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Abstract

We determined whether bone mineral density (BMD) is lower in boys with autism spectrum 

disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD 

was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 

controls 8–14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and femoral 

neck, and differences at the hip and femoral neck persisted after controlling for maturity and BMI. 

Vitamin D intake from food and in serum were lower in ASD subjects, as was exercise activity. 

We conclude that BMD is lower in peripubertal boys with ASD and may be associated with 

impaired vitamin D status and lower exercise activity.
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Introduction

Autism spectrum disorders (ASD) are a group of behaviorally-defined disorders 

characterized by impaired social interactions, verbal and non-verbal communication, and 

repetitive phenomena along with unusual behavior or play (American Psychiatric 

Association 2000). The prevalence of ASD in American children was recently reported to be 

increased by the Autism and Developmental Disabilities Monitoring Network (CDC), now 

affecting 1 in 88 (2009).

The childhood and adolescent years are a critical time for bone accrual towards achievement 

of peak bone mass, an important determinant of future bone health. Factors that can affect 

bone accrual during preadolescence and adolescence include genetics, nutritional status 

[particularly calcium, vitamin D and protein intake (Davies et al. 2005; Foo et al. 2009; 

Lehtonen-Veromaa et al. 2002)], exercise activity, endocrine alterations and use of specific 

medications. Low bone density has been reported in various conditions of undernutrition in 

children, including anorexia nervosa (Misra et al. 2004), celiac disease (Heyman et al. 

2009), inflammatory bowel disease (Schmidt et al. 2009) and cystic fibrosis (Grey et al. 

2008). Therefore, dietary behaviors and nutritional status of children with ASD are 

potentially relevant to their bone accrual and risk for low bone mineral density (BMD). 

Children with ASD often have an unusually restricted diet (including gluten-free casein-free 

(GFCF) diets, gluten-free (GF) diets and lactose-free diets), which might limit calcium or 

vitamin D intake.

Children with ASD have high rates of co-morbid neurologic and psychiatric illnesses, 

including epilepsy and mood disorders, which may be associated with increased cortisol 

levels, exacerbating the risk for low bone density (Greaves-Lord et al. 2009; Lopez-Duran et 

al. 2009; Sheth et al. 2008). Children with ASD and seizures may also be treated with 

anticonvulsant medications, some of which impact vitamin D metabolism and BMD (Chou 

et al. 2007; Pack et al. 2008). Pubertal bone accrual is dependent upon (a) rising levels of 

bone anabolic hormones such as growth hormone (GH) and insulin like growth factor-1 

(IGF-1) (secreted by the liver and locally at target tissues in response to GH), (b) rising 

levels of anti-resorptive hormones, such as the sex steroids, and (c) optimal weight bearing 

activities (Davies et al. 2005). Children with ASD may have impaired GH secretion (Ragusa 

et al. 1993), with adverse effects on IGF-1 synthesis. The nutritionally dependent process of 

IGF-1 synthesis (Soyka et al. 1999) is also at risk in children with dietary anomalies. 

Finally, low muscle tone (Ming et al. 2007) and low exercise rates (Pan 2008) in children 

with ASD may affect bone development.

There is no comprehensive analysis thus far examining the relationship between autism and 

BMD. One study (Hediger et al. 2008) reported decreased cortical bone thickness using 

radiographs in children with autism or ASD, raising concerns regarding the impact of these 

disorders on bone mass and bone mineral acquisition. The objectives of this study were to 

determine whether BMD, as assessed with dual energy X-ray absorptiometry (DXA), is 

lower in boys with ASD than in controls (boys with no other diseases that may affect bone 

metabolism), and what differences there are between groups for factors that might be 

causally related to BMD. We hypothesized that BMD would be lower in boys with ASD 
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than in controls, and would be associated with lower dietary calcium and vitamin D intake, 

and lower levels of serum IGF-1 and testosterone.

Methods

Subjects

Eighteen boys with ASD and 19 controls between the ages of 8–14 years participated in the 

study. All affected subjects met Diagnostic and Statistical Manual of Mental Disorders IV 

(DSM-IV) and Autism Diagnostic Observation Schedule criteria for an ASD (Lord et al. 

2000; Lord et al. 1994), and had a body mass index (BMI) between the 3rd–97th percentiles 

for age. No subject was on medications known to directly affect bone metabolism including 

testosterone, estrogen/progesterone preparations or glucocorticoids (except local 

application). No subject was on anticonvulsants that affect BMD such as diphenylhydantoin, 

phenobarbital, topiramate, carbamazepine and valproic acid. No child had a disease known 

to affect BMD, including Crohn’s disease, celiac disease, thyroid and renal disease. The 

control group of 19 boys without ASD (ages 8–14 years) was recruited by advertisements in 

pediatricians’ offices, on the Internet and by word of mouth. Our subjects self-identified 

their race as follows: 32 Caucasian, three African-American, one Asian and one mixed. The 

Institutional Review Board of Partners Health Care approved the protocol. Informed assent 

and consent were obtained from subjects and their parents, respectively.

Procedures

All subjects were evaluated during an outpatient visit at the Clinical Research Center at 

Massachusetts General Hospital after a screening telephone call or visit to determine 

eligibility. Bone age was determined by an X-ray of the left hand and wrist (Greulich and 

Pyle 1959). Height was measured using a single stadiometer (average of triplicate 

measurements), and weight was measured on an electronic scale. Age and gender norms 

were determined for height and BMI (Ogden et al. 2002). A salivary cortisol sample was 

collected from each subject at 8 a.m. and 11 p.m. (when cortisol levels peak and nadir, 

respectively, in a healthy population). Fasting serum samples were obtained for calcium, 

phosphorus, 25(OH) vitamin D [25(OH)D], testosterone and IGF-1. We also measured a 

marker of bone formation, N-terminal propeptide of Type 1 procollagen (PINP), and a 

marker of bone resorption, N-telopeptide (NTX), also collected in a fasting state.

BMD of the lumbar (L1–L4) spine and hip was measured by dual energy X-ray 

absorptiometry (DXA) (Hologic 4500, Waltham, MA, USA). DXA is a standardized, 

reproducible method of determining BMD. Normative age and gender-based data are 

available for DXA in children. Because DXA measures areal and not volumetric BMD, it 

overestimates BMD in tall children and underestimates BMD in short children (Carter et al. 

1992). To correct for height, we used measures of bone mineral apparent density (BMAD) 

for the spine (Wren et al. 2005). In addition, we assessed absolute and height adjusted Z-

scores using the database and methods of Zemel et al. (2011).

We used radioimmunoassay to measure 25(OH)D (Diasorin, Inc., Stillwater, MN, USA; 

intra-assay coefficient of variation (CV) of 4.4–8.3 % and lower limit of detection of 1.5 ng/
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dl), PINP (Orion Diagnostica Oy, Espoo, Finland; intra-assay CV of 3.5–5.3 % and lower 

limit of detection of 0.7 ng/ml). A chemiluminescent immunoassay (Beckman Coulter, 

Fullerton, CA, USA) was used to measure testosterone (intra-assay CV of 1.67–3.93 %, 

lower limit of detection 10 ng/dl). IGF-1 was assessed using an enzyme immunoassay 

(ALPCO Diagnostics, Salem, NH; intra-assay CV of 6.6–9.7 %; lower limit of detection 2.3 

ng/ml). NTX was measured using an enzyme immunoassay by Labcorp. Calcium and 

phosphorus were assessed using standard methods.

Subjects maintained a food record for 3 days. Written and verbal guidelines were provided 

for estimation of food portions. Participants were encouraged to depict typical food 

consumption. The CRC research dietitian performed nutrient calculations from the three-day 

food record using the Minnesota Nutrition Data System (NDS) software (version 4.03; 

nutrient database 31). Typical exercise activity of subjects was determined using the Youth 

Physical Activity Survey and categorized as ‘Sedentary’, ‘Low Active’, ‘Active’, and ‘Very 

Active’) (personal communication from Cincinnati Children’s Hospital Medical Center).

JMP (version 9) was used to analyze the data (reported as means ± SEs). A p value of <0.05 

was considered to be significant. We based the power analysis on the primary endpoint, the 

mean difference in BMD in children with ASD versus controls. We estimated that group 

sample sizes of at least 18 boys would achieve >80 % power to detect a difference of C1 SD 

between groups at a significance level of 0.05. We compared boys with ASD with controls 

using the Student t test when data were normally distributed, and the Wilcoxon Rank Sum 

test when data were not normally distributed. The Fisher’s Exact test was used to compare 

proportions.

We used analysis of covariance (ANCOVA) to control for bone age when comparing 

differences between groups for biochemical parameters, calcium and vitamin D intake, and 

bone density parameters. We also used ANCOVA to control for bone age and BMI SDS 

when comparing differences between groups for bone density parameters (given that BMI 

SDS is an important determinant of bone density measures in general). When comparing 

proportions, to control for bone age, or bone age and BMI SDS, we used logistic regression.

Results

Clinical and Anthropometric Data

Boys with ASD did not differ from controls for age, bone age, weight, height, BMI or BMI 

standard deviation score (SDS) (Table 1). Reported physical activity was lower in subjects 

with ASD; 11.1, 33.3, 44.4 and 11.1 % of boys with ASD reported sedentary, low active, 

active, and high activity levels, respectively, compared with 5.3, 5.3, 15.8 and 73.7 % of 

controls (p = 0.002) (Table 2).

Bone Density and Bone Marker Data

Boys with ASD had lower BMD at the spine, hip and femoral neck than controls (Table 3). 

Similarly, instrument generated BMD Z-scores at these sites were markedly lower in boys 

with ASD than controls, as was spine BMAD (height-adjusted measure of bone density). A 

higher proportion of boys with ASD had BMD Z-scores <-2 at the spine and femoral neck. 
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Differences between the groups for BMD and BMD Z-scores at the hip and femoral neck 

persisted after controlling for (a) bone age, and for (b) bone age and BMI SDS (Table 3).

We also assessed Z-scores and height adjusted Z-scores using the database and methods of 

Zemel et al. (2011). Using this database, spine Z-scores were −0.90 ± 0.35 versus 0.14 ± 

0.25 (p = 0.02) and total hip Z-scores −0.61 ± 0.27 versus 0.44 ± 0.26 (p = 0.008) in boys 

with ASD versus controls. Height adjusted Z-scores also differed significantly between the 

groups (Spine height adjusted Z-scores: −1.11 ± 0.31 vs. −0.33 ± 0.21, p = 0.04; Hip height 

adjusted Z-scores: −0.80 ± 0.22 vs. 0.10 ± 0.27, p = 0.01).

Serum P1NP was lower and NTX higher in boys with ASD; however, these differences did 

not reach statistical significance (P1NP: 589 ± 66 vs. 671 ± 64 ng/ml, and NTX: 53.7 ± 4.0 

vs. 60.4 ± 5.0 ng/ml in ASD and controls).

Nutritional Data

Four boys with ASD were on a GFCF diet, one on a glutenfree diet, and another on a dairy-

free diet. Five of these six subjects were on supplements. Overall, eight boys with ASD and 

seven controls were on supplements. Hip BMD and BMD Z-scores, and femoral neck BMD 

and BMD Z-scores (but not other BMD measures) were significantly lower in four boys 

with ASD on GFCF diets compared with other boys with ASD (hip BMD: 0.59 ± 0.03 vs. 

0.78 ± 0.02 g/cm2, p = 0.007; hip BMD Z-scores: −2.10 ± 0.17 vs. −0.66 ± 0.25, p = 0.02; 

femoral neck BMD: 0.51 ± 0.03 vs. 0.63 ± 0.02 g/cm2, p = 0.01; femoral neck BMD Z-

scores: −2.55 ± 0.38 vs. −1.38 ± 0.20, p = 0.02).

Vitamin D intake from food, though not from food and supplements, was lower in boys with 

ASD (Table 2), as was lactose intake. Compared to controls, a smaller proportion of boys 

with ASD met the estimated requirement for total daily vitamin D intake (400 IU) and there 

was a trend towards fewer boys with ASD meeting the Recommended Daily Allowance 

(RDA) (600 IU) (Slomski 2011). The six boys on restricted diets did not differ from other 

boys with ASD for vitamin D intake from food. However, their vitamin D intake from 

supplements was higher (p = 0.009).

Total calcium intake was lower in boys with ASD (Table 2). The groups did not differ in 

total caloric, fat, protein and carbohydrate intake. Similarly, total soluble and insoluble 

dietary fiber intake did not differ between groups; nor did glucose, fructose, galactose, 

maltose, sucrose, starch, animal and vegetable proteins, cholesterol, and saturated, 

monounsaturated and polyunsaturated fatty acids intake.

Biochemical Data

Levels of calcium, phosphorus, IGF-1, testosterone, free androgen index and AM salivary 

cortisol did not differ between groups. Serum 25(OH)D levels were lower, and PM salivary 

cortisol higher in boys with ASD than in controls (Table 1). The six boys with ASD on 

restricted diets did not differ from other boys with ASD for 25(OH)D levels. Also, 25(OH)D 

levels did not differ between groups after controlling for season of assessment.

Neumeyer et al. Page 5

J Autism Dev Disord. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The results of this study indicate that bone mineral density (BMD) is lower in boys with 

ASD compared with controls at the spine, femoral neck and total hip. These data raise 

significant concerns regarding bone health in this population, and prospective studies are 

necessary to determine whether peak bone mass acquisition is deleteriously affected in 

children with ASD.

In this study, as hypothesized, we found that boys with ASD had lower BMD compared with 

controls. Total caloric intake and intake of specific macronutrients did not differ between 

groups. However, intake of vitamin D and lactose from food was lower in boys with ASD 

and may reflect lower intake of milk and dairy products. Studies have reported a high 

prevalence of malabsorptive symptoms (Valicenti-McDermott et al. 2008) and decreased 

lactase activity in children and adults with autism (Kushak et al. 2011; Horvath et al. 1999), 

and an intolerance to lactose may contribute to this decreased intake. Dietary sources of 

vitamin D are limited, and much of one’s dietary intake of vitamin D is derived from 

fortified milk and milk products (Misra et al. 2008). Thus, limited dairy intake could 

significantly impact serum 25(OH)D levels, particularly in the absence of other sources of 

vitamin D supplementation. Finally, endogenous vitamin D synthesis requires sun exposure, 

and this may also be limited in children with ASD given their reduced activity levels and 

time spent outdoors. In our study, serum vitamin D levels were lower in ASD, and a larger 

proportion of boys with ASD than controls had vitamin D levels <32 ng/ml, the 

recommended lower limit for optimal vitamin D levels (Holick et al. 2011). Adequate 

vitamin D intake is essential for optimal bone mineralization and pubertal bone accural 

(Lehtonen-Veromaa et al. 2002), and a lower vitamin D intake in boys with ASD associated 

with lower serum 25(OH)D levels in the long-term may have important deleterious effects 

on bone health. Studies are necessary to determine whether vitamin D supplementation in 

boys with ASD is effective in improving bone health in this population.

Exercise can have an important impact on bone health (Davies et al. 2005), and boys with 

ASD had lower activity levels than controls. More studies (using detailed and validated 

questionnaires) are necessary to examine the impact of exercise activity on bone density in 

boys with ASD. If future studies indicate that a lower exercise level is an important 

determinant of bone density in boys with ASD, structured exercise programs may be 

necessary to optimize pubertal bone accrual in this condition.

Insulin-like growth factor-1 (IGF-1) is a nutritionally regulated hormone important for bone 

formation during the pubertal years (Russell et al. 2011), and testosterone is another 

important determinant of pubertal bone metabolism that increases with increasing maturity. 

Aromatization of testosterone to estrogen decreases bone resorption, while testosterone has 

direct bone anabolic effects (Leder et al. 2003; Michael et al. 2005). However, consistent 

with a lack of difference in caloric intake and BMI between boys with ASD and controls, the 

groups did not differ with regard to serum IGF-1. Similarly, testosterone levels did not differ 

across groups.
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Of importance, total hip and femoral neck bone density Z-scores remained lower in boys 

with ASD compared with controls, even after controlling for maturity and BMI. The femoral 

neck is the site most susceptible to fractures when hip bone density is low, and there are 

likely factors other than those assessed in this study that contribute to bone density at this 

site. We did observe significantly lower total hip and femoral neck BMD measures in boys 

with ASD on GFCF diets compared with other boys with ASD, and it is possible that lack of 

specific nutrients in such diets is a major contributor to low bone density. This will be 

important to assess in future studies.

Limitations of this study include its cross-sectional nature and the fact that ass ociations do 

not prove causation; thus causality cannot be inferred from our data. Additionally, we did 

not collect data regarding use of atypical antipsychotics, which may impact bone density by 

increasing prolactin secretion and causing hypogonadism (Bostwick et al. 2009). We also 

excluded children on anticonvulsants that may impact vitamin D metabolism thus limiting 

generalizability. Prospective studies are necessary to confirm the role of vitamin D status in 

modifying bone metabolism in children with ASD, and the impact of medications and 

exercise.

These are the first data to demonstrate that boys with ASD have lower bone density than 

controls. This is a significant finding and raises major concerns regarding not only the 

immediate risk for fractures in this population, but also peak bone mass acquisition and 

long-term bone health. Further prospective studies are necessary to examine bone accrual 

rates in children with ASD, and the impact of vitamin D intake and exercise on bone density 

in boys with ASDs.
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Abbreviations

BMD Bone mineral density

BMAD Bone mineral apparent density

DXA Dual energy X-ray absorptiometry

ASD Autism spectrum disorder

IGF-1 Insulin-like growth factor-1

TSH Thyroid stimulating hormone

T4 Thyroxine
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P1NP N-terminal propeptide of Type 1 procollagen

NTX N-telopeptide

SGBG Sex hormone binding globulin

SD Standard deviation

SE Standard error

CV Coefficient of variation
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Table 1

Clinical characteristics and biochemical parameters in boys with ASD and controls

ASD
n = 18

Controls
n = 19

p value p value*

Age (years) 10.6 ± 0.4 11.2 ± 0.3 0.23

Bone age (years) 10.6 ± 0.6 11.8 ± 0.4 0.08

BMI (kg/m2) 18.9 ± 1.0 17.6 ± 0.40 0.24 0.11

BMI SDS 0.26 ± 0.30 0.02 ± 0.20 0.48 0.60

Height SDS 0.40 ± 0.20 1.01 ± 0.25 0.06 0.17

Biochemical
 parameters

 Calcium (mg/dl) 9.7 ± 0.1 9.6 ± 0.1 0.67 0.49

 Phosphorus
 (mg/dl)

4.6 ± 9.1 4.7 ± 0.1 0.37 0.59

 25 (OH) vitamin
 D (ng/ml)

26.7 ± 1.9 31.7 ± 1.6 0.05** 0.06

 25(OH) vitamin
 D <32ng/ml

76.5 % 36.8 % 0.02 0.03

 IGF-1 (ng/ml) 165 ± 18 173 ± 13 0.70 0.58

 Testosterone
 (ng/dl)

90 ± 43 119 ± 33 0.58 0.62

Bold values indicate significant differences between groups SDS Standard deviation score

*
Adjusted for bone age

**
Non-parametric testing
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Table 2

Dietary intake, season of examination and exercise classification in boys with ASD and controls

ASD n = 18 Controls n = 19 p value p value*

Dietary intake of
 calcium and
 vitamin D

 Calcium intake
  from food (mg/d)

877 ± 77 1,149 ± 125 0.08 0.13

 Calcium intake
  from food and
  supplements
  (mg/d)

878 ± 92 1,184 ± 121 0.05 0.11

 % Meeting EAR
  (calcium intake)

33.3 % 57.9 % 0.19 0.25

 % Meeting RDA
  (calcium intake)

16.7 % 36.8 % 0.27 0.23

 Vitamin D intake
  from food (IU/d)

199 ± 26 340 ± 56 0.03 0.04

 Vitamin D intake
  from food and
  supplements
  (IU/d)

314 ± 62 489 ± 82 0.07** 0.14

 % Meeting EAR
  (vitamin D
  intake)

27.8 % 68.2 % 0.049 0.05

 % Meeting RDA
  (vitamin D
  intake)

5.6 % 31.6 % 0.09 0.046

Season of
 examination

 Fall/winter 44 % 16 % 0.08 0.11

 Spring/summer 56 % 84 %

Exercise
 classification

 Sedentary 11.1 % 5.3 % 0.002 <0.0001

 Low activity 33.3 % 5.3 %

 Active 44.4 % 15.8 %

 High activity 11.1 % 73.7 %

Bold values indicate significant differences between groups

SDS standard deviation score, EAR estimated average requirement, RDA recommended dietary allowance

*
Adjusted for bone age

**
Non-parametric testing
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Table 3

BMD in children with ASD and controls

ASD
n = 18

Controls
n = 19

p p * p **

Lumbar spine
 BMD (g/cm2)

0.56 ± 0.03 0.66 ± 0.02 0.02 0.12 0.047

Lumbar spine
 BMD Z-score

−1.13 ± 0.28 −0.21 ± 0.25 0.02 0.06 0.02

Lumbar spine
 BMD Z-scores
 <−2

27.8 % 0 % 0.02 0.02 0.03

Lumbar spine
 BMAD
 (g/cm3)

0.09 ± 0.00 0.11 ± 0.00 0.02 0.13 0.06

Femoral neck
 BMD (g/cm2)

0.60 ± 0.02 0.72 ± 0.02 0.0005 0.003 0.001

Femoral neck
 BMD Z-score

−1.64 ± 0.21 −0.52 ± 0.24 0.001 0.003 0.001

Femoral neck
 BMD Z-scores
 <−2

33.3 % 0 % 0.008 0.005 0.006

Hip BMD
 (g/cm2)

0.70 ± 0.02 0.81 ± 0.02 0.002 0.008 0.003

Hip BMD
 Z-score

−0.92 ± 0.24 0.14 ± 0.29 0.009 0.007 0.002

Hip BMD
 Z-scores <−2

16.7 % 5.3 % 0.34 0.26 0.24

Bold values indicate significant differences between groups

*
p adjusted for bone age

**
p adjusted for bone age and BMI SDS
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