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Abstract

Evaluating various algorithms for the inter-subject registration of brain magnetic resonance 

images (MRI) is a necessary topic receiving growing attention. Existing studies evaluated image 

registration algorithms in specific tasks or using specific databases (e.g., only for skull-stripped 

images, only for single-site images, etc.). Consequently, the choice of registration algorithms 

seems task- and usage/parameter-dependent. Nevertheless, recent large-scale, often multi-

institutional imaging-related studies create the need and raise the question whether some 

registration algorithms can 1) generally apply to various tasks/databases posing various 

challenges; 2) perform consistently well, and while doing so, 3) require minimal or ideally no 

parameter tuning. In seeking answers to this question, we evaluated 12 general-purpose 

registration algorithms, for their generality, accuracy and robustness. We fixed their parameters at 

values suggested by algorithm developers as reported in the literature. We tested them in 7 

databases/tasks, which present one or more of 4 commonly-encountered challenges: 1) inter-
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subject anatomical variability in skull-stripped images; 2) intensity homogeneity, noise and large 

structural differences in raw images; 3) imaging protocol and field-of-view (FOV) differences in 

multi-site data; and 4) missing correspondences in pathology-bearing images. Totally 7,562 

registrations were performed. Registration accuracies were measured by (multi-)expert-annotated 

landmarks or regions of interest (ROIs). To ensure reproducibility, we used public software tools, 

public databases (whenever possible), and we fully disclose the parameter settings. We show 

evaluation results, and discuss the performances in light of algorithms’ similarity metrics, 

transformation models and optimization strategies. We also discuss future directions for the 

algorithm development and evaluations.

Index Terms

Brain magnetic resonance imaging (MRI); deformable image registration; evaluation; registration 
accuracy

I. Introduction

Image registration is a process of transforming different images into the same spatial 

coordinate system, so that after registration, the same spatial locations in different images 

represent the same anatomical structures. Image registration, especially deformable image 

registration, is a fundamental problem in medical image computing. It is usually an 

indispensable component in many analytic studies, including studies aiming to understand 

population trends of imaging phenotypes, to measure longitudinal changes, to fuse multi-

modality information, to guide computerized interventions, to capture structure-function 

correlations, and many others (two recent comprehensive surveys can be found in [1], [2]; 

various other surveys can be found in [3]–[9]).

The past two decades have witnessed the development of many deformable registration 

algorithms. A comprehensive evaluation of different registration methods has thus become a 

research topic of interest. It is the basis for users to choose the most suitable methods for the 

problems at hand, and for algorithm developers to be better informed theoretically. A 

comprehensive evaluation is a fairly complicated problem, though. It oftentimes requires 

public databases, expert-labeling of ground truth regions/landmarks, a comprehensive 

evaluation protocol, careful tunings of parameters, considerable computational resources, 

and a proper choice of data to reflect certain registration challenges or to meet certain 

(pre-)clinical needs.

A. Literature on Evaluation of Algorithms in Brain MRI Registration

West et al. [10] evaluated 3 registration methods for multi-modal registration of the same 

subject undergoing neurosurgery, where the accuracy was measured on the fiducial markers. 

Hellier et al. [11] evaluated six methods (ANIMAL, Demons, SICLE, Mutual Information, 

Piecewise Affine, and the authors’ own method) in a database containing brain MRI from 18 

healthy subjects; they measured registration accuracy on expert-defined cortical regions. 

Yanovsky et al. [12] evaluated three methods (fluid and two variations of the authors’ own 

methods, namely symmetric and asymmetric unbiased methods), in mapping brains during 
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longitudinal scans for the detection of atrophy. They used 20 subjects from the ADNI 

database, and all images were preprocessed to exclude skull and dura. Yassa et al. [13] 

evaluated three methods (DARTEL, LDDMM, and Diffeomorphic Demons) in inter-subject 

registration of images especially at the medial temporal lobe, which is a crucial region for 

the study of memory. Christensen et al. introduced the NIREP project [14], [15], which in 

the first phase contains 16 publicly-available MR images, each having 32 expert-defined 

regions of interests (ROIs). They also defined a comprehensive set of evaluation criteria 

(including intensity-based variations, region-based overlaps, and transitivity errors). Based 

on these criteria they evaluated six methods (rigid, affine, AIR, Demons, SICLE, SLE) in 

[16]. Klein et al. in [17] evaluated 14 publicly-available registration tools for inter-subject 

registration of brain MR images. Four databases, each containing images of multiple 

subjects, were used. While it evaluated perhaps the largest number of registration tools so 

far, [17] only focused on skull-stripped, high quality, and single-site images from healthy 

subjects. To evaluate registration methods under more challenges, Klein et al. in another 

study [18] included both skull-stripped and raw images. Here, raw images refer to those 

acquired directly from scanner, prior to any image processing steps.

B. Need for a More Comprehensive Evaluation Study

While all the aforementioned studies provided insightful and informative evaluations, each 

study only tested registration methods in a specific task. For instance, for healthy subjects 

only (e.g., [11], [13], [16], [17]), for multi-modal fusion for pathological subjects only (e.g., 

[10]), for skull-stripped images only (e.g., [12], [13], [17]), for raw images only (e.g., [10], 

[11], [19]), for skull-stripped and raw images only (e.g., [18]), for single-site data only (e.g., 

[10], [11], [13], [16], [17]), and for multi-site data only (e.g., [12]). In addition, different 

evaluation studies included different registration methods for evaluation. Moreover, they 

used different parameter settings for a same registration method. As a result, the choice of 

registration algorithms seemed to be task- and database-dependent, and was sensitive to 

parameter settings.

Nevertheless, many of today’s large-scale, pre-clinical and imaging-related studies present a 

wide variety of challenges—they may contain normal-appearing and/or pathology-bearing 

images; they may contain skull-stripped and/or raw images; and they may contain images 

acquired from single- and/or multi-institutions. Facing all these possible challenges, there is 

an increasing need for registration algorithms that are publicly-available, that can widely 

apply to various tasks/databases, that can perform relatively accurately and robustly, that can 

be easily used by people with varying expertise in image registration, and that are without 

much need for parameter tunings.

While automatically and effectively tuning parameters for specific database/tasks is an 

important and active area of research (e.g., [20]–[24]), having registration algorithms that 

can be widely applicable to many tasks/databases is a very desirable property. This need 

stems not only from the size of studies, but also from the rapidly increasing number of 

studies undertaken in, for instance, translational neuroscience. Due to the lack of ground 

truth, tuning parameters is a difficult task even for technical experts. Moreover, when 

images are acquired and processed in multiple collaborative institutions, having registration 
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algorithms that perform robustly and consistently well with a fixed set of parameters 

becomes almost entirely necessary.

C. Overview and Contributions of Our Evaluation Study

Towards meeting this need, this paper evaluates 12 publicly-available and general-purpose 

registration algorithms, including an attribute-based algorithm and 11 other intensity-based 

algorithms. Our work built upon and significantly expands previous evaluation studies of the 

similar nature in many aspects.

1. Our work evaluated registration methods under various tasks and databases 

presenting a wide variety of challenges, rather than in a specific task containing 

specific challenges. We identified four typical challenges in inter-subject 

registration of brain MRI (as will be described in Section II). We chose seven 

databases, each containing images of multiple subjects, to represent some or all of 

those challenges. This helped reveal whether a registration method could be 

generally applicable and robust with regard to various challenges.

2. To reflect the robustness of registration algorithms especially in multiple large-

scale translational studies involving various tasks/databases, we fixed the 

parameters for each registration method throughout this paper (i.e., task-

independent parameter settings). Particularly, in all tasks/databases in this paper, 

we used the parameters as the ones reported in [17] whenever applicable. Using 

such parameter settings was because that the parameters had been “optimized” by 

authors/developers of each specific algorithm for the registration of skull-stripped, 

preprocessed and normal-appearing brain MR images, which is a typical task in the 

inter-subject registration [17]. We realize that this set of parameters might not be 

optimal for other databases/tasks (e.g., those containing raw images, pathology-

bearing images, or multi-site images). However, having a fixed set of parameters is 

perhaps how those registration algorithms would be used or first tried in daily 

imaging-related translational studies, where heavy parameter tunings are not only 

tedious, but also less practical or reproducible. From another perspective, it would 

be preferable if some registration algorithms could apply widely and could perform 

consistently well in various tasks/databases giving a fixed set of parameters.

To maintain reproducibility of our study, we used public databases wherever possible (six 

out of seven databases used in this paper are public); we included registration algorithms/

tools that are publicly available; and we will fully disclose the exact parameter settings in 

Appendix B.

The rest of the paper is organized as follows. In Section II, we identify four typical 

challenges in the inter-subject registration of brain MR images. In Section III, we present the 

protocol to evaluate the accuracies of registration algorithms. In Section IV, we show the 

evaluation results. Finally, we discuss and conclude this paper in Section V.
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II. Typical Challenges in Inter-Subject Brain MRI Registration

Brain images from different subjects may present one or more of the following challenges to 

registration.

Challenge 1: Inter-Subject Anatomical Variability—Subjects may vary structurally 

(Fig. 1 shows some examples). Inter-subject variability is a common challenge in many 

registration tasks investigating neuro-development, neuro-degeneration, or neuro-oncology. 

It is the main challenge against which registration methods were evaluated in the literature 

[13], [15]–[17].

Challenge 2: Intensity Inhomogeneity, Noise and Structural Difference in Raw 
Images—In addition to inter-subject anatomical variability, images may suffer from 

intensity inhomogeneity (due to bias field), background noise, and low contrast. With skulls, 

ears, neck structures present in the raw images, subjects may also present larger 

deformations in those nonbrain structures compared to cortical structures (see Fig. 2 for 

example). Registration of raw images is necessary when 1) skull stripping is erroneous, so 

one has to work with the with-skull raw images; or 2) when registration itself is part of the 

skull-stripping step (e.g., in multi-atlas-based skull stripping approaches [19], [25]).

Challenge 3: Protocol and FOV Differences in Multi-site Databases—Many of 

today’s large-scale translational imaging-related studies involve brain MR images acquired 

from multiple institutions. Since MR scanners, imaging protocols, and FOVs may vary from 

institution to institution, the acquired images may vary greatly. Especially when the FOV is 

different, which is not uncommon in multi-site databases, some images may contain 

structures that do not show up in other images (see Fig. 3 for an example). One can rely on 

experts to interactively crop images, so that images from various institutions cover roughly 

the same FOV. However, the manual cropping is labor-intensive, subject to intra-/inter-rater 

variability, and may become intractable for today’s large-scale studies. Seeking a 

registration method that is relatively more robust to imaging protocol and FOV differences 

is therefore of interest.

Challenge 4: Pathology-induced Missing Correspondences in Pathology-
Bearing Images—Spatially normalizing a number of pathology-bearing images into a 

normal-appearing template space offers opportunities to understand the common spatial 

patterns of diseases. Pathologies present in the patients’ images, but not in the normal-

appearing template. This poses the so-called missing correspondence problem (see Fig. 4 for 

example). An ideal registration approach should accurately align the normal regions (which 

do have correspondences across images), and relax the deformation in the pathology-

affected regions, where no correspondences can be found [26], [27]. Literature has 

suggested to either mask out the pathological regions from the registration process (i.e., the 

cost-function-masking approach [27]), or, to simulate a pathological region in the normal-

appearing template (i.e., the pathology-seeding approach [28]–[34]). However, both 

approaches require a careful segmentation of the pathological regions, which in itself is not 

an easy or affordable task, especially in large-scale studies. It is ideal if a general-purpose 
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registration algorithm, segmentation-free in itself, can perform well in pathological-to-

normal subject registration. That is, without prior knowledge of the presence or the location 

of the pathologies, nor any partition of the pathological versus normal regions, it is ideal if a 

registration algorithm can find correspondences in places where correspondences can be 

found, while relaxing the deformation (or reducing the pathology-induced bias) in regions 

where correspondences can hardly be established.

III. Evaluation Protocol

In the following, Section III-A presents the databases we chose to represent these four 

challenges aforementioned in Section II. Then Section III-B briefly introduces the 

registration methods/tools we included in this evaluation. Section III-C elaborates parameter 

settings for all methods, with an emphasis on how to maintain the fairness, transparency, and 

reproducibility in our evaluation. Section III-D describes the criteria to measure registration 

accuracies.

A. Databases

Seven databases were used. Of them, six are publicly available. Specifically, we used two 

public databases to represent challenge 1 (Section III-A1); three public databases to 

represent challenge 2 (Section III-A2); one public database to represent challenge 3 (Section 

III-A3); and one in-house database to represent challenge 4 (Section III-A4). They are 

summarized in Table I and introduced in the following.

1) Databases Representing Challenge 1—Two publicly-available and single-site 

databases, NIREP and LONI-LPBA40, were used to represent Challenge 1 (inter-subject 

variability). Both databases contain multiple normal subjects. Images in the two databases 

have been skull-stripped by neuroradiologists. Both databases contain T1-weighted (T1w) 

MR images (sequence parameters in Table I). Neuroradiologists annotated those images into 

a number of ROIs (32 ROIs in the NIREP database and 56 ROIs in the LONI-LPBA40 

database). The annotated ROIs are located in the frontal, parietal, temporal and occipital 

lobes, cingulate gyrus, insula, cerebellum, and brainstem. Note that, those ROIs were not 

used in the registration process; instead, they only served as references to evaluate the 

accuracy of registration (explained later in Section III-D1). The detailed lists of those ROIs 

can be found in Appendix C. The detailed information about how ROIs were annotated can 

be found in [14] and [35]. Fig. 1 shows the intensity images and the corresponding expert-

annotated ROI images from four subjects in the NIREP database and four subjects in the 

LONI-LPBA40 database. These databases were also used to evaluate the performance of 

registration methods in other similar studies (e.g., [15], [17]).

Registration was carried out from every subject to every other subject in the same database. 

This removed any bias in the selection of source and target images in the registration. This 

led to 240 (= 16×15), or 210 (= 15×14), registrations in the NIREP, or LONI-LPBA40, 

database, for each registration method. Before registration, we removed the bias field 

inhomogeneity by the N3 algorithm (using the default parameters) [36], and reduced the 

intensity difference between the two images by a histogram matching step.
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2) Databases Representing Challenge 2—Three public databases were used, 

containing raw brain MR images from multiple subjects. They were: BrainWeb, IBSR and 

OASIS databases. Specifically, the BrainWeb database [37] contains raw brain images of 20 

healthy subjects. In each subject, every image voxel has been annotated as one of the 11 

brain or nonbrain tissue types or structures: cerebrospinal fluid (CSF), gray matter (GM), 

white matter (WM), fat, muscle, muscle/skin, skull, vessels, around fat, dura matter, and 

bone marrow. Fig. 2(a) presents two randomly-chosen subjects from the BrainWeb database, 

including their intensity images and the corresponding annotation images. We have 

randomly picked 11 BrainWeb subjects, leading to 110 (= 11 × 10) pair-wise registrations 

for each registration algorithm. The IBSR database [38] consists of raw T1-weighted MRI 

scans of 20 healthy subjects from the Center for Morphometric Analysis at the 

Massachusetts General Hospital. In this database, the brain masks have been manually 

delineated by trained investigators for each subject. We randomly picked up 10 IBSR 

subjects, leading to 90 (= 10 × 9) inter-subject registrations for each registration algorithm. 

Fig. 2(b) shows the raw intensity images and the corresponding brain masks of 2 randomly-

chosen IBSR subjects. The OASIS database [39] contains cross-sectional T1-weighted MRI 

Data in young, middle aged, nondemented, and demented older adults, to facilitate basic and 

clinical discoveries in neuroscience. The brain masks were first generated by an automated 

method based on a registration to an atlas, and then proofread and corrected by human 

experts before the release. We randomly selected 10 OASIS subjects, leading to 90 (= 10 × 

9) inter-subject registrations for each registration algorithm. Fig. 2(c) shows the raw 

intensity images and the corresponding brain masks of 2 randomly-chosen OASIS subjects. 

Similar to those databases used for Challenge 1, the expert annotations were not used in the 

registration process; rather, they only served as references to evaluate registration accuracy, 

as we will explain later in Section III-D2.

3) Database Representing Challenge 3—One example multi-site database is the 

ADNI database. ADNI, or Alzheimer’s Disease Neuroimaging Initiative, is a large-scale 

longitudinal study for better understanding and diagnosing Alzheimer’s Disease. It contains 

images acquired at 57 collaborative institutions or companies, all of which are publicly 

available. Different imaging sites used different MRI devices, imaging protocols, and FOVs. 

Registration among ADNI subjects is usually needed in the data preprocessing, or for the 

spatial normalization of subjects. This multi-site database has most of the challenges a 

multi-site database typically presents. Moreover, the ADNI protocol has now become a 

standard for the studies of aging and neurodegenerative disorders such as AD. Therefore, the 

performance on the ADNI database is of great importance for registration algorithms applied 

to data from older individuals and individuals with neurodegenerative diseases. We 

randomly selected the baseline images of 10 ADNI subjects, including three normal controls 

(NC), four mild-cognitive-impairment (MCI), and three AD subjects. For many subjects, the 

brain mask and hippocampus are available at the data release website. They were used in our 

experiments as the references to evaluate the registration accuracy. Fig. 3 displays the raw 

intensity images and the brain/hippocampus masks for three randomly-chosen ADNI 

subjects (1 CN, 1 MCI, and 1 AD subjects). Please note the presence of the inter-subject 

variability in the ventricle size, sulci, gyri, etc.; the image inhomogeneity, noise and large 

deformation; and especially the FOV differences due to the image acquisition in multiple 
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imaging sites [e.g., the neck can be seen in (a) (highlighted by the blue contours), but is 

barely seen in (b)]. As in the previously-mentioned database, we performed all pair-wise 

registrations to avoid subject/template bias. This led to 90 (= 10 × 9) registrations for each 

registration method.

4) Database Representing Challenge 4 (In Combination With Challenge 1)—An 

in-house database containing eight patients with recurrent brain tumors was used. T1-

weighted images were collected with the image size 192 × 256 × 192 and the voxel size 

0.977 × 0.977 × 1.0 mm3. Images contain both the cavity, caused mainly by the blood pool 

after the resection of the original tumor, and the recurrent tumors. We registered those 

pathology-bearing images into a common T1-weighted MR image (i.e., the template), which 

was collected from a healthy subject (image size 256 × 256 × 181, voxel size 1.0 × 1.0 × 1.0 

mm3). In this database, we have collected landmarks and ROIs annotated by two 

independent experts (HA and MB). Those landmarks and ROIs served as references for 

measuring the registration accuracy (the criteria to be presented in Section III-D4). Due to 

the HIPPA regulation (Health Insurance Portability and Accountability Act), the public 

release of this database is still an ongoing effort.

B. Registration Algorithms Included

Twelve general-purpose, publicly-available image registration methods were included in our 

study. They are summarized in Table II. We note that they are only a fraction of the large 

number of registration algorithms developed in the community. The pool can always be 

expanded to include other general-purpose algorithms (e.g., LDDMM [40], elastix [41], 

NiftyReg [42], plastimatch [43], etc.) and brain-specific methods (which often needs or 

incorporates tissue segmentation and/or preprocessing such as skull-stripping or surface 

construction, e.g., DARTEL [44], HAMMER [45], FreeSurfer [46], Spherical Demons [47], 

etc.). In general, we chose the 12 methods listed in Table II, because they represent a wide 

variety of choices for similarity measures, deformation models and optimization strategies, 

which are the most important components for registration algorithms (see Table II). Out of 

those 12 registration methods, nine methods were included in a recent brain registration 

evaluation study [17]: flirt1 [48], fnirt2 [49], AIR3 [50], [51], ART4 [52], ANTs5 [53], CC-

FFD6 [54], SSD-FFD [54], MI-FFD [54], and Diffeomorphic Demons7 [55]. In addition, we 

included DRAMMS8 [56], and two registration methods that were not included in study 

[17]. They are: (the nondiffeomorphic, or additive, version of) Demons [57] (with an ITK-

based public software available), and DROP9 [58] (a novel discrete optimization strategy 

that dramatically increases registration speed while maintaining high accuracy). For the 

completeness of this paper, more detail of these image registration algorithms can be found 

1flirt: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/flirt
2fnirt: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fnirt
3AIR: http://bishopw.loni.ucla.edu/air5/
4ART: http://www.nitrc.org/projects/art/
5ANTs: http://www.picsl.upenn.edu/ANTS
6CC/MI/SSD-FFD: http://www.doc.ic.ac.uk/dr/~software/
7(Diff.) Demons: http://www.insight-journal.org/browse/publication/154
8DRAMMS: http://www.cbica.upenn.edu/sbia/software/dramms
9DROP: http://www.mrf-registration.net/
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in Appendix A. And how their parameters were set will be presented in the next subsection 

(for the general rules) and Appendix B (for the detailed parameter values).

Note that, while including a large number of registration algorithms/tools is preferable, 

including all available registration algorithms/tools seems less practical. We have included a 

number of the best performing methods (ANTs, ART, Demons, MI-FFD, etc.) as previously 

reported in [17] and several recent ones (DROP, DRAMMS) representative of new 

advancements in optimization strategies and/or similarity designs. Our focus, though, was 

not only on the number of algorithms/tools being included in this study, but more 

importantly on comprehensively evaluating registration methods in various tasks other than 

one or two specific tasks as in many previous evaluation studies. Doing so could provide an 

valuable insight to the generality, accuracy and robustness of registration algorithms/tools 

and an inspiration for future algorithm development. Some algorithms/tools were not 

included. One reason was that they were not included in [17], and hence their best 

parameters were not reported on the same training databases that other methods used to 

optimize their parameters. We wanted to avoid the potential bias introduced by us selecting 

parameters of various algorithms, therefore we chose to use the optimal parameters sets 

whenever available in [17]. Moreover, some algorithms already had their closely-related 

methods included in our study. For example, LDDMM is in line with ANTs but does not 

have the symmetric design; elastix is an implementation of many transformation/similarity 

criteria, for which we have already had 12 methods in this paper to represent the variety; 

niftyReg and plastimatch are based on the GPU implementation of the MI-FFD algorithm, 

which has already been included in this study, and the GPU-implementation should be 

expected to improve the speed but not necessarily the registration accuracy. On the other 

hand, the evaluation framework in this paper is general to include, in the future, many other 

popular registration algorithms/tools.

C. Parameter Configurations for Registration Algorithms

We had the following two rules to set the parameters for each method.

• Rule 1: We used the optimized parameters as reported in [17] whenever applicable. 

Those parameters were optimized by the methodology/software developers 

themselves on skull-stripped brain image databases that are similar to the ones we 

used in this paper (specifically, they used four databases—IBSR, LONI-LPBA40, 

CUMC, MGH—for training, which are similar to the databases we used in this 

paper, which also contain skull-stripped T1-weighted images from 1.5T scanners). 

We can treat those databases in [17] as the “training” database for the databases we 

used in this paper. For registration algorithms that were not included in [17]—

DRAMMS, (Additive) Demons and DROP—we took the same logic: to optimize 

their parameters in, and only in, the task of registering skull-stripped images (the 

LONI-LPBA40 database specifically). The fact that this LONI-LPBA40 database 

was also used as one of the seven databases for “testing” in this paper is less of 

concern, since 1) the parameters of all other registration methods included in this 

paper were also optimized in the LONI-LPBA40 database and other similar skull-

stripped databases (IBSR, CUMU, MGH databases) as reported in [17]; and 

moreover, 2) in [17], the registration methods seemed to be trained and tested in the 
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same exact databases (IBSR, CUMU, MGH, LONI-LPBA40), while in our study, 

we only trained/optimized the registration methods in one skull-stripped database 

representing Challenge 1, and we tested all registration methods in six other unseen 

databases representing Challenges 1–4, respectively.

• Rule 2: For each method, we fixed its parameters in all registration tasks. Put 

differently, we used the same parameters for a registration method, no matter it was 

used for skull-stripped brain images, raw brain images, multi-site data, or tumor-

recurrent brain images. It should be admitted that the optimized parameters for 

skull-stripped brain MR images are not necessarily optimal for raw images or 

pathology-bearing images. However, using the same set of parameters has two 

advantages: 1) most users or algorithm-developers will start from the parameters 

that have already been optimized in normal-appearing, skull-stripped images (e.g., 

[18], [59]–[63]); 2) it helps reveal the generality of registration methods and their 

robustness levels facing various registration challenges. The second point is 

especially important, because a registration method that can successfully apply to a 

wide variety of registration tasks without the need for the task-specific parameter 

tuning should be desirable for the routine use in many large-scale pre-clinical 

research studies.

Based on these two rules, we set the parameters which are disclosed in Appendix B of this 

paper.

D. Criteria to Measure Registration Accuracy

Having described the databases and registration methods in the previous sub-sections, this 

sub-section introduces the criteria to evaluate registration accuracy.

1) Criteria in Databases Representing Challenge 1—We measured the accuracies of 

inter-subject registrations in the NIREP and LONI-LPBA40 databases by the Jaccard 

Overlap [64] between the deformed ROI annotations and the ROI annotations in the target 

image space. A greater overlap often indicates a more accurate spatial alignment. This was 

also the accuracy criterion used in many other evaluation studies such as [14], [17], [63]. 

Rohlfing in [65] demonstrated that, as long as the ROIs are localized (e.g., those 

(sub-)cortical structures), which is the case in the two databases we used, the regional 

overlap of ROIs is a faithful indicator of registration accuracy in various locations in the 

image space. Mathematically, given two regions S and T in a 3-D space, and given the 

volume of a region as defined by V(·), the Jaccard overlap J(S, T) [64] between the two 

regions is defined as

(1)

Some other studies used the Dice overlap [66], defined as D(S, T) = (2V(S ∩ T))/V(S) + 

V(T)). It should show the same trend and should be directly linked with the Jaccard overlap 

by D = (2J)/(1 + J). Therefore, reporting either one overlap metric should be sufficient for 

our purpose.
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2) Criteria in Databases Representing Challenge 2—In the BrainWeb database, the 

annotations of 11 relatively localized brain and nonbrain structures [see Fig. 2(a)] were 

available. Therefore, we measured registration accuracy by the Jaccard overlap between the 

warped ROI annotations and the target ROI annotations. In the IBSR and OASIS databases, 

only the brain masks from raw brain images [see Fig. 2(b) and (c)] were available. Since the 

brain mask is not a localized structure, the Jaccard overlap alone, according to [65], might 

not be sufficient to represent the registration accuracy. Therefore, we used the 95-percentile 

Hausdorff Distance (HD) between the warped and the target brain masks as an additional 

accuracy surrogate. The HD between two point sets S and T is defined as

(2)

where d(·, ·) is the Euclidean distance between the spatial locations of two points. The HD is 

symmetric to two input images, with a smaller value indicating a better alignment of brain 

boundaries. We used the 95th percentile other than the maximum HD, to avoid the influence 

of outliers, as suggested in [67] and [68].

3) Criteria in Databases Representing Challenge 3—Since the annotations of both 

the brain mask and the left and right hippocampi were available in the ADNI database, we 

used the Jaccard overlap between the warped and target ROIs to indicate the registration 

accuracy in this multi-site database—a higher overlap usually means a better spatial 

alignment of two images.

4) Criteria in Databases Representing Challenge 4—The landmark and ROI 

annotations from two independent experts in the in-house brain tumor database enabled us to 

measure the registration accuracy in various locations. Specifically, we defined 4 zones in 

the entire image space, as can be seen in Fig. 5. Those zones were defined by the distances 

to the abnormal regions. Therefore, they helped reflect how the existence of cavities and 

recurrent tumors influenced the registration accuracy in various regions of the image.

• Zone 1: Abnormal region. Experts HA and MB together contoured the abnormal 

region that contains 1) the post-resection cavity and 2) the recurred tumor. Within 

this contour was what we defined as Zone 1, the abnormal region [see Fig. 5(a)]. 

The experts referred to FLuid-Attenuated Inversion-Recovery (FLAIR) MR image 

for this contouring, because of its high sensitivity and specificity in delineating 

brain tumors [69]–[71]. Then they independently found the corresponding regions 

in the normal template image. We measured the accuracy of registration in Zone 1 

by two metrics: 1) the average Dice overlap, and 2) the 95-th percentile Hausdorff 

Distance, between the algorithm-warped abnormal region and two rater-warped 

abnormal regions in the template space. A higher regional overlap and a smaller 

distance reflect a better alignment of two images in Zone 1.

• Zone 2: Regions immediately neighboring the abnormal region. A 30 mm-wide 

band immediately outside the abnormal region was defined, by morphologically 

dilating the abnormal region mask agreed by the two experts in the patient’s image 

Ou et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space [see Fig. 5(a)]. Anatomical landmarks were identified in this band, which 

served as the references to reflect the registration accuracy in the immediate 

neighborhood of abnormalities. One expert (HA) labeled 10 anatomical landmarks 

in Zone 2 within the patient image. The two experts then independently labeled the 

corresponding anatomical landmarks in the template space. The average Euclidean 

distance between the algorithm-calculated corresponding landmark locations and 

the rater-labeled corresponding landmark locations in the template space was used 

to measure the registration accuracy in Zone 2. Smaller landmark errors point to 

higher registration accuracy. The concept is depicted in Fig. 6. Given a set of 

expert-annotated landmarks  in the patient image, their corresponding 

landmark locations  (independently by expert HA) and 

(independently by expert MB) in the template image, and the algorithm-calculated 

corresponding landmark locations  also in the template image, we 

defined the inter-expert landmark errors (the length of the solid line in Fig. 6) as

(3)

and the algorithm-to-expert landmark errors (the average length of the dashed lines 

in Fig. 6) as

(4)

where d(·,·) is the Euclidean distance between two voxel locations.

• Zone 3: Regions far away from the abnormal region. Zone 3 was defined as all 

the normal regions outside Zone 2 [see Fig. 5(a)]. We used landmarks to evaluate 

the registration accuracy in Zone 3. This could show how the recurrent tumor and 

the cavities have influenced registration in faraway normal-appearing regions. One 

expert (HA) labeled 40 anatomical landmarks in Zone 3. Then two experts 

independently labeled corresponding landmarks in the template space. Registration 

accuracy in this zone was measured by the average Euclidean distance between the 

algorithm-calculated corresponding landmarks and the rater-labeled corresponding 

landmarks in the template space. Smaller landmark errors point to higher 

registration accuracy in Zone 3.

• Zone 4: Brain boundaries. The existence of cavities and recurrent tumors inside 

the patient image may even influence the alignment of the brain boundaries 

between the patient and the normal-appearing template images. To capture this 

influence, we measured the dice overlap and the 95th percentile Hausdorff Distance 

between the warped and the template brain masks. A higher dice overlap and 

smaller distance indicate a higher level of robustness of a registration algorithm 

with regard to the abnormality-induced negative impact.
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IV. Results and Analysis

In this section, we use four subsections to present the evaluation results in the databases 

representing the four aforementioned challenges.

A. Results in Databases Representing Challenge 1

Fig. 7 shows the average Jaccard overlap over all ROIs in the NIREP and LONI-LPBA40 

databases. A detailed table of Jaccard overlap per ROI can be found in Appendix C for all 

algorithms evaluated in this paper. Several observations can be made from this set of results.

1. DRAMMS and ANTs obtained the highest Jaccard overlaps in both databases. 

Between the two methods, DRAMMS had a slightly higher accuracy in the NIREP 

database (Jaccard = 0.5249 ± 0.0254 for ANTs and 0.5292 ± 0.0266 for 

DRAMMS, p = 0.0687); whereas ANTs had a slightly higher accuracy in the 

LONI-LPBA40 database (Jaccard = 0.5710 ± 0.0161 for ANTs and 0.5666 ± 

0.0163 for DRAMMS, p = 0.0188). In both cases, the differences were tiny (<0.005 

difference between the average Jaccard overlaps in the 0–1 scale). Following 

ANTs/DRAMMS were DROP, Demons and ART registration methods. Among 

these methods, ANTs and ART were included in the evaluation study [17] and 

were found to be the two most accurate methods. Our findings here showed a 

similar trend. In addition, the three methods—DRAMMS, DROP and (the 

nondiffeomorphic, or additive, version of) Demons, which were not included in 

[17], showed highly competitive performances.

2. Methods such as SSD-FFD, fnirt, DROP use intensity differences (SSD) as the 

similarity metric. On average, they had reasonable Jaccard overlaps. However, they 

also showed larger variations of regional overlaps, and therefore they were less 

stable in our experiments than those methods using CC, MI, or attribute-based 

similarity measures.

3. The high degree of freedom allowed by a deformation mechanism (such as the FFD 

model as used in DRAMMS and the diffeomorphism LDDMM model as used in 

ANTs) is perhaps another factor contributing to the higher registration accuracy, 

compared to deformation mechanisms with relatively few degrees of freedom (such 

as fifth-order polynomials in AIR).

B. Results in Databases Representing Challenge 2

For the three databases containing raw images, we had two scenarios—one focusing on the 

localized structures and tissue types throughout the image space (the BrainWeb database); 

and the second scenario focusing on the brain masks (the IBSR and OASIS databases), 

which is crucial for (multi-)atlas-based skull-stripping.

Scenario 1. Registration Accuracy in Multiple Localized ROIs/Structures in the 
Raw Images—Fig. 8 shows the average Jaccard overlaps of the 11 ROIs in the BrainWeb 

database. Several observations can be made.
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1. DRAMMS, DROP and Demons obtained similarly high accuracies, followed 

closely by the ANTs and ART methods. These registration methods were also 

among the most accurate ones in registering skull-stripped brain images as shown 

in the previous sub-section.

2. On the other hand, the average Jaccard overlap in various ROIs by the best-

performing algorithm in this raw, with-skull database (i.e., DRAMMS) was only 

around 0.32 (Fig. 8). Compared to the average Jaccard of 0.52–0.57 in registering 

skull-stripped brain images (Fig. 7), this clearly underlined the increased level of 

difficulty in registering raw, with-skull brain images.

Scenario 2. Registration Accuracy in Brain Masks of the Raw Images—In this 

registration scenario, we focused on the accuracy of registration in warping the brain masks, 

which is the basis for the atlas-based skull-stripping framework (e.g., [19], [25]). Fig. 9 

shows the accuracies of three registration methods (ANTs, Demons and DRAMMS), which 

were forerunners in the results in Scenario 1. Several observations can be made.

1. The Jaccard regional overlap and the 95th percentile Hausdorff Distance showed 

the same trend for aligning the brain masks—a higher Jaccard overlap 

corresponded to a smaller distance;

2. The ranking and the difference of methods seemed to be highly dependent on the 

database, especially the level of difficulty for registration in a database. In the 

OASIS database, which exhibits a lower level of inter-subject FOV differences and 

intensity inhomogeneity [as can be seen in Fig. 2(c)], ANTs scored the highest 

accuracy, followed closely by Demons and DRAMMS. In the IBSR database, 

however, which exhibits a higher level of inhomogeneity, background noise and 

larger deformations, DRAMMS scored the highest accuracy, followed, with 

relatively bigger distances, by Demons and ANTs.

3. Overall, a Jaccard overlap of 0.75–0.93 could be expected for the brain masks 

when we registered raw, with-skull images within a same database. This should 

provide a promising starting point for (multi-)atlas-based skull-stripping (e.g., [19], 

[25]). On the other hand, one needs to be aware that the registration accuracy might 

decrease when images are from multi-site databases, usually with larger imaging 

and FOV differences (to be shown in the next subsection).

C. Results in the Database Representing Challenge 3

Fig. 10 shows the overlap results averaged over all 90 pair-wise inter-subject registrations in 

the ADNI database. Compared to the registration within the single-site database, the 

registration of raw images acquired from multiple imaging sites encountered an increased 

level of difficulty. Specifically, three observations can be made.

1. DRAMMS and ANTs performed better than Demons in aligning the brain masks. 

They showed higher levels of robustness with regard to the FOV differences, the 

background noise and the presence of skull or other nonbrain structures.
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2. The presence of the skull, the background noise, and especially the FOV difference, 

in the ADNI multi-site database, had a clearly visible impact on the accuracy of 

aligning deep brain structures. When registering skull-stripped images from single-

site databases such as in the LONI-LPBA40 database, ANTs, Demons and 

DRAMMS could align hippocampi at Jaccard overlaps around 0.6, and they 

differed by less than 0.05 Jaccard overlap on average (see Table V in Appendix C). 

However, when the raw images from the multi-site ADNI database were used, even 

the best-performing algorithms (DRAMMS and Demons as shown in Fig. 10) 

could only align hippocampi at Jaccard overlaps around 0.5 on average, and 

algorithms had greater differences in terms of the Jaccard overlaps they obtained. 

Another factor that caused the decrease in the accuracy and the increase in the 

differences among methods could be that those subjects in the ADNI database have 

highly variable degrees of neuro-degeneration (three normal controls, four MCI, 

and three AD subjects), and hence they have largely different ventricle sizes, 

atrophy patterns, and hippocampus sizes (see Fig. 11 for some examples of very 

difficult cases, which will be described in item 4 below).

3. Considering the quantitative results in all three regions (brain mask, left, and right 

hippocampi) in those with-skull raw images acquired from multiple institutions, 

DRAMMS showed the greatest promise.

4. Besides the quantitative results in the limited number of structures such as the brain 

masks and the hippocampi, the visual inspection of the registration results in the 

whole images could actually reveal much greater differences among registration 

methods. Fig. 11 shows some registration results from Demons, ANTs and 

DRAMMS in two pairs of subjects from the multi-site ADNI database. As pointed 

out by blue arrows in the figure, DRAMMS showed a clear advantage to align the 

largely different anatomies such as the ventricles. To capture this large difference, 

many algorithms may have to increase their search ranges. However, this usually 

requires considerable efforts for task-specific, or even individual-specific, 

parameter adjustments. Adjusting search ranges is a non-trivial research topic. It 

often requires specific theoretic designs [73], or requires the introduction of 

anatomical landmarks [74]–[80]. The main difficulty is to effectively balance 

between capturing the large differences and capturing the local subtle 

displacements. Therefore, algorithms that can capture and balance between both, 

and do not require additional parameter adjustments, become favorable. Actually, 

in our recent studies that spatially normalized all 800+ ADNI subjects into a 

common template (from a normal control subject), a small portion of the 

Alzheimer’s Disease (AD) subjects have unusually large ventricles than many other 

AD subjects. We considered a registration “failure” if there were more than 5 mm 

errors in the ventricle boundaries (visually pronounced errors). Accordingly, the 

success rate was defined by
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Compared to the 80%–85% success rate by ANTs and Demons when used with the 

fixed sets of parameters, DRAMMS, also using a fixed set of parameters as in other 

cases, achieved a success rate of 96%, which was a clear improvement of 

registration accuracy in this large-scale multi-institutional database.

D. Results in Database Representing Challenge 4

Fig. 12 shows the quantitative registration errors in the pathology-to-normal subject 

registration. As a reference, this figure also includes inter-expert errors between the two 

independent experts in Zones 1–3. A desirable registration should 1) accurately register the 

normal-appearing regions, where correspondences can be established (i.e., small landmark 

errors in Zone 2–3); 2) accurately align the brain boundaries (i.e., small 95%-percentile HD 

distances in Zone 4); and 3) map the pathological regions to the right location but relax the 

deformation within the pathological regions, where correspondences could hardly be 

established (i.e., high regional overlaps in Zone 1). In Fig. 12, several observations can be 

made.

1. Two independent experts agreed with each other only at a 0.48 Jaccard overlap on 

average in the cavity and tumor recurrence regions (Zone 1). This reflected the 

difficulty, or the ambiguity, for the human experts to deal with the missing 

correspondences. Among the four methods evaluated, ANTs agreed with experts at 

the highest level (average Jaccard 0.40), followed closely by DRAMMS (average 

0.37 Jaccard overlap). The 95th percentile Hausdorff Distances showed the same 

trend. Overall, experts showed better agreement between each other than between 

algorithms and experts.

2. In Zone 2 (the immediate neighborhood of the abnormal regions), the average 

landmark error was 4.1 mm between experts. Landmarks errors for DRAMMS, 

ANTs and Diffeomorphic Demons were similar (at 3.9, 4.1, and 4.4 mm, 

respectively), and also comparable to the inter-expert errors.

3. Further away from the abnormal regions, Zone 3 had larger landmark errors than 

Zone 2. The average errors were 5.3 mm between experts, 5.8 mm for DRAMMS, 

and 5.9 mm for ANTs. Diffeomorphic Demons and especially fnirt started to have 

larger landmark errors (6.6 and 9.6 mm on average). This difference may, in part, 

be attributed to the fact that DRAMMS used texture features and ANTs used 

correlation coefficient as similarity metric, which were perhaps more robust and 

reliable than the intensity difference which Demons and fnirt used as their 

similarity metrics.

4. Another interesting finding was in Zone 4 (brain boundary). Because of the sharp 

contrast between foreground and background in a skull-stripped image, the brain 

boundaries ought to be among the easiest parts to register. In the presence of 

pathologies, however, this was surprisingly not always the case. Fnirt, for example, 

had 11.1 mm as the 95th percentile Hausdorff Distance at brain boundaries, which 

meant registration failures in several cases. ANTs had, on average, 3.3 mm as the 

95th percentile Hausdorff Distance in the brain boundary, which was even bigger 

than the average errors ANTs produced in the abnormal regions (2.1 mm). By 
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carefully examining the output images, we found that this average boundary error 

by ANTs was mainly caused by misalignments in the boundaries close to the 

pathology sites in several cases. This showed that the pathology regions may 

impact a wide area in ANTs registration. On the other hand, DRAMMS and 

Diffeomorphic Demons had the smallest boundary errors (1.8 and 2.2 mm, 

respectively). Both errors were smaller than those in the abnormal regions, 

indicating good alignments of the brain boundaries. This showed that the negative 

effect of pathological regions was more localized in DRAMMS and Diffeomorphic 

Demons registration algorithms, which should be desirable.

It should be emphasized that general-purpose registration algorithms are usually not 

designed for registering pathology-bearing images. Task-specific registration algorithms are 

often needed to segment and specifically deal with the pathology-affected regions. However, 

the fact that DRAMMS, as a general-purpose registration algorithm, performed stably and 

robustly in all Zones 1–4, highlighted the effect of using attributes to measure voxel 

similarities and to quantify voxel-wise matching reliabilities. To better illustrate this, Fig. 13 

shows a set of representative DRAMMS registration results (registration from a tumor-

recurring patient’s brain image to the normal-appearing brain template image). First, 

DRAMMS extracted high-dimensional Gabor texture attributes to represent each voxel. The 

attributes should be more informative than intensities in the search for correspondences. 

Moreover, at each voxel, DRAMMS automatically calculated a so-called “mutual-saliency” 

weight, also based on the attributes. The mutual-saliency quantified the chance of each and 

every voxel to establish a reliable correspondence between the two images. As Fig. 13(d) 

shows, the mutual-saliency map effectively identified outlier regions (dark blue), where 

correspondences could be hardly established. The identified outlier regions coincided with 

the recurrent tumor regions [as red arrows pointed out in panel (a)]. Note that, this was 

obtained without any segmentation, manual masking, or any prior knowledge of the 

presence or the location of the tumor recurrence. Being segmentation-free is a feature that 

differentiates DRAMMS from those task-specific cost-function-masking approaches or 

pathology-seeding approaches. As a result of this attribute-based similarity measurement 

and mutual-saliency weighting, the registration by DRAMMS was mainly driven by the 

regions where correspondences could be well established. This led to visually plausible 

results as shown in Fig. 13(c).

V. Discussion and Conclusion

In this last section, we first summarize the work and findings in Section V-A. Then, Section 

V-B discusses the theoretical differences among the registration algorithms included in this 

paper, which may, at least partly, explain the different performances among registration 

methods in our experiments. Section V-C discusses the limitations of the whole evaluation 

work and the future directions. Finally, Section V-D concludes this paper.

A. Summary of Work and Findings

This study evaluated several registration algorithms and their publicly-available software 

tools. Our evaluation had the features summarized below.
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First, compared to existing studies that evaluated registration algorithms in specific tasks 

and/or databases, our study utilized multiple databases to represent a wide range of 

challenges for the inter-subject registration. As Table I showed, the databases we included in 

this evaluation work covered a variety of imaging scanners (GE, Siemens, Philips), field 

strengths (1.5T, 3T), age groups, imaging FOVs, and imaging protocols (varying pulse 

sequence parameters). The purpose was to extensively evaluate the generality, robustness 

and accuracy of registration algorithms.

Second, our study found out that, in general, registration algorithms differed greatly in terms 

of their performances, when facing different databases or challenges. For skull-stripped 

images included in our study, ANTs and DRAMMS led to the highest overlaps of expert-

annotated (sub-)cortical structures, followed byART, Demons, DROP, and FFD. Whereas 

for more challenging tasks in databases containing raw, multi-site and pathology-bearing 

images, the attribute-based DRAMMS algorithm obtained relatively more stable and higher 

accuracies, followed closely by the intensity-based and symmetric ANTs registration 

algorithm.

B. Understanding the Differences Among Registration Algorithms

Registration algorithms differ in similarity metrics, transformation models, and the 

optimization strategies. Table II summarized the registration methods included in this paper, 

and more details can be found in Appendix A. Such differences are likely the major factors 

for their different performances in this paper.

In terms of similarity metrics, 11 out of 12 methods included in this paper measure the 

image similarity based on the gray scale intensities or intensity distributions. DRAMMS, on 

the other hand, measures the image similarity by a rich set of multi-scale and multi-

orientation Gabor attributes. Intensities alone may not necessarily carry anatomical or 

geometric information of voxels. That is, voxels having similar or even identical intensities 

may belong to different anatomical structures. Consequently, a common challenge in 

intensity-based similarity metrics is how to effectively deal with matching ambiguities. 

Methods such as ANTs measure the similarity of two voxels by the correlation coefficient of 

intensities in local patches centered at those two voxels. The local patches carry, to some 

extent, the local texture or geometric information. Therefore, in our experiments they were 

relatively more robust to noise, partial volume effects and magnetic field inhomogeneities, 

compared to measuring the voxel-wise similarity using intensities alone. Attribute-based 

methods such as DRAMMS extend this to the explicit characterization of voxels by the 

high-dimensional, often more informative, texture or geometric attributes. This could reduce 

matching ambiguities, but at the cost of an increased computational burden. This 

observation has been documented in the literature by several research groups (e.g., [45], 

[81]–[83]). The generality and accuracy of DRAMMS in our experiments, especially its 

performances in raw, multi-site and pathology-bearing images, provided new evidence for 

using attributes to measure image similarities. On the other hand, there is also ongoing 

research on extending intensity-based similarity metrics (CC or MI) into more robust 

measures to reduce matching ambiguity for mono- and multi-modality registration [22], 

[84], [85].
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Another related issue is how image voxels are used when calculating the similarity between 

two images. General-purpose registration methods, such as most of the ones included in our 

study, often use all voxels equally to define the image similarity. On the other hand, 

DRAMMS introduced the notion of “mutual-saliency.” The central idea was to use all 

voxels, but at different levels of confidence as measured by the mutual-saliency metric. 

Specifically, those voxels having higher confidence to establish reliable correspondences 

were associated with higher mutual-saliencies (e.g., Fig. 13), and they were accordingly 

used with higher weights in calculating the image similarity. They were the main driving 

force for the registration. An immediate advantage was in the registration of pathology-

bearing images such as shown in Fig. 13. Without prior knowledge for tumor presence, or 

any prior tumor segmentation, DRAMMS examined voxels one by one and attached with 

each one of them a “mutual-saliency” number that reflected its ability to find 

correspondences. This way, the mutual-saliency map in Fig. 13(d) automatically and 

effectively found out a temporal lobe region that had difficulty to establish correspondences, 

and the location of this region agreed with that of the abnormal regions. By this, the 

deformation within the abnormal region was relaxed; the other normal-appearing regions 

were matched well, which drove the registration of the whole image. The idea of spatially-

varying treatment of voxels has also been adopted in other registration approaches (e.g., 

[86]–[88]), showing great promise in many challenging registration problems involving, for 

example, topology-changing tumor changes, pathology-induced outliers, and cardiac/lung 

motion-induced subtle changes.

In terms of the transformation models, the ones with more degrees of freedom typically led 

to higher registration accuracies in our experiments. For instance, the geometric cubic B-

spline-based FFD transformation model as used in CC/MI/SSD-FFD, DRAMMS and 

DROP, and the velocity fields used in Demons and ANTs, could perhaps explain their 

relatively higher registration accuracies than other less flexible transformation models (e.g., 

the fifth polynomial as used in AIR). The symmetric feature as introduced in ANTs seemed 

to at least partly contribute to its accuracy and robustness. Specifically, in the pathological-

to-normal subject registration, where two images differ greatly, ANTs had high accuracies 

in abnormal regions and in the immediately neighboring normal regions. This was perhaps 

due to the symmetric setting, which constrained both images to deform towards the “hidden 

middle template” between the two images. This way, a difficult inter-subject registration 

problem was decoupled into two relatively simpler subproblems. Such a symmetric setting is 

also advocated in many other approaches such as in the linear registration [89] and 

deformable registration [90], [91]. Furthermore, the diffeomorphic setting in ANTs and 

Diffeomorphic Demons also contributed to the accuracy and robustness, since the 

regularization of the transformation in the diffeomorphisms seemed to account for the real-

world anatomical deformations.

When it comes to the optimization strategies, methods included in this paper used optimizers 

either in the discrete space (DRAMMS, DROP) or in the continuous space (all others). The 

discrete optimization helped to reduce the computational time to 3–5 min in DROP [58], 

[92], compared to 10–20 min in MI/CC/SSD-FFD, which have the same similarity metric 

and transformation model. Their accuracies were comparable in our experiments. Another 

interesting comparison in our experiments was the 30–50 min computational time of 
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DRAMMS, which used a discrete optimizer on high-dimensional attribute-based 

similarities, versus about 1–1.5 h for ANTs, which used a continuous optimizer on patch-

based correlation coefficient similarities. Both computational times were for a pair-wise 

registration of some typical brain images (e.g., image size 256×256×200), and on a Linux 

operation system with an Intel Xeon x5667 3.06-GHz CPU and a 16 GB memory. It should 

take another controlled study to further investigate the impact of the optimization strategies 

on registration accuracies. One thing to note is that many registration methods are able to be 

parallelized into GPU accelerations [93]–[95].

C. Limitations of Our Evaluation Study and Future Work

We also note some drawbacks of this study, and hence our future work.

First, like many other studies [11], [12], [16], [83], [96]–[98], this study was also conducted 

by the authors of one of the algorithms to be evaluated. Questions may naturally arise for the 

reproducibility and fairness in such comparative evaluations. We tried to address these 

questions when designing and conducting this study: 1) for reproducibility, we fully 

disclosed the parameters, used public databases whenever possible, and constrained our 

evaluation within publicly-available registration algorithms; 2) for fairness, we used the 

parameters suggested by the authors of the registration methods as reported by [17], and all 

of those parameters were “optimal” in the registration of skull-stripped and preprocessed 

brain MR images. Not all self-conducted evaluation studies in the literature had these 

features, but we felt that it was really important to comply with these high standards in our 

study. Our future plan includes the participation in third-party-organized challenges, such as 

in [17], [99], and [100].

The second point worth discussing in our study is that we fixed the parameters for each 

registration method. Two questions may arise: whether we should fix parameters and at 

which values we should fix the registration parameters. For the first question, we fixed 

registration parameters because the aim was to test whether some methods can be used in 

many large-scale, often multi-institutional, translational studies. This was a high standard 

and quite an ambitious aim that did not appear in previous evaluation studies. Facing many 

registration tasks and many databases, normal or pathological, single- or multi-site, in daily 

translational research, it is usually less practical to tune parameters for each specific task/

database. Therefore, we fixed parameter values in our study. We note that this does not 

necessarily reflect a registration method’s stability or sensitivity with regard to the 

parameter changes. Stability is another preferable feature of registration methods. To better 

reveal stability or sensitivity, a future study is needed to examine how registration 

algorithms perform over a wide range of parameter values. That is, to thoroughly investigate 

how registration accuracy changes when the values of registration parameters change. The 

difficulty lies in the determination of effective, often multivariate, parameter ranges, and the 

objective comparison of parameters (or parameter ranges) among different registration 

algorithms. For the second question—at which values we should fix the parameters, the 

parameter values we used in this paper were those optimal for one typical registration task. 

They were the values suggested by authors of the algorithms themselves, and hence most 

likely to be adopted by ordinary users, or to be tried in the first pass by algorithm 
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developers. We note that they are not necessarily optimal for the other three tasks, nor 

necessarily optimal for the four tasks altogether. In the future, a more complete study may 

be needed to “learn” the (range of) parameter values that are best overall in the four tasks 

included in this paper. Highly sophisticated learning framework needs to be designed, such 

as [21] and its extensions. It will require a larger data size for training and testing, and the 

familiarization of the implementation details in each registration algorithm.

In our experiments, we used fewer images and fewer databases to represent Challenges 3–4 

than Challenges 1–2. Specifically, only 10 ADNI subjects (three AD, four MCI, three NC), 

or 90 pair-wise registrations, were used to test registration methods against challenges 

arising in multi-site databases; and only eight patients with recurrent tumors were used to 

test registration methods against pathology-induced missing correspondences. Because of 

the relatively small data size, a decisive conclusion on how registration methods perform 

facing Challenges 3–4 may need to be deferred to future larger-scale studies. What we want 

to emphasize is that, although small in data size, those experiments were among the very 

first ones appearing in the literature to evaluate general-purpose registration methods in 

multi-site data and in pathological data. Therefore, those experiments could serve as a proof 

of concept that some registration algorithms may bear the potential to work reasonably well 

in those difficult cases. A future study with a larger data size is needed in this direction. 

Acquiring multi-site or pathological data, especially acquiring expert annotations of 

landmarks and/or ROIs on those data, is in itself a nontrivial problem.

The same as in studies [10], [11], [14]–[18], [98], expert-defined annotations of ROIs or 

landmarks served as references for the evaluation of registration accuracy in our study. One 

thing to note is that expert annotations may be subject to intra-/inter-expert variability, and 

may have a certain level of uncertainty or even errors. Therefore, a perfect and completely 

error-free registration algorithm may still present some minor errors in the current criteria to 

assess registration accuracy, because of the uncertainty in the expert annotation of 

landmarks or ROIs. Quantifying such uncertainty is another topic for future studies. To 

reduce the influence by the variability or uncertainty of expert annotations, we either used 

two independent experts in some databases, or used multiple databases for a specific task, 

where different databases were annotated by different experts to reduce the chances of 

systematic uncertainties or errors.

In our study, we only evaluated the accuracy of registration, which was what most previous 

studies did [12], [17], [96]–[98]. Some recent studies (e.g., [16], [99]) started to look at more 

comprehensive criteria including the registration smoothness. The argument was that, many 

registration algorithms might achieve a fairly high structural overlaps at very aggressive 

underlying deformations. Therefore, studies like [16], [99] started to put registration 

accuracy in the context of registration smoothness, and evaluated both properties. Debates 

exist, though, for two reasons. First, whether the emphasis should be on the accuracy or on 

the smoothness is usually more dependent on the specific application. For instance, atlas-

based segmentation frameworks may need a more aggressive registration to obtain higher 

structural overlaps; whereas on the other hand, population studies using voxel-wise statistics 

may need a smoother registration to better balance between the difference among 

individuals and the commonality within a population. Second, while the criteria for 
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registration accuracy can be indicated on landmark errors or regional overlaps, the criteria 

for registration smoothness is relatively loosely defined. Some studies used Jacobian 

determinants [99], [101]—negative Jacobian determinants indicating self-folding (i.e., 

nondiffeomorphism) should be penalized, as human organs deform smoothly. In the 

existence of cross-individual anatomical differences, whether the deformation should be 

strictly diffeomorphism remains a topic of debate. Plus, the computation of Jacobian 

determinants requires a numerical approximation of the continuum from the discrete image 

space, and usually varies by different software packages. Consequently, other studies (e.g., 

[14]–[16], [89], [102]) used additional metrics such as the transitivity and the inverse 

consistency to measure the smoothness and diffeomorphism of deformation fields. 

Nevertheless, the wide adoption of those metrics needs more studies, and the balance 

between accuracy and smoothness seems a task-specific choice. This is another reason that 

our future studies need to thoroughly examine a range of parameter values to look at how 

registration accuracy and smoothness change as parameter values change, so that users may 

make a more informed choice about the algorithms, their implementation tools and a proper 

set of parameters for problems at hand.

Besides registration accuracy or smoothness, a perhaps more important task for our future 

study is the utility of registration methods in various clinical applications. For example, in 

multi-atlas-based segmentation propagation, the most accurate registration for single-atlas 

registration may not necessarily achieve the highest overall segmentation accuracy. 

Choosing a proper registration methods or a proper set of registration parameters in this case 

is subject to other interleaved factors such as the label fusion. Another example is in the 

detection of atrophy or growth patterns, which is usually an important component in the 

study of neuro-degenerations [103]–[108] or neurodevelopment [109]–[112]. There, the 

most accurate or the most smooth registration may not be necessarily the optimal choice to 

decipher the subtle patterns [113]. Similar situations also occur for the brain extraction (e.g., 

[19]), the quantification of longitudinal disease change (e.g., [83], [114]), and in cognitive 

neuroscience (e.g., [115]). Therefore, much interest is in putting registration into the big 

picture of end (pre-)clinical goals and considering its interactions with other factors.

To further improve registration accuracy, one interesting topic is to utilize multiple 

registration methods in a meta-analysis framework, where one method may underperform or 

fail in a task/database/individual, but others may make up the loss. Several newly published 

articles supported this consensus process, or the so-called meta-registration process, such as 

[72], [116]–[118]. Doshi et al. recently combined ANTs and DRAMMS in a multi-atlas 

labeling framework, resulting in a top-performing method in a MICCAI segmentation 

challenge [72]. Muenzing et al. recently combined ANTs, NiftyReg and DROP and showed 

a significant reduction of registration errors in pulmonary images [118]. These studies 

further underline the potentially synergistic value of various registration methods. Another 

interesting avenue for improving registration accuracy, especially when registration 

algorithms face several challenges from large anatomical variabilities or imaging device 

differences (e.g., 2-D ultrasound to 3-D MRI), is to better initialize general-purpose 

registration algorithms with anatomic or geometric landmarks. Several recent studies are in 

this direction, on how to accurately and automatically extracting useful landmarks [77], [79], 
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[119], and how to effectively combine landmarks and voxel-wise information in an elegant 

and practical framework [76], [92], [120]–[123].

D. Conclusion

In conclusion, this paper conducted a comparative evaluation of 12 publicly-available and 

general-purpose image registration methods, in the context of inter-subject registration of 

brain MR images. In contrast to existing works that evaluated registration methods in a 

specific task or a specific database, the emphasis of this work was on evaluating the 

generality, accuracy and robustness of registration methods in various inter-subject brain 

MR image registration tasks with various challenges involving multiple databases 

containing skull-stripped images, noisy and raw images, multi-site data, and pathology-

bearing images. Our experiments showed that DRAMMS and ANTs gained relatively higher 

accuracy in skull-stripped images, followed by ART, Demons, DROP and FFD. DRAMMS 

showed a relatively higher accuracy when raw, multi-site or pathology-bearing data were 

involved. The main reasons might be 1) DRAMMS measures the similarity between voxels 

by a rich set of texture attributes while other methods by intensities; and 2) DRAMMS has 

the mutual-saliency mechanism to automatically quantify the matching reliability of voxels, 

and to use those highly reliable matching to drive the registration, while other methods use 

voxels equally. The fact that ANTs, ART, Demons, DROP, and SSD/MI-FFD performed 

relatively accurately among all intensity-based algorithms highlight the importance of 1) 

choosing image similarity metrics, such as correlation coefficient and mutual information, 

that are relatively more robust with regard to the noise, intensity inhomogeneity, and partial 

volume effects, and 2) choosing proper transformation models that are of sufficient degrees 

of freedom but well regularized by the diffeomorphism or even the symmetric design with 

regard to the two input images.

Our future work will include the participations in third-party-organized grand challenges, 

the further investigation of registration performances with regard to changes of varying 

parameter values, and a more extensive evaluation by including more data, more registration 

methods, more comprehensive evaluation criteria, and especially more clinical-oriented 

applications. Another very interesting direction is to develop a meta-registration paradigm, 

where registration methods complement rather than compete with each other. This has the 

potential to bring accuracy, robustness, and generality to a new and higher level.
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Appendix A. Summary of the 12 Publicly-Available Methods Included in 

This Evaluation

Appendix A supplements Section III-B in providing more detail for the 12 publicly-

available registration methods included in this evaluation study.

• flirt. An affine transformation assumes that all voxels in the image move together 

with 12 degrees of freedom (dof) in a 3-D space. This includes three dof for 

scaling, three dof for translation, three dof for rotation, and three dof for shearing. 

The publicly-available FMRIB’s Linear Image Registration Tool (flirt) [48] from 

FSL package is perhaps the most cited work for affine registration, as evidenced by 

more than 1500 citations in the Google Scholar search engine since its publication 

in 2001 (as of March 2013). The main contribution of flirt is in the optimization 

strategy. A global, multi-start and multi-resolution optimization strategy 

specifically for affine image registration problems was proposed. The fundamental 

idea is to combine a fast local optimization (Powell’s conjugate gradient descent 

method [124]) with an initial search phase. The flirt tool supports a variety of 

intensity-based similarity metrics, including Least Square Intensity Difference 

(LS), (Normalized) Correlation Coefficient ((N)CC) and (Normalized) Mutual 

Information ((N)MI). The flirt tool is publicly available at http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT.

• AIR. The Automatic Image Registration (AIR) registration tool was developed by 

researchers (Woods et al.) at the University of California, Los Angeles (UCLA) in 

the 1990s [50], [51]. AIR makes contributions in the deformation models. It models 

the deformation by second-, third-, fourth- and fifth-order nonlinear polynomials 

(30, 60, 105, and 168 deformation parameters, respectively). To find the optimal 

values for the deformation parameters, AIR minimizes a cost function between the 

deformed image and the target image. Three different cost functions are supported 

in AIR. One is the ratio image uniformity (RIU). The ratio of the intensity in the 

deformed image to the intensity in the target image is computed at each voxel 

location. The deformed and the target images are assumed to be aligned when the 

ratio is homogeneous (i.e., high mean value and low standard deviation) in the 

entire target image space. The second cost function is Sum of Square Difference 

(SSD) of image intensities. The SSD cost function assumes that the same 

anatomical structure in different images share the same intensity. Therefore, two 

images are aligned when the differences in their intensities are minimized. The 

third cost function is a variant of the second cost function, with some relaxation. 

Instead of assuming that the same anatomical structure shares the same intensity in 

different images, the third cost function assumes the same anatomical structure 

shares the same intensity with a global scaling factor. Therefore, it is a globally-

weighted SSD cost function. To minimize the cost function, a numerical optimizer 

based on either Newton’s method [125] or Levenberg–Marquardt method [126] is 

used. The AIR registration tool is publicly available at http://bishopw.loni.ucla.edu/

air5/.
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• ART. The Automatic Registration Toolbox (ART) was developed by researchers 

(Ardekani et al.) at the Nathan Kline Institute for Psychiatric Research and in the 

New York University in 2005 [52]. It makes contributions in defining a new 

similarity metric. In the ART framework, each voxel is characterized by a high-

dimensional feature vector, which is constructed by stacking the intensity values of 

all the voxels in the neighborhood. Compared with most voxel-wise methods which 

establish correspondences by the intensity at each voxel, ART establishes 

correspondences by the high-dimensional feature vector at each voxel. The 

similarity of two voxels is defined on their feature vectors as the inner-product of 

two vectors and an idempotent and symmetric matrix that removes the mean of the 

vector it pre-multiplies. ART is implemented in multi-resolution fashion. In the 

middle and low image resolutions, ART searches correspondences for all voxels in 

the target image. In the highest image resolution, ART only searches 

correspondences at those voxels whose gradient norms are in a certain upper 

percentile of the gradient magnitude histogram. The ART registration tool is 

publicly available at http://www.nitrc.org/projects/art/.

• ANTs. The Advanced Normalization Tools (ANTs) was developed by researchers 

(Avants et al.) at the University of Pennsylvania in the 2000s [53]. It is based on 

the LDDMM algorithm [40], but improves LDDMM’s computational efficiency 

and introduces symmetry into the LDDMM framework. In particular, ANTs 

decomposes the diffeomorphic deformation into two symmetric components. The 

idea is that, instead of deforming one image into the space of the other image, 

which is usually not symmetric to the input images, ANTs simultaneously deforms 

two input images, each towards the “midpoint” image. Therefore, the formulation 

becomes symmetric to the input images. ANTs supports three intensity-based 

similarity metrics: SSD, which LDDMM uses; CC, which is used by default in 

ANTs; and MI. The gradient descent optimization strategy [127] is used to 

numerically find the optimal deformation in the above formulation. ANTs 

iteratively updates the transformation by a velocity field, which, subject to the 

symmetry constraints, is computed at each voxel by searching a most similar voxel 

in the other image, according to whichever similarity metric users choose (by 

default correlation coefficient). Then the velocity field is smoothed by Gaussian 

filters before incorporated into the total deformation. The ANTs registration tool is 

publicly available at http://stnava.github.io/ANTs/.

• Demons and Diffeomorphic Demons. The Demons algorithm [57], [128] 

considers deformable image registration as a nonparametric diffusion process. It 

introduces “demons” to push voxels to their correspondences according to the local 

intensity characterizations. Using intensity difference as the similarity metric, a 

force is computed from the optical flow equations to push voxels by some velocity 

that is iteratively added to the total displacement (initially zero). The total 

displacement is then smoothed with a Gaussian filter serving as regularizations of 

the deformation. In its original version [57], the velocity field is simply added to 

the current deformation in each iteration, which may cause self-foldings in the 

deformation field and is hence not diffeomorphic. To solve this problem, the 
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Diffeomorphic Demons was developed in [128], by composing the deformation 

with the exponential of the velocity field. The Diffeomorphic Demons version has 

been shown to produce much smoother deformation (measured by Jacobians and 

Harmonic Energy of the obtained deformation) at an accuracy comparable to that 

of the original Demons [128]. In both approaches, the deformation is iteratively 

updated by a velocity field, which computes voxel-wise displacements according to 

a specific similarity metric; and the increment and the total deformation are 

smoothed by Gaussian filters to maintain smoothness. In this paper, both Demons 

and Diffeomorphic Demons are included in the evaluation. The Demons software 

(including Diffeomorphic Demons) is publicly available at http://www.insight-

journal.org/browse/publication/154.

• DRAMMS. Deformable Registration via Attribute Matching and Mutual-Saliency 

Weighting [56] is a general-purpose deformable registration algorithm. It makes 

contributions in defining a new similarity metric with two features. One feature is 

that it finds voxel correspondences based on high-dimensional Gabor texture 

attributes. The other feature is that it does not force each and every voxel to find its 

correspondences as most other general-purpose registration methods do. Rather, it 

weights voxels differently based on automatically detecting the ability of this voxel 

to establish correspondences between images. This way, the registration is mainly 

driven by voxels/regions that can establish reliable correspondences; at the same 

time, it can effectively reduce the negative impact of outlier regions if they exist. 

DRAMMS uses the cubic B-spline transformation model, as will be described later 

in the FFD algorithm. The DRAMMS software package is publicly available at 

http://www.cbica.upenn.edu/sbia/software/dramms/.

• DROP. DROP is the implementation of a deformable image registration pipeline 

developed by researchers (Glocker et al.) at the Ecole Centrale de Paris, France, the 

Technische Universität München, Germany, and the University of Grete, Greece 

[58]. The main contribution of DROP is in the numerical optimization. Discrete 

optimization is, for the first time, introduced into the field of medical image 

registration, brining in significant speedup compared with other continuous 

optimizers such as gradient descent (8 min by discrete optimization versus 3 h 50 

min by gradient descent for the same set of brain images, as reported in [58]). 

DROP uses FFD as its deformation model (described later in this section), and 

supports 12 intensity-based similarity metrics: Sum of Absolute Differences 

(SAD), which is used by default, Sum of Absolute Difference plus Sum of Gradient 

Inner Products (SADG), Sum of Squared Differences (SSD), Normalized 

Correlation Coefficient (NCC), Normalized Mutual Information (NMI), Correlation 

Ratio (CR), Sum of Gradient Inner Product (SGAD), and others. The DROP 

registration tool is publicly available at http://www.mrf-registration.net/.

• FFD and its variants (CC-/MI-/SSD-FFD). The free form deformation (FFD) 

model is a geometric transformation model that was introduced to image 

registration by [54] in 1999. Since then it has been widely used and cited for more 

than 2400 times in Google Scholar search engine (as of March 2013). In the FFD 

model, a regular grid of so-called “control points” is superimposed on top of the 
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dense image lattice. A FFD model basically states that the movement of an image 

voxel is a smooth, cubic B-spline-based interpolation of the displacement of the 

control points surrounding this voxel. Therefore, the task of finding movements at 

each voxel was translated into finding the displacements at regularly-spaced control 

points. In contrast to voxels-based methods, FFD has three nice properties: 1) 

control points are regularly spaced in the image, providing guidance throughout the 

image domain; 2) deformation is smooth by the cubic B-spline-based interpolation; 

3) landmarks moves by finding its own correspondences, whereas control point 

moves by finding the most possible corresponding patch for the image patch it 

controls, or represents. In the original work [54], FFD was combined with 

normalized mutual information (NMI) similarity metric. It can be combined with 

several other similarity metrics, including correlation coefficient (CC) and sum of 

squared difference (SSD). In this paper, we used the IRTK software package, 

which is the original implementation of the FFD-based registration. NMI-FFD, CC-

FFD and SSD-FFD were all included in the evaluation. The software is publicly 

available at http://www.doc.ic.ac.uk/~dr/software/.

• fnirt. The FMRIB’s Nonlinear Image Registration Tool (fnirt) was developed by 

researchers (Anderson, Smith, and Jenkinson) at the University of Oxford, Oxford, 

U.K., in 2007 [49], [129]. The fnirt method uses Sum of Squared Differences 

(SSD) as the similarity metric, therefore it is only suitable for mono-modality 

image registration tasks. It implements the free form deformation (FFD) model. 

The deformation is regularized by the magnitude of the Laplacian of the 

deformation (also known as the bending energy of the deformation). The main 

contribution is in the optimization process [129]. The optimization is based on 

multi-resolution Levenberg-Marquardt strategy [126]. The registration is initialized 

and run to the convergence in the down-sampled images, generating a deformation 

field with low resolutions and a high regularization weight. The images and the 

deformation field from the first step are then up-sampled, with the regularization 

modified. And it is again run to the convergence. This is repeated until the required 

high-resolution and the required level of regularization is achieved. The fnirt 

registration tool is publicly available at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fnirt.

Appendix B. Parameter Settings for Registration Methods

In Section III-C, we presented two rules to set the parameters for each registration method, 

in order to maintain fairness of the evaluation. Appendix B below provides the details of 

parameter settings for transparency and reproducibility in the evaluation.

• flirt.

flirt

-in ${subj_image}

-ref ${temp_image}.img

-out ${registered_image}
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-omat ${aff ine_matrix}

-cost corratio

-searchcost corratio

-searchrx – 10 10

-searchry – 10 10

-searchrz – 10 10

• AIR.

align_warp

${temp_image}

${subj_image}

${deformation_file}.warp

-m2 5

-t1 1

-t2 1

-q

• ART.

3dwarper

-sub ${subj_image}

-trg ${temp_image}

-u ${deformation_file}

-o ${registered_image}

-A

-sd 8.0

• ANTs.

ANTS 3

-m PR[${temp_image }, ${subj_image}, 1,2]

-o ${output_prefix}

-i 30 × 99 × 11

-t SyN[0.5]

-r Gauss[2,0]

-use–Histogram Matching

• (Additive) Demons.

DemonsRegistration

-f ${temp_image}
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-m ${subj_image}

-o ${registered_image}

-0 ${deformation_file}

-s 2.0 – g 2.0 – e – a 1

-i 30 × 20 × 10

• Diffeomorphic Demons.

DemonsRegistration

-f ${temp_image}

-m ${subj_image}

-o ${registered_image}

-0 ${deformation_file}

-s 2.0 – e – i 30 × 20 × 10

• DRAMMS.

dramms

–source ${subj_image}

–target ${temp_image}

–outimg ${registered_image}

–outdef ${deformation}

• DROP.

dropreg3d.exe

${subj_image},

${temp_image},

${registered_image},

${parameter_file}

where parameter_file specifies all parameters. They are:

grid = 16, imagelevels = 3, gridlevels =

3, mindim = 32, iterations = 5, max_dis =

6, steps = 5, lab_factor = 0.5, data =

0, dist = 1, truncation = 0, lambda =

0.2, gamma = 0, optimizer = 0, locallabels =

0, interpolation = 0, invprojection =

1, linkmax = 1, increg = 1, update = 0, sampling =

0, bins = 64, margin = 0.

• CC-FFD.

nreg.exe
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${temp_image},

${subj_image}

-dofout ${deformation_file}

-parin ${parameter_file}

where parameter_file specifies all parameters. They are:

No. of resolution levels = 3, No. of bins =

64, Epsilon = 0.0001, Padding value = –1,

Similarity measure = CC, Interpolation mode =

Linear, Optimization method = GradientDescent,

Lambda1 = 0.00000001, Lambda2 = 0, Lambda3 =

0, Control point spacing in X = 16, Control

point spacing in Y = 16, Control point

spacing in Z = 16, Subdivision =

True;Resolution level = 1, Target blurring

(in mm) = 1.5, Target resolution (in mm) =

3 3 3, Source blurring (in mm) = 1.5, Source

resolution (in mm) = 3 3 3, No. of

iterations = 10, No. of steps = 4,

Length of steps = 5; Resolution level = 2,

Target blurring (in mm) = 3, Target

resolution (in mm) = 6 6 6, Source blurring

(in mm) = 3, Source resolution (in mm) =

6 6 6, No. of iterations = 10, No. of steps =

4, Length of steps = 10; Resolution level = 3,

Target blurring (in mm) = 6, Target resolution

(in mm) = 12 12 12, Source blurring (in mm) =

6, Source resolution (in mm) = 12 12 12, No. of

iterations = 10, No. of steps = 4, Length of

steps = 20.

Note that, lambda 1,2,3 = 0 in [

17

]; we set lambda1 = 0.00000001 to increase smoothness of the 

deformation.

• MI-FFD.

The usage is the same as in CC-FFD above, with the only difference being one item 

in parameter_file: Similaritymeasure = MI.

• SSD-FFD.

The usage is the same as in CC-FFD above, with the only difference being two 

items in parameter_file: Similaritymeasure = SSD, Lambda1 = 0.0005.
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• fnirt.

fnirt

– – in = ${subj_image}

– – ref = ${temp_image}

– – fout = ${deformation_file}

– – cout = ${deformation_coefficient}

– – imprefm = 1

– – impinm = 1

– – imprefval = 0

– – impinval = 0

– – applyrefmask = 0

– – applyinmask = 0

– – subsamp = 8, 8, 4, 4, 2, 2

– – miter = 5, 5, 5, 5, 5, 10

– – infwhm = 8, 6, 5, 4, 3, 2

– – ref f whm = 8,6,5,4,3,2

– – lambda = 300, 150, 100, 50, 40, 30

– – estint = 1, 1, 1, 1, 1, 0

– – warpres = 10, 10, 10

– – ssqlambda = 1

– – regmod = bending_energy

– – intmod = global_non_linear_with_bias

– – intorder = 5

– – biasres = 50, 50, 50

– – biaslambda = 10000

– – refderiv = 0

Appendix C. Jaccard Overlap for All ROIs in the NIREP and LONI Databases

Table III shows Jaccard overlaps, averaged over all pair-wise registrations, in all 32 ROIs in 

the NIREP database. Methods that obtained highest average Jaccard overlap in each ROI are 

noted in bold texts. Similarly, Table V shows overlaps, averaged over all pair-wise 

registrations, in all 56 ROIs in the LONI-LPBA40 database. They provide more information 

than Fig. 7 especially on what level of accuracy we can expect for each of the ROI structure 

in inter-subject registration. For instance, hippocampus may have over 0.6 Jaccard overlap 

in inter-subject registration, while superior occipital gyrus may only have around 0.45 

Jaccard overlap.

Appendix D. Jaccard Overlap for All ROIs in the BrainWeb Database

Table IV shows the average Jaccard overlap in all 11 ROIs in the BrainWeb database. 

Methods that obtained highest average Jaccard overlap in each ROI are noted in bold texts.
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Fig. 1. 
Four randomly-chosen subjects in the NIREP database (the top two rows) and four 

randomly-chosen subjects in the LONI-LPBA40 database (the bottom two rows). For each 

subject, both the intensity image and the expert-annotated ROI image are shown. Different 

colors represent different ROIs in each database. These two databases were used to evaluate 

how registration methods perform facing challenges arising from the inter-subject variability 

(Challenge 1).
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Fig. 2. 
Images and annotations of two randomly chosen subjects from each of the three databases 

we used to represent Challenge 2 (intensity inhomogeneity, noise and structural differences 

in raw brain images). (a) From the BrainWeb database. (b) From the IBSR database. (c) 

From the OASIS database.
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Fig. 3. 
Three-plane view of the intensity images and annotation images from three randomly-

chosen subjects in the ADNI database. White color in the annotation images denotes the 

brain masks, and red denotes hippocampus masks. Blue contours in panel (a) point to the 

region that exists in one image, but does not exist in other images, due to the FOV 

differences in multiple imaging institutions. The ADNI database was used to represent 

Challenge 3 (on top of Challenges 1, 2). (a) A normal control (NC) subject. (b) A mild-

cognitive-impairment (MCI) subject. (c) An Alzheimer’s Disease (AD) subject.
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Fig. 4. 
Database to evaluate how registration methods perform facing the challenge arising from the 

pathology-induced missing correspondences (i.e., Challenge 4). Red arrows point out the 

regions that contain the cavity (after the resection of the original tumors) and the recurrent 

tumors. Their correspondences are difficult to find in the normal-appearing template image 

(second row).
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Fig. 5. 
Measuring registration accuracies in different zones. Panel (a) is the sketch of dividing the 

whole images into various zones. The solid contour filled with yellow texture denotes the 

abnormal zone (Zone 1), which contains the post-resection cavity and the recurrent tumor. 

Zones 2 and 3 are normal-appearing regions immediately close to, and far away from, Zone 

1. Zone 4 is the whole brain boundary. The definition of the zones can be found in the main 

context in Section III-D4. Panel (b) shows landmark/ROI definitions for an example pair of 

images. Blue contours are expert-defined ROIs in Zone 1. Red crosses are expert-defined 

landmarks in Zone 2. Yellow crosses are expert-defined landmarks in Zone 3. Green 

contours are the automatically-computed brain boundaries (through Canny edge detection of 

the brain masks), to measure the registration accuracy in Zone 4. Please note that the 

landmark/ROI definitions from a second expert (which are not shown here) may differ. This 

figure is best viewed in color.
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Fig. 6. 
Depiction of inter-expert and algorithm versus expert landmark errors.
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Fig. 7. 
Box-and-Whisker plots of registration accuracies in the NIREP and LONI-LPBA40 

databases, as indicated by the Jaccard overlaps averaged across 32 (in NIREP) or 56 (in 

LONI-LPBA40) ROIs. This figure shows how registration methods perform facing 

Challenge 1 (inter-subject variability).
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Fig. 8. 
Box-and-Whisker plots of registration accuracy in the BrainWeb database, as indicated by 

the Jaccard overlaps averaged across 11 available ROIs. This is Scenario 1 in the testing of 

registration methods facing Challenge 2 (intensity inhomogeneity, noise and structural 

differences in raw images).
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Fig. 9. 
Registration accuracy in raw brain images, in the IBSR and OASIS databases, as indicated 

by the Jaccard overlap (the first row) and 95th percentile Hausdorff Distance (the second 

row), between the warped and the target brain masks. This is Scenario 2 in the testing of 

registration methods facing Challenge 2 (intensity inhomogeneity, noise and structural 

differences in raw images). “prctile” in the title of the second subfigure means “percentile”.
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Fig. 10. 
Jaccard overlaps in the ADNI database, for a) the brain mask (the left three columns); b) the 

left hippocampus (the middle three columns); and c) the right hippocampus (the right three 

columns). This figure shows how registration methods perform in a typical multi-site 

database, where additional challenges arise from the imaging and FOV differences in 

different imaging institutions (Challenge 3).
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Fig. 11. 
Demons, ANTs and DRAMMS registration results of two pairs of images having large 

anatomical variations especially in ventricles, mainly due to their different levels of neuro-

degeneration. All subjects are from the multi-site ADNI database. Blue arrows point to some 

typical locations where registration results from three methods differ greatly.
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Fig. 12. 
Landmark errors or the 95th percentile Hausdorff Distance in various zones in the 

pathology-to-normal subject registrations. In addition to the errors, we have shown the 

average Jaccard overlap in Zone 1 in this figure. This figure shows how registration methods 

perform in the presence of pathology-induced missing correspondences (Challenge 4).
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Fig. 13. 
Registration of a brain image with tumor recurrence to a normal brain template by 

DRAMMS, for a series of slices in the coronal view. This figures shows how the mutual-

saliency mechanism (a spatial-varying utilization of voxels) helped DRAMMS in the 

pathological-to-normal subject registration scenario. Without segmentation, initialization, or 

prior knowledge, the automatically-calculated mutual-saliency map (d), defined in the target 

image space, effectively assigned low weights to those regions that correspond to those 

outlier regions (pointed out by arrows) in the source image (a). This way, the negative 

impact of outlier regions could be largely reduced; registration was mainly driven by regions 
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that could establish good correspondences. Red arrows point to the post-surgery cavity 

regions. Blue arrows point to the recurrent tumors.
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TABLE II

Registration Algorithms to be Evaluated for the Inter-Subject Registration of Brain Images. This Table Is Only 

a Brief Summary of Them. More Detail can be Found in Appendix A.

Algorithm Deformation Model Similarity Regularization

flirt affine SSD/CC/MI –

AIR 5th polynomial warps MSD by polynomial

ART non-parametric homeomorphism NCC Gaussian smoothing

ANTs symmetric velocity CC Gaussian smoothing

Demons stationary velocity SSD Gaussian smoothing

Diff. Demons diff. stationary velocity SSD Gaussian smoothing

DRAMMS Cubic B-spline attributes bending energy

DROP Cubic B-spline MSD bending energy

CC-FFD Cubic B-spline CC bending energy

MI-FFD Cubic B-spline MI bending energy

SSD-FFD Cubic B-spline SSD bending energy

fnirt Cubic B-spline SSD bending energy

Abbreviations: Diff.—Diffeomorphism; MI—Mutual Information; SSD—Sum of Squared Difference; MSD—Mean Squared Difference; CC—
Correlation Coefficient; NCC—Normalized CC
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