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Abstract

A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and 

replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE 

in the human CD247 locus that encodes CD3ζ are not well established and require replication in 

independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE 

association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE 

patients and 8 077 controls from four ethnically distinct populations. The strongest associations 

were found in the Asian population (11 SNPs in intron 1, 4.99×10−4<P<4.15×10−2), where we 

further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-

rs858554; G-G-A-G-A; Phap=2.12×10−5) that exceeded the most associated single SNP rs858554 

(MAFControls=13%; P=4.99×10−4, OR=1.32) in significance. Imputation and subsequent 

association analysis showed evidence of association (P<0.05) at 27 additional SNPs within intron 

1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population 

proportions, showed 5 SNPs with significant P-values (1.40×10−3<P<3.97×10−2), with one 

(rs704848) remaining significant after Bonferroni correction (Pmeta=2.66×10−2). Our study 

independently confirms and extends the association of SLE with CD247, which is shared by 

various autoimmune disorders and supports a common T cell-mediated mechanism.

INTRODUCTION

Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic and potentially fatal 

autoimmune disorder characterized by the production of autoantibodies that cause 

widespread tissue damage. T-cells from patients with SLE have a number of phenotypic and 

functional abnormalities (1,2). Some of the strongest confirmed genetic associations with 

SLE obviously affect T-cells, including HLA-DR, which still exceeds all other associations 

in significance, as well as PTPN22, a TCR signal modifier (3), and PTTG1 affecting 

miR146a (4) that appears particularly relevant for regulatory T-cells (5). One of the most 

characteristic aberrations, likely influential in altering intracellular signaling and subsequent 

aberrant responses of T-cells, is the specific downregulation of the CD3ζ component of the 

T-cell receptor complex (6,7), CD247. In SLE T-cells, this molecule is specifically replaced 

by the Fc receptor γ chain that is coupled with a different intracellular signaling pathway (8). 

In addition to this demonstrated functional relevance, association of genetic polymorphisms 

within CD247 with SLE has been discovered. Two reports have provided evidence for such 

an association, identifying two 3' UTR SNPs in strong linkage disequilibrium and showing 

association with differential CD3ζ expression (9) as well as with SLE (10) in a European 

population. More recently, several SNPs within CD247 (particularly in intron 1) were also 

found associated to SLE in Asian populations (11). Because the epidemiology of SLE has 

demonstrated that the prevalence of disease differs substantially across ethnic groups, it is 

logical that there exists significant genetic heterogeneity in the causes of SLE across 

populations (12,13). This has been supported by the differential findings obtained in 
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genome-wide association studies (GWAS) performed in different populations (14-19), with 

novel loci such as RASGRP3 and WDFY4 found to be associated with SLE in Asian, but not 

European populations. In this study, in order to further test the association of CD247 gene 

with SLE in different populations, we typed 44 SNPs in a large multi-ethnic sample with 

total 17 003 individuals.

RESULTS

Association study and imputation analysis in the Asian population

The strongest associations were found in the Asian population (11 SNPs in intron 1, 

4.99×10−4<P<4.15×10−2) (SNPs 14, 17, 24, 26, 27, 28, 30, 31, 32, 35, 36 as identified in 

Table 1; also see Figure 1). The most associated rs858554 (SNP 31, MAFControls=13%) 

reached a significance of P=4.99×10−4 (OR[95%CI]=1.32[1.13-1.55]) and a corresponding 

P=1.50×10−2 after Bonferroni correction for multiple testing.

Several of the 11 significant SNPs were in very strong LD (r2>0.75): 14 and 17; 26, 27, 28 

and 30; 32, 35 and 36. SNP 24 had moderate to strong LD with SNPs 26, 27, 28 and 30 

(0.57≥r2≥0.67). The most significant, SNP 31, however showed weak LD with all other 

SNPs in our dataset (r2<0.25) (Figure 2). Four SNPs (SNPs 14, 17, 24, 35) remained 

nominally associated with SLE after conditional logistic regression analysis based on 

rs858554 (SNP 31), and one newly gained significance: rs16859085 (SNP 29) (Table 1, 

Figure 2). This suggests the existence of multiple genetic variants within CD247 implicated 

in SLE.

Haplotypic association analysis in the Asian population identified a five-marker haplotype 

containing five SNPs in intron 1 (rs12141731-rs2949655-rs16859085-rs12144621-

rs858554; G-G-A-G-A; identified in Figure 2) showing robust association with SLE 

(Phap=2.12×10−5).

Even though we investigated 42 SNPs in CD247, a proportion of the genetic variation in the 

region was not assessed because of the size of the gene (Figure 1). To evaluate the potential 

association of unobserved polymorphisms in this gene in the Asian population, we imputed 

SNPs in chromosome 1 using data from HapMap as well as the genotypes observed at the 30 

fully genotyped markers. In the CD247 gene, we obtained imputed genotypes meeting 

minimum quality standards (MAF in controls > 0.05 and SNP INFO > 0.8) for 51 SNPs, 

including 9 of the genotyped SNPs (Figure 1; identified with the SNP ID in Supplementary 

Table S1). Previously genotyped SNPs were imputed using the observed genotypes at the 

other SNPs, and a concordance rate >85% between imputed and observed genotypes was 

obtained (Figure 1).

From the 51 imputed SNPs, 27 (including 7 of the genotyped SNPs) were associated with 

SLE susceptibility (P≤0.05) (Supplementary Table S1, Figure 1), the most significant of 

which were rs858557, rs858556 and rs858553 (all with: P=4.82×10−4, SNP INFO=1.04). 

All these polymorphisms are located in intron 1 close to our most strongly associated typed 

SNP rs858554.

Martins et al. Page 4

Genes Immun. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our most significant findings are consistent with those from a previous report in Asian 

populations (11) that resulted from the examination of GWAS data (19). In these studies, 14 

SNPs in the CD247 gene locus (including both upstream and downstream regions of the 

gene) were found to be significantly associated with SLE, five of which were inside the 

CD247 gene (personal communication from authors of (19), May 2012), all located in intron 

1 (as indicated by the dark blue dots in Figure 1). In our study, the 11 significant SNPs were 

also all located in intron 1 (although in different variants; as indicated by the green dots in 

Figure 1).

The plot of pairwise LD of the genotyped SNPs in our Asian samples (Figure 2) showed 

very similar LD patterns to the plot of CHB HapMap samples (Supplementary Figure S1), 

supporting the use of this reference dataset to check linkage between the significant SNPs in 

our Asian cohort and those in CD247 from the GWAS data (19). We can see that the 

significant GWAS SNPs and our SNPs (black squares and asterisks, respectively, in 

Supplementary Figure S1) are physically close but in different LD blocks. Namely, the most 

significant SNPs in both studies, our rs858554 (SNP 31) and the GWAS rs704853, are in 

two different blocks located in intron 1. Furthermore, all the significant GWAS SNPs are in 

weak LD (r2<0.25) among themselves and with our associated SNPs (Supplementary Figure 

S1). Taken together, the results of both studies complement each other, pointing to the 

existence of different variants in the same gene region that are not in strong LD and were 

observed independently, which strengthens the general result. Imputation did not return 

results for the top significant variants in Li et al. (11) and GWAS (19).

Non-Asian populations multiethnic association study, and meta-analysis

Five SNPS were significantly associated with SLE in the European ancestry samples 

(1.12×10−2<P<4.51×10−2) including four SNPs within intron 1 (SNPs 14, 15, 35 and 36) 

and one downstream of CD247 (SNP 1). In the other ethnicities, 3 SNPs were associated in 

African ancestry (SNPs 6, 24 and 35, 5.92×10−3<P<2.95×10−2), and 1 SNP in the Hispanic/

Amerindian (SNP 36 P=3.39×10−2) populations (Figure 3, Supplementary Table S2). None 

of these SNPs, however, remained significant upon Bonferroni correction for multiple 

testing. Nevertheless, several of these significant SNPs were common to the associated 

SNPs in the Asian cohort, namely SNPs 14, 35 and 36 in the European ancestry, SNPs 24 

and 35 in the African ancestry, and SNP 36 in the Hispanic/Amerindian ancestry (Figure 3).

The significant haplotype identified in the Asian population was not associated in these three 

populations although the LD structures were similar (Supplementary Figure S2).

Cross-ethnic meta-analysis of the four populations, assuming an additive genetic model and 

adjusted for population proportions, showed 5 SNPs with significant P-values 

(1.40×10−3<P<3.97×10−2), all located in intron 1 of CD247 (Table 2, Figure 3). One marker 

was still significant after Bonferroni correction for multiple testing: rs704848 (SNP 36) with 

Pmeta=2.66×10−2.
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DISCUSSION

In this multiethnic association study, we independently validated and extended the previous 

association of CD247 genetic variants with SLE, primarily in the Asian population.

Two studies have previously found an association of the 3’UTR of this gene with reduced 

expression of CD3ζ (9) and SLE (10). In contrast, our discoveries highlight genetic 

association in Asians in the 5’ region (intron1) of CD247. This is consistent with recent 

studies performed in Asian populations (11). Considering the ethnic heterogeneities in the 

epidemiology of SLE (12,13), these observations suggest a particular association of CD247 

genetic variants in Asian populations. Although pointing to heterogeneity in the genetic 

association of CD247 with SLE, most importantly, these results further support and 

highlight the implication of this gene in SLE.

The CD247 gene spans 88 kb and has been mapped to chromosome 1q24.2. The first intron 

spans about 78 kb, followed by seven other exons of the gene. The 11 significant SNPs in 

the Asian population and 78% of the significant SNPs in the other three populations tested 

lie in intron 1, suggesting a possible role in the regulation of CD247 expression (11). This 

region is further highlighted by the imputation analysis (27 imputed SNPs reached 

significance) and haplotypic association (Phap=2.12×10−5) in the Asians, and by an overall 

significant meta-analysis of all four populations.

Gorman et al. (9) found two SNPs (in high LD), rs1052230 and rs1052231 in 3’UTR of the 

gene being associated with CD247 expression levels in both SLE patients and healthy 

controls. However, only weak association with disease risk was found for haplotypes in the 

3’UTR region of the gene. In addition, Warchoł et al. (10) found that rs1052231 conferred 

increased risk of incidence of SLE. In our study, SNP rs1052230 did not show significant 

disease association (P=0.2575), and imputation on rs1052231 was neither significant 

(P=0.2950). These discrepancies from our results suggest an implicit genetic heterogeneity 

in the different populations while principally providing further evidence of the involvement 

of CD247 in SLE susceptibility.

Interestingly, other studies on autoimmune diseases also reported their main findings in 

intron 1 of CD247 (20-25), supporting a common mechanism behind the involvement of this 

gene in the etiology of these autoimmune disorders. A recent GWAS on systemic sclerosis 

(SSc), an autoimmune disease that shares some autoantibody and clinical features with SLE, 

identified CD247 as a major susceptibility gene (rs2056626, located in intron 1, 

P=3.39×10−9) (20). This association with SSc was replicated in two other cohorts (21,22). In 

our study, rs2056626 was not genotyped but was found to be significantly associated when 

imputed (P=1.42×10−2). Furthermore, this SNP is in strong LD (r2=0.75) with rs7523907 

(SNP 14) (using HapMap data; release 23), which had P=3.00×10−2 in our study. A meta-

analysis of GWAS in celiac disease and rheumatoid arthritis identified several non-HLA 

shared loci, among which the SNP rs864537 in intron 1 of CD247 (Pcombined=2.20×10−11) 

(23). In our study, rs864537 was not genotyped (or imputed) and it is not in LD with any of 

our SNPs (using HapMap data; release 23). Several GWAS also showed suggestive 

association of CD247 with Crohn's disease (summarized in Wang et al., (24)), with the 
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relevant SNPs being rs704853, rs12061855, rs1799704, rs2988276 and rs870875 

(P=1.80×10−3<P<2.40×10−2). The SNP rs870875 was tested in our study but with no 

association, and rs2988276 had a borderline association using imputed data (P=3.98×10−2). 

None of these SNPs is in high LD with any of our variants (using HapMap data; release 23). 

Recently, a novel association with CD247 (rs1773560, in intron 1) was also identified for 

juvenile idiopathic arthritis (P=2.57×10−7) (25). This SNP showed an imputed association in 

our study (P=1.83×10−2) and is in strong LD (r2=0.71) with rs7523907 (SNP 14, significant 

in our SLE study) and with rs2056626 (r2=0.94) (found associated with SSc) (using 

HapMap data; release 23).

T cells are considered to be central to the pathogenesis of SLE because aberrations in their 

functionality are very likely strongly contributing to the altered immune responses and 

overproduction of pathogenic autoantibodies (26). CD247 encodes the T-cell receptor zeta 

chain (CD3ζ), a component of the T-cell receptor (TCR)-CD3 complex (27). TCRζ is a 

pivotal component of the TCR signaling machinery and vital for T cell activation. A 

defective expression of the CD3ζ-chain has been associated with autoimmune diseases 

including SLE (6, 7, 28) and rheumatoid arthritis (29,30), but also other conditions such as 

tumors and chronic infection (31). It is one established reason for various functional 

alterations in T cells in these conditions that TCR signaling through CD3ζ is replaced by 

FcRγ (8) and its associated Syk pathway that enhances calcium and cytoskeletal reactions 

(32). This mechanism could be responsible for the shared association of several autoimmune 

diseases with CD247. Another effect that seems particularly relevant for SLE is that CD3ζ 

signaling reportedly augments IL-2 production (7), indicating that its loss likely contributes 

to the defective IL-2 production that characterizes T cells in SLE (33). Potential mechanisms 

as per how autoimmunity-associated genetic variants exert their effects may include 

differences in expression, splicing and posttranslational processing, but their relevance is 

still not clear (34). Our findings confirm the relevance of these effects for SLE pathogenesis 

and highlight that the development of SLE is influenced by mechanisms shared with other 

autoimmune diseases, which involve a role of the TCR signaling pathway that should be 

further characterized. This is a part of several GWAS-identified risk loci shared between 

SLE and other autoimmune disorders pointing to common immunological mechanisms (35). 

In this study, we provide a replication establishing CD247 as a genetic risk factor for SLE, 

which generates new implications for the pathogenesis of the disease and might lead to new 

therapeutic targets for disease management.

PATIENTS AND METHODS

Study design

The genotype data used in this study were generated as a part of a joint effort of more than 

40 investigators from around the world. These investigators contributed samples, funding, 

and hypotheses on a combined array containing ~35,000 SNPs (Figure S1 from Lessard et 

al. (36)). The Oklahoma Medical Research Foundation (OMRF) served as the coordinating 

center, ran the arrays, and sent the data to a central facility for quality control at Wake Forest 

Medical Center. These data were then distributed back to the investigators, who requested 

the SNPs, for final analysis of their own respective hypotheses.
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Patient and control samples

A total of 17 003 samples (8 922 SLE patients and 8 077 healthy controls; 4 with unknown 

disease status) from four main populations with Asian, Hispanic/Amerindian, European and 

African ancestry were initially enrolled in this multiethnic study. Details regarding the 

characteristics of the study participants in each dataset were previously described (37). The 

samples were assembled at the Oklahoma Medical Research Foundation (OMRF) after 

collection in multiple institutions around the world, following ethics committee approval 

and informed consent in accordance with the Declaration of Helsinki. Patients were 

classified with SLE based upon using the American College of Rheumatology criteria (38).

Genotyping

A total of 44 SNPs in the CD247 region and 347 ancestral-informative markers (AIMs) were 

genotyped using the Illumina iSelect technology (Illumina, San Diego, CA, USA). Extensive 

quality control was performed following stringent criteria to select the SNPs to be used in 

the analysis, namely well-defined cluster scatter plots, >90% call rates across the entire 

study and in this specific set of SNPs, deviations from Hardy-Weinberg equilibrium with P 

> 0.01 in controls and P > 0.0001 in cases (using the PLINK (39) Hardy-Weinberg 

analysis), total proportion missing <5%, and P > 0.05 for differential missingness between 

cases and controls. Only SNPs with MAF > 5% in both case and controls groups were 

analysed for association in each population.

Samples with <90% call rate, excess heterozygosity, as well as first-degree relatives, 

duplicates and individuals with self-reported vs. genetically determined gender 

inconsistencies were excluded from the analysis as previously described (37).

EIGENSTRAT (40) was used to identify population substructure within the samples based 

on AIMs. The AIMs were selected to distinguish four continental ancestral populations: 

Africans, Europeans, American Indians, and East Asians (41,42). Principal components 

from EIGENSTRAT outputs were used to identify genetic outliers from each population 

cluster (as described in (37)). After quality control a total of 1 452 samples were excluded. 

The final meta-dataset used in the analysis consisted of 15 551 subjects (8 214 SLE cases 

and 7 337 controls): 2 488 Asian, 2 247 Hispanic/Amerindian, 7 248 European and 3 568 

African. Characteristics of the study participants in each dataset are described in Table 3.

Two SNPs (rs1214603 and rs10918694) were excluded due to genotyping failure. Of the 42 

SNPs with genotyping results, three further were excluded in all the four populations 

(rs2995087, rs1214604 and rs704855), nine more in the Asians, nine more in the Hispanic/

Amerindians, eight more in the Europeans and six more in the African ancestry (African 

American/Gullah) samples (Table 1, Supplementary Table S2) due to quality control issues 

previously described (37). A final set of 39 SNPs were successfully genotyped in at least 

one population (SNP ID 1–39; listed in Table 1 and Supplementary Table S2): 30 in the 

Asian population; 30 in the Hispanic/Amerindians; 31 in the Europeans; and 33 in the 

Africans.

Martins et al. Page 8

Genes Immun. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical Analysis

Multiple logistic regression (PLINK (39); additive genetic model) was used to test for SLE 

association. Analysis was adjusted for the first three principal components calculated from 

AIMs, and gender. Conditional analyses based on the most strongly associated SNP 

(rs858554) (results expressed as conditional P [Pcond] values) were performed with logistic 

regression using PLINK (39), (additive genetic model; adjusted for the first three principal 

components and gender). Results were considered significant below the conventional level 

of P<0.05. Correction for multiple testing was performed using the conservative Bonferroni 

method.

Haplotypic association was tested using PLINK (39) sliding window analysis. Linkage 

disequilibrium (LD) plots for each cohort were created using Haploview 4.2 (43). We also 

used the HapMap CHB (Han Chinese from Beijing, China, n=84) reference dataset 

(downloaded from the International HapMap Project website; HapMap3, release 2; 

chr1:165663570..165742500) to construct the LD plot of the reference Asian population and 

check linkage between the significant SNPs in our Asian cohort and those in CD247 from 

the GWAS data that we had access to (19).

Meta-analysis of the 19 SNPs with association data for the four populations were calculated 

using Stouffer's Ztrend method implemented in METAP (44), weighted by sample size and 

taking into account effect directions.

Imputation Analysis

SNPs not directly genotyped in the CD247 region for the Asian population, where we had 

the strongest associations, were imputed with PLINK (39) using HapMap Phase II and 

specific reference panels for the Asian population (Release 23; 161 230 SNPs on 

chromosome 1, 90 JPT+CHB founders). For every imputed SNP, PLINK provides an 

information content metric INFO, ranging from 0 to 1 (although it can be greater than 1 

occasionally). A higher INFO value generally means a better SNP imputation. All imputed 

SNPs with MAF smaller than 0.05 and with INFO<0.8 were excluded. For genotyped SNPs, 

PLINK calculates the concordance rate among observed and imputed genotypes (Figure 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results of association tests with SLE for observed and imputed single-nucleotide 

polymorphisms (SNPs) in the CD247 gene. The Scaled diagram of the CD247 gene 

structure is represented above the plots: exons are represented by black boxes and marked 

with its corresponding number; 5’UTR and 3’UTR are represented by grey boxes; introns 

are represented by black lines between exons. The top plot shows the negative logarithms of 

the P-values for genotypic association (under the additive model and adjusted for the first 

three principal components and gender) for the polymorphisms successfully genotyped by us 

in the Asian population (green dots), and the significant SNPs from GWAS data (19) (dark 

blue dots; personal communication from authors, May 2012). The second plot displays the 

negative logarithms of the P-values for 51 SNPs in chromosome 1 imputed with high quality 

(SNPs with a minor allele frequency, MAF≥0.05, and SNP INFO≥0.80, grey dots), 

including SNPs that were previously genotyped (green dots). The bottom graph displays the 

rate of concordance of observed and imputed genotypes. Broken horizontal lines in top and 

second plots indicate a significance level of P=0.05. In all plots, the SNPs that had been 

initially genotyped are represented with green dots.
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Figure 2. 
Linkage disequilibrium plot for the 30 genotyped single-nucleotide polymorphisms (SNPs) 

in CD247 in the Asian population. This plot was obtained using the genotyping data from 

our study with Haploview 4.2 using the pairwise R-square color scheme in a grey scale. The 

position of the most significantly associated haplotype is indicated. *Significant P-value 

under the additive model and adjusted for the first three principal components and gender 

(Padj<0.05); **Significant P-value overpassing Bonferroni correction 

(Padj<0.0017); ●Significant P-value from the association analysis conditioned on the most 

significantly associated SNP, rs858554 (Pcond<0.05).
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Figure 3. 
Results of association tests with SLE and meta-analysis in the four cohorts in our study, 

specifically in intron 1 of the CD247 gene. The plots show the negative logarithm of the P-

value of genotypic association (under the additive model and adjusted for the first three 

principal components and gender) for the observed polymorphisms genotyped in the: Asians 

(first plot; 30 SNPs; green dots); Europeans (second plot; 31 SNPs; blue dots); Africans 

(third plot; 33 SNPs; red dots); and Hispanic/Amerindians (fourth plot; 30 SNPs; pink dots). 

The bottom plot shows the negative logarithm of the P-value for the meta-analysis (under 

the additive model and adjusted for the first three principal components and gender). Only 

SNPs with association results in the four study populations were tested (19 SNPs; black 

dots).
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Table 3

Demographic characteristics of the four populations (after quality control)

Population Ancestry Samples after QC Cases Age of onset (mean ±SD) Controls Male Female

Asian 2 488 1 246 26.4 ± 0.3 1 242 245 2 243

European 7 248 3 842 33.6 ± 0.3 3 406 1 452 5 796

African 3 568 1 669 34.0 ± 0.3 1 899 713 2 855

Hispanic / Amerindians 2 247 1 457 29.5 ± 0.4 790 199 2 048

Total 15 551 8 214 7 337 2 609 12 942

Abbreviations: QC, quality control.

Populations: African ancestry includes 274 Gullah and 3 294 other African Americans; Hispanic/Amerindian ancestry includes 1 252 Hispanics 
and 995 Native Americans. Information for Age of onset was available for most of the cases in each population.
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