
On the problem of resonance assignments in solid state NMR of 
uniformly 15N,13C-labeled proteins

Robert Tycko
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney 
Diseases, National Institutes of Health, Bethesda, MD 20892-0520

Abstract

Determination of accurate resonance assignments from multidimensional chemical shift 

correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for 

relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty 

of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) 

algorithm to search for assignments from artificial three-dimensional spectra that are constructed 

from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have 

been determined by solution NMR methods. The results demonstrate how assignment simulations 

can provide new insights into factors that affect the assignment process, which can then help guide 

the design of experimental strategies. Specifically, simulations are performed for the catalytic 

domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain 

of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous 

residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, 

and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for all MCSA runs to 

yield fully correct assignments for SrtC, and less than 0.2 ppm for MLKL. Eliminating CANCA 

data has no significant effect, but additionally eliminating CONCA data leads to more stringent 

requirements for chemical shift precision. Introducing moderate ambiguities in residue-type 

assignments does not have a significant effect.

Introduction

Site-specific resonance assignments are usually a prerequisite for the extraction of useful 

structural or dynamical information from NMR spectra of proteins. When proteins are 

labeled with 15N and 13C only at specific sites or in a small number of amino acids [1, 2], 

assignments are trivial. However, when proteins are uniformly or extensively 15N,13C-

labeled, as is now a standard practice in biomolecular solid state NMR, assignments must be 

obtained by an analysis of multiple multidimensional chemical shift correlation spectra [3–
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18]. Although in principle this analysis may seem straightforward, in practice it can be quite 

difficult, tedious, and error-prone. The limited signal-to-noise ratios and relatively broad 

lines of most solid state NMR spectra of proteins, compared with their solution NMR 

counterparts, makes the task of obtaining site-specific resonance assignments from 

multidimensional solid state NMR spectra especially problematic.

In an infamous paper published in 1996, when solid state NMR spectroscopy of uniformly 

labeled proteins under magic-angle spinning was in its infancy, I attempted to quantify how 

the difficulty of obtaining unique assignments would depend on the solid state NMR 

linewidths [19]. Using isotropic 15N and 13C chemical shifts from solution NMR studies of 

the 76-residue protein ubiquitin, I constructed a set of artificial three-dimensional (3D) 

spectra for protein segments of various lengths. I then used an elaborate computational 

algorithm to search for resonance assignments in a sequential manner, assuming various 

linewidths (i.e., various uncertainties in the precise values of the chemical shifts when 

comparing crosspeak positions from different 3D spectra). By running the same algorithm 

many times, I determined a lower limit on the number of distinct resonance assignments that 

were consistent with all 3D spectra, as a function of the assumed linewidth and the length of 

the protein segment. The main result was that the linewidths would have to be under 0.5 

ppm for the assignments to be unique if the protein segment was more than 30 residues in 

length [19].

Although this old result is not terribly inaccurate, the 3D spectra considered in these old 

simulations were not the same as 3D spectra that are now used in real experiments on real 

proteins. Most importantly, sidechain chemical shifts were not included in the artificial 3D 

spectra. Moreover, the well-known correlations of 13C chemical shifts with residue type, 

which in practice are very important in the assignment process, were not used in the 

assignment algorithm.

More recently, as my research group began to study uniformly labeled proteins in 

noncrystalline states, such as amyloid fibrils and viral capsids [20–22], we realized that the 

“traditional” manual and sequential approach to resonance assignment, which can be very 

effective when applied to proteins with very sharp solid state NMR lines, can easily fail 

when applied to non-ideal (but scientifically interesting) systems. The main problem is that, 

although one may be able to find a plausible set of resonance assignments that seems fully 

consistent with one’s multidimensional spectra, there is no guarantee that this set of 

assignments is unique. We were therefore led to develop a more general computational 

approach for analyzing multidimensional data, based on a relatively simple and flexible 

Monte Carlo/simulated annealing (MCSA) algorithm [23, 24]. The MCSA algorithm allows 

us to treat nearly any combination of multidimensional spectra, to include partial residue-

type assignments derived from chemical shift values (or from other information), and to 

repeat the assignment process many times in order to identify protein segments that have 

unique resonance assignments, segments that have non-unique assignments, and segments 

that are “invisible”. The same algorithm can also be applied to nucleic acids or other 

heteropolymers, and to solution NMR data. The MCSA algorithm, contained in a Fortran95 

program called mcassign2b (available upon request from robertty@mail.nih.gov), has been 

used in several of our recent publications [20–22, 25].
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The resonance assignment problem is a complicated one. The uniqueness of assignments 

from a given set of multidimensional data obviously depends on the linewidths and on the 

length of the protein sequence. It may also depend on the protein’s secondary structure, the 

diversity of the amino acid composition, the presence or absence of repetition in the 

sequence, and the extent of “invisible” segments (i.e., protein segments that do not 

contribute to the solid state NMR data, due to static or dynamic disorder). Since every 

protein has its own characteristics, both in terms of its biochemical/biophysical properties 

and its NMR properties, it is not possible to formulate definite rules that govern the 

uniqueness of assignments in all cases. Nonetheless, given the importance of the assignment 

problem, the time-consuming nature of sample preparations and solid state NMR 

measurements, the availability of the MCSA algorithm, and the relative ease of computer 

simulations, it makes sense to use computational simulations to investigate how the 

uniqueness of assignments depends on various factors. Results from assignment simulations 

can help guide one’s choice of samples and measurements in real experiments.

MCSA algorithm

Figure 1 shows a simplified flow chart for the MCSA algorithm [24]. One first prepares 

input files, including one file that contains the protein sequence, at least one signal table for 

each multidimensional spectrum that contains rows of correlated chemical shift values, 

linewidths (i.e., uncertainties in the chemical shifts), and residue-type assignments, and one 

file that specifies the “connections” between signal tables. Signal tables are created 

manually, by careful inspection of the experimental data to identify crosspeaks and sets of 

crosspeaks that correlate with one another. The number of chemical shift columns in each 

table can vary, but is normally at least equal to the dimension of the corresponding NMR 

spectrum. Residue-type assignments for each signal row need not be unambiguous, as 

discussed below. The connection table specifies which pairs of chemical shift columns from 

different signal tables should agree after signals (i.e., rows from signal tables) are assigned 

to specific residues.

One then runs the mcassign2b program, providing as input the minimum and maximum 

values of coefficients wG, wB, wE, and wU in the score function, the number of Monte Carlo 

attempts in each independent MCSA run, and the number of runs. The score for a given 

assignment of signals to residues in the protein sequence is defined to be S(nG,nB,nE,nU) = 

wGnG − wBnB − wEnE + wUnU, where nG is the number of good connections (i.e., 

agreements between chemical shifts from different signal tables), nB is the number of bad 

connections (i.e., disagreements between chemical shifts from different signal tables), nE is 

the number of assignment “edges” (i.e., connections that can not be tested due to gaps 

between the residues to which signals have been assigned), and nU is the total number of 

rows from all signal tables that have been “used” (i.e., assigned to specific residues). In 

evaluating the connections, two chemical shifts are considered to agree when the square of 

their difference is less than the sum of their squared uncertainties.

The mcassign2b program seeks to maximize the score, which means maximizing the 

numbers of good connections and used signals and minimizing the numbers of bad 

connections and edges. Typically, the initial assignments at each residue are “null”, meaning 
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that no signals are assigned to any residue. In each Monte Carlo attempt, the assignment 

from one randomly chosen signal table at one randomly chosen residue is changed (or 

replaced by a null assignment) and the concomitant change in score ΔS is evaluated. The 

attempt is then accepted or rejected according to the standard Metropolis condition [26]. 

That is, the attempt is accepted only if exp(ΔS) is greater than a random number between 0.0 

and 1.0. As the run proceeds, the score function coefficients are increased from their 

minimum their maximum values, making the acceptance probability decrease toward zero.

Compared with the original mcassign2 program described by Hu et al. [24], our current 

mcassign2b program includes two additional features: (1) Rather than starting with null 

assignments, one can start with a set of tentative or partial assignments, determined from an 

earlier MCSA run or from other information; (2) Rather than increasing the score 

coefficients linearly from their minimum to their maximum values, the score coefficients 

can remain constant once the acceptance probability falls to a specified value, then increase 

to their maximum values toward the end of a run. These features were added to facilitate 

applications to larger proteins, as described by Bayro et al. [22]

It should be noted that many other research groups have developed and applied automated or 

computer-aided methods for obtaining resonance assignments from multidimensional NMR 

spectra [27–43], including methods that are conceptually related to the MCSA algorithm 

[35, 40]. The point of this article is not to demonstrate that a particular algorithm or program 

is the best choice for resonance assignments, but rather to illustrate how simulations can 

provide useful insights into various factors and requirements related to the uniqueness of 

assignments. Other algorithms or programs can certainly be used to accomplish the same 

ends.

Simulated assignments for two proteins with different secondary 

structures

Choice of proteins and construction of 3D spectra

For the simulations described below, two proteins with similar sizes and with nearly 

complete 15N and 13C chemical shift assignments from solution NMR were chosen: (1) The 

147-residue catalytic domain of the Bacillus anthracis sortase protein SrtC, whose structure 

was reported by Robson et al. [44] (Protein Data Bank code 2LN7, BioMagResBank code 

18152); (2) The 166-residue N-terminal domain of the mixed-lineage kinase domain-like 

(MLKL) protein, whose structure was reported by Su et al. [45] (Protein Data Bank code 

2MSV, BioMagResBank code 25135). As shown in Figure 2, these two proteins have quite 

different secondary structure compositions, with SrtC being primarily β-strands and MLKL 

being primarily α-helices.

For each protein, four signal tables representing artificial 3D solid state NMR spectra were 

constructed from the reported solution NMR chemical shifts. Rows in the first table, 

representing an NCACX spectrum, contain chemical shifts of Ni, COi, Cαi, and Cβi, i.e., 

backbone amide nitrogen, backbone carbonyl carbon, α-carbon, and β-carbon of residue i. 

Rows in the second table, representing an NCOCX spectrum, contain chemical shifts of 

Ni+1, COi, Cαi, and Cβi. Rows in the third table, representing a CONCA spectrum, contain 

Tycko Page 4

J Magn Reson. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemical shifts of COi−1, Ni, and Cαi. Rows in the fourth table, representing a CANCA 

spectrum, contain chemical shifts of Cαi, Ni, and Cαi−1. For SrtC, the NCACX, NCOCX, 

CONCA, and CANCA tables contained 119, 116, 110, and 116 signal rows, respectively. 

For MLKL, these tables contained 148, 148, 145, and 147 signal rows, respectively. The 

numbers of signal rows do not equal the numbers of residues in the protein sequences 

because certain chemical shift values are not available, especially for residues 1–6, 22, 38–

41, 54, 65–74, 115, 122–124, 132, and 146 of SrtC and for residues 1–12, 52, 53, 65, 66, 93, 

104, 106–108, 134, 135, 137, and 138 of MLKL.

Sidechain chemical shifts other than those of β-carbons are not included explicitly in the 

NCACX and NCOCX signal tables. In our experience, crosspeaks to sidechain carbons 

beyond β-carbons are often weak in experimental spectra, especially in the case of 3D 

NCOCX spectra, and do not contribute much information about connections between 

different 3D spectra. Sidechain chemical shifts beyond Cβ are more important for 

establishing residue-type assignments, which are included explicitly in the signal tables.

Chemical shift assignments from the BioMagResBank and signal tables for mcassign2b are 

contained in Supporting Information.

Dependence on chemical shift uncertainties

First, the dependence of MCSA results on the assumed uncertainties in chemical shift values 

was examined. Uncertainties of 0.1, 0.2, 0.3, 0.4, 0.6, and 0.8 ppm were tested. For each 

condition, 10 independent MCSA runs were performed, with 2 × 108 attempts in each run. 

Score coefficients wG, wB, wE, and wU had minimum values of 0.0, 2.0, 0.0, and 0.0, and 

maximum values of 10.0, 50.0, 2.0, and 2.0. Each run was executed in approximately 200 s, 

using one core of an Intel Xeon E5640 processor. After each run, the final values of nG, nB, 

nE, and nU were stored and the final assignments of NCACX signals were compared with 

the correct NCACX assignments.

Results for SrtC and MLKL are summarized in Tables 1 and 2, which report the number of 

successful runs and the maximum number of incorrect assignments of NCACX signals (i.e., 

the largest number of NCACX signal rows that were assigned to the wrong residue) in the 

successful runs for each condition. Here, a successful run is defined as one for which the 

final value of nB was zero and the final value of nU equaled the total number of signal rows 

in all signal tables, i.e., a run that produced assignments that were fully consistent with 

information in the input files (but were not necessarily correct). Runs that produced 

assignments with bad connections or did not use all available signals were considered 

unsuccessful. Table 1 shows that, for SrtC, all successful runs with uncertainties of 0.3 ppm 

or less produced the correct assignments. However, larger uncertainties produced 

assignments that were fully consistent with the input files, but nonetheless were not entirely 

correct. Table 2 shows that, for MLKL, uncertainties above 0.1 ppm produced successful 

runs with incorrect assignments.

These results highlight the complexity of the resonance assignment problem. Even with 

ideal data from four 3D spectra, including unambiguous residue-type assignments of all 

signals, it is possible to find assignments that include all available signals and are internally 
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consistent, but still contain errors, unless the chemical shift uncertainties are quite small. 

Moreover, proteins with different sequences and secondary structures can present 

significantly different assignment difficulties.

Dependence on the number of 3D spectra

Next, the dependence of MCSA results on the number of available 3D spectra was 

examined, using either three (NCACX, NCOCX, CONCA) or two (NCACX, NCOCX) 

signal tables. As shown in Table 1, eliminating the CANCA data did not degrade the quality 

of the final NCACX assignments for SrtC, as no incorrect assignments from successful runs 

were observed with chemical shift uncertainties of 0.3 ppm or less. Additionally eliminating 

the CONCA data produced incorrect assignments with 0.3 ppm uncertainty. As shown in 

Table 2, eliminating the CANCA data also did not degrade the quality of final NCACX 

assignments for MLKL, but additionally eliminating the CONCA data led to incorrect 

assignments even with 0.1 ppm uncertainty in chemical shifts. These results suggest that 

information about sequential correlations of Cα chemical shifts may not be important in the 

assignment process, at least when unambiguous residue-type assignments are available, 

while sequential correlations of CO and Cα chemical shifts may be more valuable.

Effect of residue-type ambiguity

The assumption of entirely unambiguous residue-type assignments is rather unrealistic. 

Although certain residues, such as Ala, Ser, Thr, and Gly, can be reliably distinguished from 

others by their characteristic Cα and Cβ chemical shifts, most other residue types can not be 

identified unambiguously without observing at least several sidechain chemical shifts. 

Crosspeaks to sidechain sites beyond Cβ are often weak, absent, or difficult to identify in 3D 

spectra that are used for resonance assignments. Therefore, the effect of residue-type 

ambiguity on resonance assignments was examined next. Specifically, the NCACX signal 

tables were modified by replacing E and Q residue-type assignments with EQ residue-type 

assignments (meaning that Glu and Gln signals could be assigned to either Glu or Gln), H 

and W with HW, R and K with RK, D and N with DN, and F and Y with FY. Residue-type 

assignments in other signal tables were made more ambiguous, since sidechain signals are 

generally weaker in experimental NCOCX spectra and are absent from CONCA and 

CANCA spectra. Specifically, residue-type assignments were grouped as EQ, MKRHW, 

NDL, and FY in NCOCX signal tables and as NDLKMRHQEWFYC and VPI in CONCA 

and CANCA signal tables. Somewhat surprisingly, introduction of these residue-type 

ambiguities did not significantly affect the success rates of MCSA runs or the accuracy of 

NCACX assignments for either SrtC or MLKL, as shown in Tables 1 and 2. Greater 

ambiguities must eventually lead to inaccurate assignments, but this was not tested.

Effect of “invisible” segments

Finally, the effect of “invisible” segments was examined by eliminating signals from the 

grey-colored segments in Figure 2 from the signal tables. Essentially, signals from long 

stretches of irregular secondary structure, which might conceivably be attenuated by 

dynamic disorder in the solid state, were eliminated. Signals from β-strands in SrtC and α-

helices in MLKL were retained, along with signals from relatively short loops. For SrtC, 65 

NCACX signal rows, 63 NCOCX signal rows, 62 CONCA signal rows, and 64 CANCA 
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signal rows were retained. For MLKL, the corresponding numbers were 124, 124, 123, and 

124.

Although one might expect the introduction of “invisible” segments to impair the accuracy 

of the final resonance assignments (since bad connections could be avoided by creating 

additional gaps between segments with assigned signals), in fact the results in Tables 1 and 

2 show no such effect for either SrtC or MLKL.

Discussion

Several aspects of these resonance assignment simulations merit further discussion. First, it 

is clear that narrow NMR lines are a prerequisite for accurate assignments for proteins 

comprised of ~150 residues, even when high-quality 3D spectra can be obtained. Strictly 

speaking, the chemical shift uncertainties discussed above and indicated in Tables 1 and 2 

are not the same as NMR linewidths, since the uncertainty can be significantly less than the 

linewidth if the signal-to-noise ratio is high. For example, a simple exercise in which noise 

is added to an ideal Gaussian lineshape and the result is fit with a Gaussian function 

indicates that the uncertainty in the peak position is less than one third of the full-width-at-

half-maximum when the signal-to-noise (i.e., the ratio of the true peak height to the root-

mean-squared noise) is 5:1. Interestingly, the requirement on chemical shift uncertainties is 

markedly different for the two proteins considered in these simulations, with smaller 

uncertainties being required in the case of MLKL. This difference is attributable to the lower 

degree of spectral dispersion for MLKL, as illustrated by the simulated 2D spectra in Figure 

3, which is in turn attributable to the high αhelix content of the MLKL structure.

Second, the simulations suggest that 3D CANCA spectra do not contain important 

assignment information that is complementary to the information in 3D NCACX, NCOCX, 

and CONCA spectra. This observation may have practical implications, since acquisition of 

a 3D CANCA spectrum can be time-consuming. Additional simulations on proteins with 

different sequences and secondary structures are required before the generality of this 

observation can be established. Simulations of this type, in which the numbers and 

properties of data sets are varied, can be a useful tool for designing efficient assignment 

strategies.

Third, although assignment simulations for SrtC and MLKL suggest that the presence of 

“invisible” segments does not increase the difficulty of determining unique resonance 

assignments, the situation may be different for other proteins. In particular, proteins with 

repetitive sequences are problematic, as it becomes difficult to assign signals uniquely to 

repeated sequence motifs if some of the repeats are “invisible” [20].

Fourth, complete assignment of all NMR signals is not necessarily a prerequisite for 

structural or dynamical studies. However, it is important to identify accurately the signals 

that do not have definite site-specific assignments. This identification can be made by 

comparing results of multiple MCSA runs.

Although only 15N and 13C chemical shifts are considered in the simulations described 

above, multidimensional solid state NMR spectra of proteins that include 1H chemical shifts 
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are also obtained in some experiments [46–48]. Simulations that include 1H chemical shifts 

can be carried out with the mcassign2b program, without any modifications, and could be 

used to design assignment strategies for such experiments.

Finally, as shown in Tables 1 and 2, the number of successful MCSA runs decreased when 

the chemical shift uncertainties were large. Apparently, the “score landscape” (analogous to 

a potential energy landscape in protein folding simulations [49]) becomes rougher and the 

MCSA algorithm is more likely to become “trapped” in local score maxima. Similarly, a 

manual approach to sequential assignments is more likely to reach a “dead end” when the 

NMR linewidths are large. A larger number of attempts in each MCSA run generally 

increases the number of successful runs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Unique resonance assignments can be difficult to obtain

• The MCSA assignment algorithm can test for uniqueness

• Assignment simulations on artificial 3D data provide insights

Tycko Page 12

J Magn Reson. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Flow chart for the Monte Carlo/simulated annealing algorithm for resonance assignment, as 

contained in the program mcassign2b.

Tycko Page 13

J Magn Reson. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cartoon representations of the structures of B. anthracis SrtC catalytic domain [44] (a) and 

MLKL N-terminal domain [45] (b), as determined by solution NMR (PDB 2LN7 and PDB 

2MSV, respectively). Chemical shift values for these two proteins (BMRB 18152 and 

BMRB 25135) were used to generate artificial 3D solid state NMR spectra for assignment 

simulations. Each protein is viewed from two directions, approximately 90° apart. Signals 

from segments in grey were taken to be “invisible” in certain simulations, as discussed in the 

text.
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Figure 3. 
Simulated 2D N-Cα (a) and Cα-Cβ (b) spectra of SrtC and MLKL.
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