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If you search a sequence database for homologs of a structural
RNA, you don’t want to search just for linear sequence simi-
larity; you also want the search program to consider whether a
candidate sequence can be folded into a similar base-paired
secondary structure. A powerful and general class of compu-
tational methods for combining primary sequence and sec-
ondary structure information in RNA homology searches
was independently introduced just over 20 years ago by
Yasu Sakakibara (working in the lab of David Haussler) and
by myself (working as a postdoc with Richard Durbin). The
20th anniversary of the founding of the RNA journal seems
a good occasion to look back at the 20 year development arc
of “stochastic context-free grammar” (SCFG) methods and
software for structural RNA homology searches.

My interest in RNA sequence analysis started when I was
working on the three catalytic group I introns in bacterio-
phage T4. The T4 introns were discovered in the mid-
1980’s by Marlene Belfort, David Shub, and others, not
long after Tom Cech’s lab had made the landmark discovery
that the Tetrahymena group I intron is a self-splicing catalytic
RNA. When I arrived at the University of Colorado at
Boulder as a new PhD student, it was easy to get caught
up in the excitement about catalytic RNAs and group I in-
trons, especially amongst the close-knit “RNA Club” labs at
Boulder, including the Cech and Uhlenbeck labs in chemis-
try, and the Gold and Yarus labs in biology.

What caught my interest about the T4 introns wasn’t so
much the chemistry of their catalysis, it was more the biology
of why they were in T4 at all. Why would a highly streamlined
bacteriophage genome keep three large introns around? My
PhD advisor Larry Gold and my co-mentor David Shub
had concocted an idea for a possible regulatory function
for the T4 introns. The idea was based on the fact that the
mechanism of group I splicing requires an exogenous guano-
sine, and the fact that group I introns seem to occur prefer-
entially in genes having to do with nucleotide metabolism,
GTP consumption, and/or nucleotide-like cofactors. For ex-
ample, two of the three T4 introns were in genes encoding
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key enzymes in deoxynucleotide synthesis: td, the gene for
thymidylate synthase, and nrdB, one of the two subunits of
the aerobic ribonucleotide reductase. Larry and David hy-
pothesized that these introns were regulatory, with splicing
rates responsive to intracellular small molecule concentra-
tions—perhaps GTP itself.

The direct prediction of the Gold/Shub model is that if you
constructed an intronless phage, it would be impaired for
growth under conditions where it needed to down-regulate
td and nrdB. However, two years of my work failed to show
any mutant phenotype for the precise triple intron deletion.
Indirectly, their idea also made me very interested in search-
ing for more group [ introns, not only in T4 but also in other
organisms, because you’d expect to see that they too would be
in key genes for DNA synthesis, nucleotide metabolism, or
GTP consumption.

It seemed to me that it ought to be feasible to just search
DNA sequences computationally for new group I introns.
The 169 kilobase genome sequence of phage T4 was then
nearing completion, thanks to the efforts of Betty Kutter
and others. The first fast sequence homology searching pro-
grams had begun to appear (Pearson and Lipman’s FASTA in
1988, followed quickly by Altschul, Gish, Miller, Myers, and
Lipman’s first version of BLAST in 1990), and sequence da-
tabases were starting to grow quickly. The power of identify-
ing homologs in sequence databases by computational
methods was in the air.

My problem was that group I introns generally don’t share
much similarity in their linear sequence. Programs like

'Tt turned out, from work by Marlene Belfort and others, that the reason T4
has these group I introns is that it can’t get rid of them. Many group I introns
are mobile elements, encoding “homing” DNA endonucleases that catalyze
an efficient directed gene conversion. For introns with active homing endo-
nucleases, mixed infections of intron-plus and intron-minus phage are con-
verted to almost all intron-plus progeny. Nonetheless, the striking and
unexplained preference of group I introns for certain host genes continues
to follow the Gold/Shub idea. For example, in 1990, the B. subtilis phage
SPO1 was found to have a group I intron in its DNA polymerase gene. In
1996, the third T4 intron-containing gene, sunY, was found to encode the
T4 anaerobic ribonucleotide reductase, and has now been renamed nrdD.
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BLAST didn’t do a good job of finding them. Group I introns
do, however, have distinctive conserved secondary structures,
easily recognized by eye, at least by gurus like Eric Westhof
and Francois Michel, and I got fairly good at it too. For a
problem so readily solved by eye (and this distinguishes com-
parative analysis of RNA secondary structure from, say, pro-
tein structure prediction), it seemed that there ought to be
computer methods for recognizing both sequence and struc-
ture similarity in RNAs. There had been some work in the
area, including pioneering work by Daniel Gautheret and
Thomas Dandekar, but the available methods were relatively
simple pattern matching programs that worked all right for
some small RNA structures, but not for complex structures
like a group I intron. I wanted the equivalent of BLAST align-
ment scores, but for RNA secondary structure.

I was doubly fortunate to be at Boulder. Boulder was not
just a mecca for RNA research, but also for computational
biology, well before computational biology was a thing.
Gene Myers (co-developer of BLAST) and David Haussler
had come through Boulder as PhD students, and Gary
Stormo was on the faculty. I played basketball with Gary on
Tuesday mornings, so I asked him. Gary told me that general
methods for RNA structure/sequence similarity search were
still an open problem. My reaction to this was along the lines
of “come on, how hard could this be?” I started learning
about computational RNA folding algorithms from reading
Michael Zuker’s papers, which Gary recommended to me. I
didn’t get anywhere. The problem looked too hard.

In the last days that I was in Boulder, before I left for a post-
doc at the MRC Laboratory in Molecular Biology in the UK,
Stormo gave me a preprint of a new paper from David
Haussler’s postdoc Anders Krogh. The Krogh/Haussler pre-
print introduced a method called “hidden Markov models”
(HMMs) for formalizing linear sequence alignment methods.
Gary told me, this manuscript is going to be a big deal. I duly
put it in my backpack and didn’t read it. Soon after [ arrived in
Cambridge, Richard Durbin (who later became my postdoc-
toral mentor, after I committed to switching to computation-
al biology) handed me another copy of the same Krogh/
Haussler preprint and said, this manuscript is going to be a
big deal. I decided that ok, maybe I should read it.

Both the mathematics and the writing in Krogh’s paper
were beautiful and clear, clear enough for a biologist like
me to understand. HMMs provide a general way of thinking
about probabilistic sequence matching problems. Like stan-
dard sequence alignment in programs like BLAST, an
HMM compares two sequences by having one “state” repre-
senting each residue in your query sequence (or consensus
profile) to one residue in your target sequence at a time,
growing an alignment from left to right. Inspired by
Krogh’s paper, one fall weekend afternoon in Cambridge I
started thinking and doodling in my notebook. What if a
“state” represented a base pair? What if it corresponded to
two residues in the target sequence you were aligning to, so
you had a three-way alignment of one model state to two tar-
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get sequence residues? What if you did the alignment from
inside out, adding one or two residues at a time to either or
both sides of a growing alignment, as opposed to left to right,
one residue at a time? (This inside-out, base-pair-adding style
of “dynamic programming” algorithm for RNA was already
familiar to me from the way that the Zuker RNA folding al-
gorithm works.) Suddenly I realized I’d solved the problem!
You could make an HMM:-like model of a structural RNA
where your model was a binary tree (reflecting the base-
pairing consensus structure of an RNA) instead of a line (a
consensus primary sequence, in the Krogh/Haussler profile
HMMs). Your model would take into account both sequence
and structure conservation scoring in a mathematically con-
sistent way that was the natural extension of BLAST scores to
RNA alignment. An efficient algorithm existed for comput-
ing optimal RNA structural alignments to genome sequences.
After a nervous week of double-checking that my algorithms
were indeed correct, I showed my idea to Durbin. Durbin im-
mediately said, well, sure, that’s a stochastic context-free
grammar.

Stochastic context-free grammars (SCFGs) are the next
level up from HMMs in a hierarchy of “formal grammar”
methods used to model symbol strings. They were well
known in the signal processing, speech recognition, and lin-
guistics communities—though not to me. SCFGs had seen
some limited application in speech modeling, but human
language doesn’t tend to have many strong nested pairwise
correlations, which is what SCFGs excel at modeling. In con-
trast, the base pairs of a non-pseudoknotted RNA secondary
structure are all nested pairwise interactions, perfectly suited
to SCFG methods. Later I took perverse pleasure in giving
talks in speech engineering groups, describing the RNA
structure/sequence alignment problem as an introductory
teaser. Old hands in SCFGs would be vibrating in their seats.
Finally, a problem that the technology was suited to solving!

Of course, the fact that SCFGs were a well-known technol-
ogy looking for an application in computer engineering de-
partments meant that some real computer scientist close
enough to RNA biology was bound to see the connection
too, without needing to reinvent the wheel the way I had.
Sure enough, I soon heard that Yasu Sakakibara, later to be-
come a friend of mine, was already working on SCFGs for
RNA sequence/structure alignment within the Haussler lab
at Santa Cruz. Yasu and I coordinated the submission of
our two manuscripts in 1994.

There is a big difference between the sort of proof of prin-
ciple that suffices as a publishable result in computational
biology, as opposed to what it takes to make a truly useful
software tool. The algorithms that Yasu and I described
were correct, but prohibitively expensive in both memory
and time. Memory requirements limited us to structural
RNAs of not much larger than 100150 nt. Group I introns
were well out of reach. Time requirements meant that even
for small RNAs, we could only afford to search small
amounts of target sequence, not whole sequence databases.
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We made the most of what we had, for smaller structural
RNAs. I produced a first implementation of general profile
SCEFG techniques, called COVE. Todd Lowe, my first gradu-
ate student at Washington University, developed a program
for finding tRNA genes by putting two existing tRNA
search programs, tRNAscan (from Gwennaele Fichant and
Christian Burks) and EufindtRNA (from Giulio Pavesi’s
group), as fast filters in front of a slow but powerful profile
SCFG of tRNA consensus. Todd’s tRNAscan-SE program is
still in use today for genome annotation.

Slowly and steadily over time, we whittled down the com-
putational problems. In 2002, I found a new algorithm that
solved the memory problem. I implemented that as the heart
of a new software suite called Infernal, which replaced COVE.
The new memory-efficient algorithm cleared the way for us-
ing these methods more widely, because although you can’t
do much about not having enough memory, you can brute
force your way around a speed problem in various ways.

In 2003, Sam Griffiths-Jones, Alex Bateman and colleagues
at the Sanger Centre in Cambridge released the first version
of the Rfam structural RNA families database, using that early
version of Infernal. Today Rfam is one of the most compre-
hensive databases of RNA families, widely used for genome
annotation of structural RNA homologs. Rfam worked
around the speed issue by using low-stringency BLAST
searches as a pre-filter to identify subsequences for subse-
quent Infernal scanning. This was less than ideal, but was
the best compromise at the time.

With the memory limitation solved, then speed advances
started to come, piece by piece. In 2004, Zasha Weinberg,
a PhD student in Larry Ruzzo’s lab in computer science
in Seattle, started publishing acceleration algorithms for
Infernal. Zasha then moved to a postdoc in Ron Breaker’s
group at Yale and started using Infernal routinely as part of
the Breaker lab’s remarkable run of using bioinformatics
to prospect for new riboswitches. Eric Nawrocki joined
my lab as a PhD student, also in 2004, and his first project
was another algorithmic acceleration that synergized with
Zasha’s work. Eric took responsibility for the growing suite
of acceleration methods in the Infernal code, and he soon
became the overlord of Infernal development, and a co-
czar of Rfam as well. Meanwhile I started concentrating on

the problem of accelerating profile HMM searches (the
Krogh/Haussler methods, whose use were also limited by
their computational requirements) in my HMMER software,
working with Michael Farrar, a computer systems engineer in
the telecommunications industry whose spare-time hobby
was accelerating sequence alignment algorithms. After algo-
rithms enabling 100- to 1000-fold HMMER accelerations
were released in 2011, based on Farrar’s work, Eric incorpo-
rated the same techniques into Infernal.

This long arc of work reached a big landmark this year. In
its most recent release, Rfam has discarded its BLAST filters.
For the first time, the Rfam team is using native Infernal
searches for all 2450 structural RNA families in the database.
Atlong last, SCFG search methods for RNA structure are now
fast and efficient enough that they can be used systematically,
for basically any RNA, on essentially any sequence database.
Eric’s current version of Infernal is about 10,000-fold faster
than my original 2002 version. Instead of taking cpu-centuries
to search the nonredundant sequence database for an RNA
structure the size of a group I intron, now that search can
be done in a couple of cpu-days. Still expensive, but entirely
feasible.

For the 2015 Rfam release paper, one of the computational
experiments that Eric did was to compare the old BLAST fil-
ter pipeline to the new native Infernal searches. We expected
that using the BLAST filters had been compromising our
detection sensitivity for RNAs that have a strongly conserved
secondary structure but weakly conserved sequence. Eric was
looking for Rfam families with the biggest increase in number
of putative detected homologs. I was looking over his results
and there at the top of Eric’s ranked list: over 10,000 putative
new group I introns detected by the native Infernal search but
not with Rfam’s previous pipeline.

It feels like we’ve come full circle. It’s been so long that no
one in my lab works on group I introns any more. We had to
go so far down a rabbit hole of algorithm development and
computer engineering to make the tool practical, that we nev-
er went back and used our own software for the original rea-
son I wanted to have it. But now as I write this, Eric and Tom
Jones in my lab are happily sifting through all these new pu-
tative group I introns—at long last, the results of the search
that I wanted to do asa PhD studentin Larry’s lab 20 years ago.
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