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Abstract

Among health behaviors, physical activity has the most extensive record of research using passive 

sensors. Control systems and other system dynamic approaches have long been considered 

applicable for understanding human behavior, but only recently has the technology provided the 

precise and intensive longitudinal data required for these analytic approaches. Although sensors 

provide intensive data on the patterns and variations of physical activity over time, the influences 

of these variations are often unmeasured. Health behavior theories provide an explanatory 

framework of the putative mediators of physical activity changes. Incorporating the intensive 

longitudinal measurement of these theoretical constructs is critical to improving the fit of control 

system model of physical activity and for advancing behavioral theory. Theory-based control 

models also provide guidance on the nature of the controllers which serve as the basis for just-in-

time adaptive interventions based on these control system models.

I. INTRODUCTION

Smoking, poor diet, and inadequate physical activity are the leading causes morbidity and 

mortality [1]. Of these health risk behaviors, physical activity has made the greatest 

advances in measurement via wearable sensors. Accelerometer algorithms have become 

increasingly sophisticated and precise, providing detailed, moment-by-moment monitoring 

of energy expenditure and types of physical activity [2, 3]. These advances in wearable 

physical activity sensor have made physical activity a promising area for control systems 

and other system dynamic approaches.

Behavior has been considered amenable to a control systems approach for many years [4, 5], 

and Carver and Scheier have argued that dynamical regulatory systems are critical to 

understanding behavior [6]. Until recently, however, health behavior data has not been 

precise enough or longitudinally intensive enough to utilize computational modeling 

approaches. Wearable physical activity sensors now provide precise and temporally dense 

information on the activity of individuals throughout the day. Unfortunately, precise and 
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temporally dense monitoring of the putative mediators that influence physical activity has 

not advanced as rapidly as the monitoring of the behavior itself.

II. THEORIES OF HEALTH BEHAVIOR

For nearly a century, health behavior theories have served as a guide for identifying 

potential influences of these behaviors and developing interventions that target these 

influences. Although a comprehensive review of health behavior theories is beyond the 

scope of this paper, a brief summary of the major theories seems warranted, particularly for 

those from outside the health behavior field who are applying computational modeling to 

health behavior problems. Regardless of scientific field, a theory is a systematic set of 

concepts, definitions, and propositions that specify the relationship among concepts for the 

purposes of explaining or predicting phenomena [7]. Theories are derived from 

observational data and hypotheses but also serve as the basis for determining what to 

observe and hypothesize. Therefore, for control systems modeling of physical activity, these 

theories offer guidance on the inputs of the system that influence physical activity.

In the 1950s, the U.S. Public Health Service began offering mobile tuberculosis (TB) 

screenings, and it was assumed that greater convenience and access would result in everyone 

getting screened, but screening rates did not increase appreciably [8]. Studies to understand 

why these screenings were not more effective led to the development of the Health Belief 

Model (HBM). HBM posits that an of the illness (e.g. TB) interact with the perceived 

benefits and barriers of engaging in the health behavior (e.g. chest x-ray screening) and with 

cues to action to increase or decrease the likelihood of engaging in the behavior [9]. Applied 

to physical activity, HBM posits that removing barriers to physical activity (e.g. improved 

access to places to walk and exercise) is a necessary but not sufficient condition to increase 

physical activity, and that individuals must also: a) believe that that there were benefits to 

regular physical activity that outweigh any remaining barriers, b) be cued or reminded to 

engage in physical activity, and c) believe that failing to engage in regular physical activity 

will result in serious consequences to their health and well-being. Many theories have been 

developed since HBM, and it is an incomplete model of behavior, but it continues to be the 

basis for many health behavior interventions.

The Theory of Reasoned Action and its subsequent revision as the Theory of Planned 

Behavior (TPB) incorporated some HBM concepts within its added social influences such as 

normative perceptions [10]. TPB also placed an intermediate conceptual step, behavioral 

intention (i.e. readiness to perform a given behavior), between these theoretical mechanisms 

and the actual behavior. Compared to HBM and applied to physical activity, TPB would 

posit that individuals are more likely to engage in physical activity if they a) care about the 

opinions of others, and b) believe that others are engaging in regular physical activity. 

Although both HBM and TPB have been useful for developing behavior change 

interventions, they have been criticized for their reliance on subjective cognitive influences 

that are difficult to measure [11].

Social Cognitive Theory (SCT) shares communalities with HBM and TPB but was 

developed from a different tradition more aligned with the behavioral learning principles of 
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classical (or respondent or Pavlovian) and operant conditioning. Social Learning Theory 

expanded on the experiential learning of classical and operant conditioning to include 

observational or vicarious learning or modeling [12]. A subsequent reformulation to what is 

now known as Social Cognitive Theory included internal cognitive constructs such as self-

efficacy and other perceived phenomena [13]. SCT also makes explicit the bidirectional 

relationship of behavior and the environment via the concept of reciprocal determinism [13]. 

Applied to physical activity, SCT posits that changes in physical activity are the result of 

self-efficacy (i.e., confidence in one’s ability to engage in physical activity), outcome 

expectancies (i.e., expectation of positive and negative outcomes from engaging in physical 

activity), self-management skills (i.e. the ability to set goals and monitor progress) and a 

range of environmental factors that facilitate or impede engaging in physical activity.

Although there are numerous theories of health behavior, HBM, TPB, and SCT have been 

among the most commonly used theories in the health behavior intervention literature [14]. 

While these theories are widely used for health behavior intervention development, they also 

have significant weaknesses. The application of these theories far exceeds the empirical 

support for these theories, and the lack of evidence for some of these constructs and their 

interrelationships is well-documented [14]. Moreover, these intrapersonal theories of 

behavior have been predominate the behavioral intervention literature while higher level 

factors (e.g. interpersonal, community, organizational, policy) and their related theories and 

models are underutilized in intervention development [15].

III. APPLICATIONS OF DYNAMICAL SYSTEMS MODELING TO HEALTH 

BEHAVIOR THEORY

These theories or health behavior can be viewed as dynamical systems in which various 

inputs (i.e., theoretical constructs) influence the output (i.e. behavior). As noted earlier, the 

concept that behavior could be understood as a dynamical system is not new, but only 

recently have dynamical system models been applied to existing health behavior theories. 

The first to do so was Navarro-Barrientos, Rivera, and Collins who developed a control 

system fluid analogy model for Theory of Planned Behavior (TPB) [16]. Orr and colleagues 

subsequently proposed a parallel constraint dynamical model of its precursor, the Theory of 

Reasoned Action [17]. Rivera and colleagues are developing a dynamical systems model of 

SCT [18].

Dynamical system modeling of health behavior theories has numerous advantages. Health 

behavior theories typically describe constructs that influence behavior and their 

interrelations but do not specify computational relationships among these constructs. 

Therefore, system identification efforts for health behavior theories improve the specificity 

and precision of the hypothesized relationships, making these theories more testable, and 

more refutable. Health behavior theories are based primarily on efforts to explain differences 

between individuals, not within individuals over time [19]. Dynamical system modeling 

facilitates the study of the interrelations of variables within individuals over time and 

provides a more comprehensive analytic technique for testing theories of human behavior 

[16, 19, 20, 21]. Since the process of behavior change is a within-person dynamic, an 

understanding of how behaviors change within a person over time based on the dynamical 
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systems that influence the behavior has considerable potential to improve interventions, 

especially just-in-time adaptive interventions (JITAI) that adjust interventions based on 

ongoing inputs.

IV. MEASUREMENT OF THEORETICAL CONSTRUCTS TO UNDERSTAND 

THE INFLUENCES OF PHYSICAL ACTIVITY

Figure 1 is a fluid analogy model of SCT, the details of which are described elsewhere [18]], 

which provides an example of the SCT variables that need to be considered to test such a 

model for understanding changes in physical activity over time in an individual or group of 

individuals. In this example, Behavior (η4) represents physical activity and is measured by 

wearable sensors (accelerometers).

One of the proximate inputs to Behavior is Cue to Action (η6). In the context of physical 

activity, these are a combination of both internal cues (e.g., feeling bored) and external cues 

in the environment (e.g. friend asks if you want to go for a walk). Therefore, many of the 

external cues may be measurable via sensors that detect the context the individual is in (e.g. 

location) and/or the behavior in which they are engaged (e.g., working at the computer, 

watching TV, talking to someone). Although sensor technologies alone are unlikely to 

provide a comprehensive assessment of all of the external cues to action (or inaction), 

current sensor technologies are able to identify a wide array of possible cues. Via a 

combination of sensors for facial expressions and psychophysiology, it is also possible to 

detect some internal affective states [22], but until these technologies are field tested, 

validated, and unobtrusive, prompted self-reports of intrapersonal states are needed.

Two advances in self-report measurement are important to consider for testing theory via 

dynamic systems. One of these advances is the Computer Adaptive Testing (CAT) via Item 

Response Theory. Item Response Theory (IRT) has been used in the educational field for 

decades but has only recently been applied to health and health behavior constructs. The 

Patient-Reported Outcomes Measurement Information System (PROMIS) is perhaps the 

most well-known of these efforts [23]. IRT-developed item banks have the potential to 

precisely estimate the underlying latent trait efficiently. While computerized administration 

of self-report measures has been available for some time, the combination of computerized 

administration and IRT psychometric calibrations provides the basis for computerized 

adaptive testing (CAT) in which items are flexibly administered based on prior responses 

from items in the bank, resulting in maximum precision for minimum respondent burden 

[24].

Ecological Momentary Assessment (EMA) is the second advance in self-report 

measurement. A valid criticism of retrospective self-report is recall bias, but by prompting 

self-reports in real-time throughout the day, EMA or experience sampling minimizes recall 

bias, increases ecological validity, and allows for an intensive longitudinal analysis of the 

processes that influence behavior over time that are critical to dynamical system models of 

the influences of health behaviors [25]. EMA was initially implemented on PDA (Personal 

Digital Assistant) platforms, but the advent and rapid penetration of smartphone use, 

especially in the U.S., has provided a ubiquitous platform for EMA administration. The 
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potential to combine EMA with CAT could allow for frequent and precise self-report while 

also minimizing habitual responding by varying the items administered [26]. When further 

integrated with the sensor technologies described above, event-based reporting can be 

performed without relying on the individual to identify the event.

Therefore, until sensor technologies develop that allow for the passive sensing or observing 

of these theoretical constructs, the combination of EMA and CAT provides researchers with 

frequent and precise measures of the other SCT variables described in Figure 1. For 

example, there are a number of well-accepted self-report measures of Self-report (η3) and 

Outcome Expectancy (η2) [27]. These measures, however, have been used predominantly in 

cross-sectional research and would need to be modified for intensive longitudinal, EMA 

administration.

Self-management Skills (η1) potentially could be assessed as a performance measure via a 

smartphone application in which the participant sets physical activity goals and monitors 

their progress toward those goals, with application use and the quality of the goal setting and 

monitoring techniques serving as indicators of self-management skills.

This example has focused on the measurement of the reservoir inputs to physical activity 

based on this SCT fluid analogy, but similarly, the various inputs to one of these reservoirs, 

e.g., self-efficacy, could be modeled and tested by measuring over time the various inputs to 

self-efficacy (i.e., perceived social support, observed behavior, intrapersonal states).

V. IMPLICATIONS FOR ADAPTIVE INTERVENTIONS

Beyond testing and refining theories of health behavior, the testing of dynamical systems 

based on theory also provide the basis for just-in-time adaptive interventions (JITAI) that 

can be delivered via mobile or wireless technologies and adapted based on prior inputs. 

Many of the initial efforts in JITAI have involved conditional logic algorithms, often with 

limited empirical support for the adaptations [19]. Dynamical systems, especially tested 

systems, would provide a rigorous empirical basis for JITAI that only reacts to inputs but 

also proactively anticipates the need for adaptive interventions. For example, Rivera and 

colleagues have shown how a control systems model can be used to optimize intervention 

intensity over the course of treatment [20]. The integration of intervention optimization with 

computational models of health behavior theories involves the addition of “controllers” to 

better regulate the system and “close the loop.” As illustrated by Rivera and colleagues, an 

intervention essentially shifts the variability from the behavioral outcome to the controller. 

Modifying the type and intensity of the intervention over time to maintain a desirable level 

of the outcome is very consistent with the adaptive potential of automated, technology-based 

interventions [19]. More importantly, these computational models can integrate theory 

testing and intervention testing, reducing the current disconnect between theory and practice.

VI. CONCLUSION

Wearable sensor technologies have produced precise measure, temporally dense measures of 

physical activity that can be used for dynamical system modeling. The challenge, however, 

is to identify the inputs that influence physical activity and health behavior theories provide 
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a framework for such identification. While some of these theoretical constructs can be 

detected via sensor technologies, others are most efficiently measured via prospective and 

prompted self-reports throughout the day. The combination of CAT and EMA advances 

improve the precision while reducing the respondent burden of providing this information 

within an intensive longitudinal protocol. Utilizing current theory to guide system 

identification and modern measurement tools to assess these theoretical constructs in an 

intensive longitudinal manner provides a robust test of these theories and provides the basis 

for just-in-time adaptive interventions.
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Figure 1. 
Fluid analogy of Social Cognitive Theory (SCT)
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