subunit-containing nicotinic receptors makes it conceivable that 

alpha7 subunit-selective agonists such as GTS-21 represent a new type of anti-inflammatory 

agent that is devoid of an action on autonomic ganglia in which transmission is mediated 

primarily by alpha3/beta4 subunit-containing nicotinic receptors [54].

There is emerging evidence that the vagovagal anti-inflammatory reflex has an important 

role in controlling inflammation within the gut. Thus, dextrane sulfate sodium-induced 

colitis is exaggerated by vagotomy and hexamethonium and attenuated by nicotine [55]. The 

anti-inflammatory action of the vagus nerve involves a macrophage-dependent mechanism, 

because vagotomy fails to exacerbate colitis in mice that are deficient of macrophage 

colony-stimulating factor [55]. The extent of inflammation following abdominal surgery is a 

factor relevant to the severity and duration of postoperative ileus. Stimulation of nicotinic 

acetylcholine receptors has been reported to inhibit macrophage activation, ameliorate 

surgery-induced inflammation and reduce postoperative ileus through downstream 

activation of the Jak2-STAT3 signalling pathway [56].

Conclusions

The role of primary afferent neurons in monitoring actual or potential threats to the GI 

mucosa is of physiological relevance to body homeostasis. Long thought to subserve 

primarily nociception, sensory neurons are now recognized to enforce GI mucosal defence 

through several mechanisms (Figure 1), among which autonomic reflexes and the initiation 

of protective tissue reactions at the site of insult play a particular role. Significant progress 

has been made in the past years to identify the molecular sensors that enable afferent 

neurons to recognize potential threats. These nocisensors include TRPV1 and ASIC3 and 

receptors for local tissue mediators (e.g., bradykinin, ghrelin, melatonin, endocannabinoids, 

hydrogen sulfide) that are released upon challenge of the GI tract.

Autonomic reflexes that govern motor and immune functions of the GI tract are fine-tuned 

by the multiple sensory capacities of their afferent arm. For instance, the passage of gastric 

juice across the LOS and pyloric sphincter is controlled by chemo- and mechanosensitive 

afferent neurons that may be targeted in the design of novel GORD therapeutics. A 

particular aspect of GI homeostasis is highlighted by the discovery of vago-vagal anti-

inflammatory reflexes that have a bearing on GI immune function. Since the anti-

inflammatory reflex output to GI immune cells is mediated by alpha7 subunit-containing 

nicotinic receptors, it appears possible to develop alpha7 subunit-selective agonists as a new 

type of anti-inflammatory agent.
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Figure 1. 
Implications of afferent neurons in gastrointestinal (GI) defence. The graph shows that 

primary afferent neurons monitor the chemical and physical environment within the GI tract 

as they are able to respond to a variety of signal modalities. Via brain-mediated reactions 

and reflexes and through local neuropeptide release at the site of insult they contribute to GI 

defence and homeostasis.
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Figure 2. 
Coordinated protection of the oesophago-gastro-duodenal region. The graph shows that 

acid-sensitive afferent neurons protect the foregut from gastric acid by reflex regulation of 

motor activity in the lower oesophageal sphincter (LOS), stomach and pyloric sphincter and 

by governing local tissue reactions supporting the defence of the mucosa.
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Figure 3. 
Molecular acid sensors governing acid-induced hyperaemia in the duodenum [24]. The 

graph shows that luminal acid diffusing into the mucus gel layer of the duodenal mucosa 

interacts with HCO3
− to form CO2. This molecule easily traverses the apical plasma 

membrane of epithelial cells where it is hydrated to carbonic acid by carbonic anhydrase 

(CA). Carbonic acid dissociates into HCO3
− and H+ which exits the cells via the basolateral 

sodium-proton exchanger-1 (NHE-1) and lowers interstitial pH. Subepithelial acidosis 

activates TRPV1-bearing sensory nerve fibres that release the vasodilator peptide CGRP.
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Figure 4. 
Vagal anti-inflammatory reflex [52]. The graph shows a vago-vagal reflex, the afferent arm 

of which is activated by pro-inflammatory cytokines such as interleukin-1beta. Following 

processing in the nucleus tractus solitarii (NTS) and in autonomic circuitries of the brain, 

efferent output is generated from the dorsal vagal motor nucleus (DVMN). Acetylcholine 

(ACh) released from vagal efferents activates alpha7 subunit-containing nicotinic 

acetylcholine receptors (alpha7-nAChR) on macrophages and other immune cells, which 

results in inhibition of pro-inflammatory cytokine release.
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