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Abstract

Enteroviruses (EVs) are the most common human viral pathogens. They cause a variety of 

pathologies, including myocarditis and meningoencephalopathies, and have been linked to the 

onset of type I diabetes. These pathologies result from the death of cells in the myocardium, 

central nervous system, and pancreas, respectively. Understanding the role of EVs in inducing cell 

death is crucial to understanding the etiologies of these diverse pathologies. EVs both induce and 

delay host cell death, and their exquisite control of this balance is crucial for their success as 

human viral pathogens. Thus, EVs are tightly involved with cell death signaling pathways and 

interact with host cell signaling at multiple points Here, we review the literature detailing the 

mechanisms of EV-induced cell death. We discuss the mechanisms by which EVs induce cell 

death, the signaling pathways involved in these pathways, and the strategies by which EVs 

antagonize cell death pathways. We also discuss the role of cell death in both the resulting 

pathology in the host and in the facilitation of viral spread.

1. Introduction

Viruses are ubiquitous infectious agents that are astoundingly diverse in their size, shape, 

and tropism. Despite this diversity, all viruses must accomplish certain tasks in order to 

replicate and propagate their genetic material. Viruses must enter a living host cell, replicate 

within that cell, and, finally, exit the cell only to begin the cycle anew. This entire process 

can occur in a matter of hours in the case of a lytic viral infection or can take decades in the 

case of latent viral infection.

Enteroviruses (EVs) are the most common human viral pathogens (1,2). These small 

(~30nm), positive-sense RNA viruses with ~7 kB genome in the picornavirus family cause a 

range of syndromes from mild, upper respiratory infections to severe neurological pathology 

and dilated cardiomyopathy (3–7). Here, we focus on the non-rhinovirus EVs, which include 

poliovirus (PV) and coxsackieviruses (CVA or CVB), amongst others. EVs are fecal-oral 
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pathogens that can infect a variety of cell types in their human hosts. As fecal-oral 

pathogens, they infect the polarized epithelial cells lining the intestinal tract (but can also 

target the respiratory tract) upon their initial ingestion. If dissemination occurs, EVs can 

infect pancreatic cells, cardiomyocytes, and neurons; the most serious pathologies arise as a 

consequence of viral replication at these secondary sites.

The enteroviral life cycle in such diverse human cell types is dependent upon eliciting cell 

death in order to facilitate egress. It is worth noting that there is emerging evidence that a 

small subpopulation of enteroviral virions may also exit the cell in a cell death-independent 

manner; this will be discussed below (Section 4.2). Despite the necessary role of cell death 

in viral egress, cell death can also be considered an antiviral response, and when executed 

correctly can serve to control infection (8). In this review, we provide an overview of the 

existing literature addressing host cell death initiated upon EV infection. We begin by 

detailing the literature available regarding the role of cell death in pathogenesis during 

enteroviral infections (Section 2). Next, we review the mechanisms of cell death induction 

during EV infections (Section 3) and examine the types of cell death that occur upon EV 

infection (namely, apoptosis (Section 3.1) and necrosis (Section 3.2)). We then focus on the 

mechanisms by which cell death facilitates cell to cell viral spread (Section 4). While EVs 

do indeed rely upon cell death in order to exit the cell, cell death can also be a potent innate 

immune mechanism enacted against intracellular pathogens by the host; the death of an 

infected cell before the intracellular pathogen completes its life cycle removes the 

environment required for the pathogen to replicate. With this in mind, we then review the 

innovative and fascinating ways in which EVs actively control host cell death pathways 

during their life cycles (Section 5).

2. Cell death and pathology

While cell death is indeed a necessary event for viral spread, EV-induced cell death is also 

responsible for pathological outcomes of EV infection. In this section, we review the 

literature detailing how EV-induced cell death induces these pathologies. We focus on the 

pathological effects of EV infections in the heart, pancreas, and central nervous system 

(CNS). EVs display tropism for each of these three tissues, and a recent case study of twin 

newborns who died from CVB4 infections found high levels of CVB4 nucleic acid at each 

of these three sites (9). It is important to note that replication at these sites is not necessary 

for successful transmission of the EV to a new host. Indeed, the majority of people infected 

with EVs efficiently transmit the virus without experiencing any of the clinical outcomes 

detailed here. Replication in these organs may be considered a dead end for the virus, and 

unfortunately also leads to serious pathologies and even death for infected individuals (10).

2.1 Myocarditis

One of the most serious potential outcomes of an EV infection is the dissemination of the 

virus to the heart and the subsequent development of myocarditis, which can then further 

progress to dilated cardiomyopathy. These conditions are major causes of heart failure, 

particularly among children and adolescents (11). Evidence of an EV infection is found in 

up to 50% of cardiomyopathy cases (12–14). EV infections contribute to development of 

cardiomyopathy in two distinct ways—[1] EVs can directly infect and induce the cell death 
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of cardiomyocytes or [2] they can trigger an autoimmune response in which the host’s own 

immune system destroys cardiomyocytes and leads to the characteristic inflammation seen 

in cardiomyopathy. EV infection does indeed directly cause apoptosis of cardiomyocytes in 

vitro. Primary cardiomyocytes isolated from mice or rats are killed upon CVB infection 

(15,16), and a murine cardiac muscle cell line, HL-1 (17), undergoes apoptosis upon CVB 

infection (18). In vivo, mouse models of CVB-induced myocarditis showed apoptotic lesions 

in myocardial tissue as detected by TUNEL staining, a method that detects DNA 

fragmentation resulting from apoptosis (19,20). Human patients presenting with EV-induced 

myocarditis who had cardiac biopsies taken showed a strong positive correlation between 

cardiomyocytes staining positive for EV capsid protein and those staining positive by 

TUNEL staining (21). Perhaps the most convincing evidence for direct EV-mediated cell 

death comes from SCID (Severe Combined Immunodeficiency) mice. These mice lack all 

mature T- and B- cell responses, and therefore are incapable of developing autoimmunity. 

Even in a SCID mouse model of CVB-induced myocarditis, death of cardiomyocytes 

correlates with the development of cardiomyopathy (22). Despite these convincing results, it 

remains probable that autoimmune responses contribute to EV-induced myocarditis, acting 

in combination with cell death caused directly by EV replication. In mouse models of CVB-

induced myocarditis, CVB infection leads to the generation of heart specific autoantibodies 

(23), and human patients with viral-induced myocarditis also have autoantibodies in their 

sera (24). Therefore, it is likely that both EV-induced cell death and EV-induced 

autoimmunity contribute to the destruction of cardiomyocytes in EV-associated 

cardiomyopathy.

2.2 Type I Diabetes

The contribution of environmental factors to the onset of type I diabetes in children has long 

been suspected, and there is strong evidence suggesting that viral infections, and EV 

infections in particular, can precipitate its development (25). A meta-analysis of the 

available literature showed that patients with type I diabetes were significantly more likely 

to have evidence of an acute EV infection than the general population (26), and patients with 

recent-onset type I diabetes were significantly more likely to have evidence of enteroviral 

protein in their pancreatic islets than non-diabetic controls (27). In perhaps the most 

convincing evidence for EV-induced diabetes, CVB4 was isolated from the pancreas of a 

young patient who died from diabetic ketoacidosis and this strain of CVB4 was able to cause 

death of β-cells and hyperglycemia in mice (28). In type I diabetes, the insulin producing β-

cells of the pancreatic islet are destroyed, with the subsequent dearth of insulin serving to 

induce diabetes. As is the case for EV-induced cardiomyopathy (Section 2.1) there is 

evidence both for direct EV-induced death of β-cells and for activation of an autoimmune 

response upon EV infection that results in β-cell destruction. Direct infection and destruction 

of β-cells by EVs seems to play a particularly important role in development of a clinically 

distinct subtype of type I diabetes known as fulminant diabetes, marked by extremely rapid 

onset, ketoacidosis, and a lack of the autoantibodies directed against β-cells typically seen in 

type I diabetics (29,30). Primary β-cells isolated from rats and infected with the diabetogenic 

EV CVB5 died via intrinsic mitochondrial apoptosis (31). Adding to the evidence that EVs 

can infect and directly induce apoptosis of pancreatic islet cells in vitro, many different EVs 

efficiently infect β-cells in islets isolated from human pancreases, and this results in the 
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abrogation of stimulated insulin release (32). It is more difficult to find evidence of direct 

infection and apoptosis induction of pancreatic β-cells in vivo. In one small study, three 

pancreases from individuals with fulminant type I diabetes each were found to have EV 

protein in their islets, with immunohistochemistry showing that those cells containing EV 

protein also showed evidence of cell death by morphological changes in their nuclei (33). A 

second study found that the pancreases of three of six diabetic patients had EV protein in 

their pancreatic islets with corresponding alterations in nuclear morphology (34). There is 

also evidence that β-cell destruction upon EV-infection may be due to molecular mimicry, in 

which an EV protein bears molecular similarity to an autoantigen (35,36), or by the release 

of a normally sequestered autoantigen by EV-infection of pancreatic islets (37), both of 

which lead to an autoimmune response directed against the pancreatic islets. Clearly, EV 

infections can both directly and indirectly contribute to the β-cell destruction that results in 

development of type I diabetes.

2.3 Meningitis and encephalitis

Neurological complications arising from EV infections are well-studied, mainly due to the 

severe and global nature of PV-induced poliomyelitis. Until the introduction of the PV 

vaccine in the 1960s, epidemic poliomyelitis was a serious public health concern, and even 

now in certain developing nations PV remains endemic (38). Poliomyelitis is characterized 

by aseptic meningitis (an inflammation of the meninges not due to a culturable bacterial 

agent), and paralysis of the extremities (39). These symptoms arise from PV-induced 

damage of motor neurons, and it has long been noted that PV is present in neuronal axons 

during poliomyelitis (40). Apoptosis was evident in the CNS of mice transgenically 

expressing the PV receptor (PVR) and infected with PV, and this apoptosis was further 

shown to occur specifically in PV-infected neurons (41). In vitro studies in a human 

neuroblastoma cell line further investigated PV-induced apoptotic cell death and found that 

PV infection triggered apoptosis through the mitochondrion-dependent intrinsic pathway 

(42), discussed in detail below (Section 3). In addition to PV, there are other EVs that can 

cause pathologies in the CNS. Both aseptic meningitis and encephalitis, in which the brain 

itself is inflamed in addition to the meninges, can result from EV infection (43). EV71 is of 

special note, as in recent years it has been the source of serious outbreaks of 

meningoencephalitis in the Asia-Pacific region (44). This pathology is thought to result in 

largely the same manner as PV, from viral-induced death of motor neurons. In studies of 

organs from fatal cases of EV71 infections, viral antigen was found specifically in the 

neuronal cells of the CNS (45,46). In vitro, EV71 infections of human neuronal cell lines 

results in apoptosis (47,48). In mice transgenically expressing the EV71 receptor SCARB2, 

intravenous EV71 infection resulted in viral dissemination to the brain and spinal cord, with 

immunohistochemistry showing that EV71 was specifically infecting neurons and the 

authors observing that EV71 infection induced cell death (49). Both CVA and CVB 

infections are also neurovirulent, in much the same manner as EV71 infections (43). 

Neonates are at particular risk from CV infections (50). In a neonatal mouse model of CVB3 

infection, viral protein was found exclusively in neurons and neuronal stem cells and the 

authors observed death of infected cells (51). Additionally, neonatal mice infected with 

sublethal doses of CVB3 showed reduction in brain weight due to CVB3-induced apoptosis 

of neuronal stem cells and consequent decreased neuronal proliferation (52).
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3. Induction of cell death upon enterovirus infection

It is clear that cell death caused by EVs has serious consequences for human health. We now 

turn to the mechanistic question of how cell death is initiated and carried out upon EV 

infection. Cells possess diverse routes of cell death initiation, from cell surface receptors 

such as the Tumor Necrosis Factor Receptor (TNFR) (53), to intracellular receptors known 

as pattern recognition receptors (PRRs) that sense pathogen or damage associated molecular 

patterns (PAMPs or DAMPs, respectively) (54), to the detection of DNA damage (55). In 

vitro studies of EV infections in cell culture models reveal that multiple redundant pathways 

are likely triggered to initiate cell death upon EV infection. Additionally, distinct forms of 

cell death can occur downstream of these pathways. Apoptosis, in either its caspase-

dependent or caspase-independent form, is a tightly regulated form of cell death that results 

in chromatin condensation, DNA fragmentation, and the eventual disruption of the cell into 

apoptotic blebs (56). Caspases are proteases that require proteolytic processing for 

activation, and, once activated, cleave downstream substrates to induce apoptotic cell death 

(57,58). Apoptosis is further categorized as intrinsic or extrinsic. Intrinsic apoptosis is 

mediated by the mitochondria and is dependent on the release of cytochrome C from the 

mitochondria, a process which is regulated by the Bcl-2 family of proteins, whose pro-

apoptotic family members act to release cytochrome C from the mitochondria while the anti-

apoptotic family members act to prevent cytochrome C release. Extrinsic apoptosis, on the 

other hand, proceeds from cell surface receptors and is independent of the mitochondria 

(59). Necrosis was long thought to be an unregulated form of cell death, characterized by 

loss of membrane integrity and a release of intracellular contents into the extracellular space 

that provoked a highly inflammatory reaction. Recently, programmed forms of necrosis have 

been discovered, with tightly regulated signaling cascades that result in either membrane 

permeabilization by the mixed lineage kinase like protein (MLKL) or generation of reactive 

oxygen species (ROS) and lead to the necrotic death phenotype (60). Because the necrotic 

pathway was only recently recognized as a distinct, regulated process, some of the older 

literature examining EV-induced cell death lacks precision in distinguishing between the 

various forms of cell death. The literature is further complicated by the use of the word 

‘necrosis’ in clinically oriented literature to refer to any tissue death, not a mechanistically 

distinct form of cellular death. Here we seek to clarify and distill the literature surrounding 

cell death initiation and execution upon EV infection.

3.1 Apoptosis

As detailed above (Section 2), there is much evidence to suggest that apoptosis is a relevant 

in vivo form of cell death induced by EVs. EV-infected cardiomyocytes from patients with 

myocarditis and PV-infected neurons from a mouse model of poliomyelitis were apoptotic 

(21,41), and primary rat pancreatic cell cultures died by apoptosis upon CVB5 infection 

(31). Many groups have further addressed in vitro the mechanisms by which this apoptotic 

cell death may be occurring. Infection of a variety of cell lines with diverse EVs leads to 

apoptotic cell death, as shown by cleavage of downstream caspase substrates, DNA 

fragmentation, and flipping of phosphatidyl serine to the outer leaflet of the cell membrane. 

Work with various CVB serotypes in HeLa cells has shown that infection leads to 

cytochrome C release from the mitochondria (61), a hallmark of intrinsic apoptosis. This 
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release is followed by caspase-activation (62), specifically caspase 9 (61,63), an initiator 

caspase that cleaves other caspases. Activated caspase 9 then goes on to process caspases-2, 

-3, -6, -7, and -8 (61,62). PV infection in HeLa cells or a neuronal cell line also caused 

cytochrome C release and caspase-dependent apoptosis (42,64–66). A third EV, EV71, also 

induces caspase-dependent intrinsic apoptosis in HeLa cells (67,68), but also induces 

caspase-independent apoptosis, dependent on truncation of apoptosis inducing factor (AIF) 

by calpains. Inhibition of both of these pathways showed an additive effect on increasing 

cell viability upon EV71 infection (68). It is possible that caspase-independent apoptosis 

plays a role in other EV infections, but to our knowledge this has not been described.

3.1.1 Apoptosis Signaling—Although the studies described above clearly show that 

EVs induce apoptotic cell death in specific cell types, it remains to be explained how this 

apoptosis is initially induced during viral infection. EV infection induces apoptosis through 

at least three distinct mechanisms. The activation of calpains upon EV71 infection, as stated 

above (68), provides one clue as to how apoptosis initiation may occur. Calpains are 

calcium-dependent proteases whose activity is regulated by the concentration of Ca2+ ions 

within the cell (69) and it is known that an increase in intracellular Ca2+ can lead to 

apoptosis (70). Indeed, PV infection in neuronal cells causes an efflux of Ca2+ from the 

endoplasmic reticulum (ER) where stores of Ca2+ are maintained into the cytosol, and then 

into the mitochondria. Blocking the accumulation of Ca2+ in the mitochondria by treating 

the cells with an intracellular calcium chelator also blocks PV-induced cytochrome C release 

from the mitochondria and reduces downstream apoptosis (65). In the case of calpain-

dependent EV71 induced apoptosis, blocking mitochondrial Ca2+ channels blocked death 

(68). CVB infection in HeLa cells also led to Ca2+ release from the ER (71), though in this 

case Ca2+ release may have anti-apoptotic functions (reviewed in (72), and discussed 

thoroughly in Section 5). In addition to causing the release of Ca2+ to induce apoptosis, EVs 

also induce apoptosis through the activation of the unfolded protein response (UPR). The 

UPR, under normal cellular circumstances, is a cell-wide response to the accumulation of 

unfolded proteins in the ER (73), and can trigger apoptotic cell death (74). CVB infection in 

HeLa cells induced the UPR through each of the three distinct UPR initiation pathways (the 

PERK, IRE1, and ATF6 dependent pathways) (75), and resulted in cleavage of caspase-12, a 

UPR specific caspase (76), and up-regulation of CHOP, a pro-apoptotic transcription factor 

classically implicated in UPR-initiated cell death (77). Finally, EV infection can trigger 

apoptosis through the activation of stress activated protein kinases (SAPKs). SAPKs, 

including JNK and p38MAPK, are responsible for sensing cell stressors and transducing that 

signal to trigger induce responses to those stressors, including induction of cell death 

pathways (78,79). JNK was rapidly phosphorylated upon infection with PV in a neuronal 

cell line (within 15 minutes post-infection). Pharmacological inhibition of JNK blocked 

translocation of Bax, a pro-apoptotic protein Bcl-2 family member, to the mitochondria and 

release of cytochrome C from the mitochondria (42). CVB infection of HeLa cells also 

caused JNK phosphorylation, though not until 6 hours post-infection, and in this case, cell 

death downstream of JNK was linked to the secretion of the pro-apoptotic protein Cyr61 

(80), although a separate study found no effect of inhibition of JNK on cell death in HeLa 

cells infected with CVB (81). p38MAPK was also phosphorylated and activated upon CVB 

infection of HeLa cells or a murine cardiomyocyte cell line (81,82), and pharmacological 
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inhibition of p38MAPK reduced CVB-induced cell death, though only cell viability, not 

apoptotic indicators, were measured here (81). These mechanisms of apoptosis induction are 

summarized in Figure 1.

3.1.2 Apoptotic Triggers—The data summarized above provide a description of the 

multiple signaling pathways involved in inducing apoptosis upon EV infection. We now turn 

to the identity of the virus-associated triggers for these apoptotic pathways. EVs encode two 

cysteine proteases, 2Apro and 3Cpro, that are necessary for processing the viral polypeptide, 

but also target numerous cellular proteins for cleavage and are well-conserved amongst EVs 

(83–85). Transient overexpression of 2Apro or 3Cpro cloned from CVB in HeLa cells is 

sufficient to reduce cell viability, activate caspases, and induce cytochrome C release from 

the mitochondria (86), and expression of either of those same proteases cloned from PV or 

EV71 also induced caspase-dependent apoptosis (67,87–89). The mechanism of death 

induction by these proteases is dependent on proteolytic activity, as a catalytically inactive 

mutant of 3Cpro cloned from EV71 was incapable of inducing the apoptotic cell death 

induced by the wild-type protease in a glioblastoma cell line (89). Cleavage of host cell 

proteins by these proteases likely feeds into the apoptotic pathways discussed above in 

multiple ways. A second mechanism by which apoptosis is triggered during EV infections 

may be through production of double-stranded (ds)RNA during the course of genome 

replication. dsRNA is a highly immunogenic PAMP that can also lead to the induction of 

cell death (54,90). Noninfectious dsRNA from bovine enterovirus (BEV) was sufficient to 

cause cell death (91), suggesting that sensors of viral dsRNA are sufficient to induce cell 

death signaling cascades. Multiple intracellular sensors of dsRNA exist and serve to activate 

innate immune signaling and can cross-talk with cell death pathways. MDA5, a cytosolic 

dsRNA sensor, and TLR3, an endosomal dsRNA sensor are both key sensors of EV 

infection (92), and CVB infection induces expression of another cytosolic dsRNA sensor, 

PKR (93). Further, PV-induced apoptosis in HeLa cells was reduced in the presence of a 

dominant negative inhibitor of RNase L, a key downstream enzyme of the dsRNA sensing 

2′–5′ oligoadenylate synthetase pathway (OAS) (94), suggesting that viral dsRNA may be 

sensed by OAS and downstream OAS signaling may feed into apoptotic pathways, such as 

the activation of JNK signaling (95). Finally, viral capsid proteins themselves may serve to 

initiate apoptosis. In a mechanism that seems to be specific to CVB3, VP2, one of four viral 

proteins that compose EV capsids (83), physically interacts with the pro-apoptotic host 

protein SIVA (98,99). SIVA functions by binding to BCL-XL, an anti-apoptotic member of 

the Bcl-2 family and sequestering it, thus preventing it from carrying out its anti-apoptotic 

function (100). Infection of a mouse model with CVB3 containing a mutation in VP2 

preventing SIVA binding showed lower levels of cell death in the pancreas than wild-type 

CVB3, despite similar viral titers (98). The mechanism(s) by which VP2 binding to SIVA 

enhances its apoptotic function is not fully understood. Additionally, a single point mutation 

in the VP1 capsid protein of a strain of CVB2 that does not normally cause cell death in 

rhabdomyosarcoma cells was sufficient to cause the strain to begin inducing cell death 

(101). Viral capsid protein may or may not be necessary to induce the JNK signaling 

pathway, depending on the EV. Whereas one group found that UV-inactivated PV still 

caused JNK phosphorylation (42), a second found that UV-inactivated CVB did not (81). 

These triggers are summarized in Figure 2.

Harris and Coyne Page 7

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 Necrosis

In contrast to the large amount of data available on apoptotic cell death during EV infection, 

much less is known about the contribution of necrotic cell death during EV infections. One 

reason for this dearth of data is the only recent development of the programmed necrosis 

(‘necroptosis’) field. Another is that in many of the cell types studied in vitro, the main cell 

death pathway induced upon EV infection is apoptosis and necrosis seems to be uninvolved, 

or not involved to any significant degree (Section 3.1). However, we recently showed that a 

polarized intestinal epithelial cell line undergoes Ca2+-dependent necrotic cell death upon 

CVB3 infection (102). As described above for PV-infection in neurons (65), cell death 

induction was dependent on Ca2+ release from the ER upon CVB3 infection (102). 

However, whereas this Ca2+ release in PV-infected neurons leads to apoptotic cell death, it 

induces calpain-mediated necrotic cell death in intestinal epithelial cells infected with CVB3 

(65,102). It is therefore likely that additional, as yet unidentified, cell type-specific 

differences exist and are important for determining the manner of EV-induced cell death 

signaling. Another study showed that a pancreatic islet cell line that undergoes apoptosis 

when infected with CVB5 at a low multiplicity of infection (MOI), may instead undergo 

necrosis at higher MOIs. However, the method used here to characterize and quantify 

necrosis was not robust (103). It is likely that both necrosis and apoptosis are relevant forms 

of cell death in vivo, as EV infections must cross a polarized epithelial cell barrier to cause 

initial viremia, and intestinal epithelial cells die necrotically in vitro (above, (102)) whereas 

apoptotic cell death seems most relevant at the distal sites of infection resulting in pathology 

(myocardium, pancreatic islets, and the CNS, Sections 2, 3.1). The cell types reviewed here 

that are known to be productively infected by EVs and the type of cell death caused by EV-

infection are summarized in Table 1.

4. Enteroviral infections and cell death

Classically, a cell productively infected with an EV will soon undergo cell death. These fast-

replicating, lytic viruses cause cell death in the ways described above (Section 3). Here, we 

discuss the role of cell death in facilitating viral spread. We also touch on exceptions to this 

paradigm, reviewing data suggesting that EVs may in some cases exit the cell before cell 

death and the existence of persistent EV infections.

4.1 Cell death and viral spread

Many viruses are capable of exiting a living host cell by budding out of the host cell 

membrane or a variety of other mechanisms. In contrast, for the preponderance of their 

spread, EVs rely on cell death to escape the cell (exceptions discussed in Section 4.2). 

Indeed, a wide range of studies with various EVs in various cell lines have shown that 

blocking cell death reduces and/or delays the release of extracellular virus. For example, 

treating a neuronal cell line with an intracellular Ca2+ chelator to reduce apoptosis upon PV 

infection also significantly delayed the release of virus into the cell culture medium (65). 

Delayed PV release was also seen when apoptotic cell death was blocked with JNK 

inhibitors (42). Blocking apoptotic cell death in HeLa cells upon CVB3 infection with 

caspase inhibitors or by overexpressing anti-apoptotic members of the Bcl-2 family of 

mitochondrial proteins that block intrinsic apoptosis lead to large reductions in release of 
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extracellular virus (61). Conversely, increasing apoptotic cell death in CVB3 infected HeLa 

cells through ectopic expression of the proapoptotic protein Cyr61 led to an increase in 

extracellular virus release, while siRNA-mediated knockdown of Cyr61 decreased 

extracellular virus release (80). Finally, blocking CVB3-induced necrosis in intestinal 

epithelial cell lines through a variety of mechanisms all led to a decrease in extracellular 

virus titers (102). The fact that diverse mechanisms of blocking cell death in different cell 

lines upon EV-infection all resulted in a reduction or delay of viral release strongly 

implicates cell death in the process of viral egress and minimizes the possibility that 

inhibitors of cell death were having an off target effect on a separate aspect of the viral life 

cycle.

4.2 Viral spread without cell death

Despite the strong evidence cited above for the link between viral egress and cell death, 

there is also data that suggests that there may be secondary routes of viral egress that occur 

temporally before and independently of cell death. One such route may involve autophagy, 

which under normal conditions serves as a cellular recycling mechanism and is generally 

considered to be a pro-survival response. Neural progenitor cells infected with CVB3 shed 

extracellular microvesicles derived from autophagic pathways containing infectious CVB3 

virions before any signs of cell death (104). Additionally, pharmacologically blocking the 

autophagy pathway in CVB3-infected HeLa cells resulted in a reduction of extracellular 

virus, though this data is difficult to interpret in the context of autophagy as an egress 

pathway as treatment also reduced intracellular virus replication (105). Finally, 

autophagosomes in HeLa cells infected with PV showed reduced motility, and when their 

motility was restored through nocodazole treatment, there was an earlier release of virus 

without any corresponding change in the timing of cell death initiation (106).

4.3 Persistent Infections

Up until this point, we have operated under the assumption that cell death is a necessary part 

of the EV life cycle. And while this is generally thought to be true, the data discussed above 

(Section 4.2) that demonstrate viral spread without cell death leave open the possibility of 

persistent viral infections, with virus continuously being shed from an infected cell without 

killing that cell. Indeed, there is some evidence for this in vitro. It has long been observed 

that individuals who developed poliomyelitis could shed PV in their feces for up to 6 weeks 

after the development of symptoms (107). In addition, immunodeficient individuals given 

the live attenuated PV vaccine can shed vaccine-derived PV for much longer, in one case up 

to 2 years (108). In a mouse model of CVB3-induced myocarditis, viral RNA was found in 

cardiomyocytes up to 30 days post-infection in mice experiencing chronic myocarditis 

(109). Given the extensive and overlapping triggers for cell death invoked upon EV 

infection discussed above (Section 3.1.2), how might such a persistent infection occur? 

Some mechanistic work has been done in vitro to examine this question and suggests that a 

complex interplay between the host immune system and genetic variation in both the virus 

and the host exists. Persistent EV infections have been established in human intestinal cell 

culture lines (110), neuroblastoma lines (111), and erythroblastoid lines (112), with 

continuous viral shedding and low levels of cell death. In primary human pancreatic islets, 

CVB3 could establish persistent infections through a mechanism involving IFNα signaling 
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(113). In the case of persistent PV-infections, alterations of the interaction between PVR and 

PV through genetic variation of either the host or the virus seems to be key in establishing a 

persistent infection (114–116), with these altered interactions leading to a reduction in cell 

death (117). It is not entirely understood how a given EV manages to suppress the cell death 

pathways triggered by infection in order to establish a persistent infection, and discussion of 

the literature on persistent viral infections is beyond the scope of this review. However, EVs 

do possess mechanisms that serve to antagonize cell death pathways during lytic infections, 

discussed below (Section 5), and many of these mechanisms may also come into play during 

establishment of a persistent infection.

5. Antagonism of cell death pathways by enteroviruses

As discussed in the introduction, cell death can serve as a mechanism to eliminate 

intracellular pathogens before they complete their replication cycle. EVs possess several 

mechanisms of delaying cell death, in order to counter the fact that EV infection potently 

induces cell death pathways (Section 3). One such mechanism is through the manipulation 

of host cell signaling pathways. The phosphatidylinositol 3-kinase (PI3K) signaling pathway 

is a pro-survival pathway activated by many viruses to delay or inhibit cell death (118). PV 

infection of a neuroblastoma cell line led to early activation of PI3K and subsequent 

phosphorylation of downstream effector kinase, Akt. Inhibition of this pathway led to more 

apoptosis and earlier PV release. These data may be complicated by the additional role PI3K 

plays in regulating autophagy (119,120), as effects on EV release upon PI3K inhibition may 

additionally be due to inhibition of autophagy. The PI3K/Akt pathway seems to antagonize 

the pro-apoptotic JNK pathway, as its inhibition also led to an increase in activated JNK 

(66). A similar pro-survival mechanism involving activation of the PI3K/Akt pathway was 

shown in HeLa cells infected with CVB3 (121). One group showed that the PI3K/Akt 

pathways could be activated in CVB3-infected HeLa cells through the action of interferon-γ-

inducible GTPase (IGTP)(122), a protein upregulated in CVB3-infected murine myocardial 

tissue (123). Activating transcription factor 3 (ATF3) has been shown to sensitize HeLa 

cells to CVB3-induced apoptosis, but CVB3 infection leads to an abrupt and significant 

reduction in ATF3 protein levels that serves to reduce cell death (124). ATF3 

downregulation also leads to the degradation of p53 (124), and the degradation of p53 

reduces PV-induced apoptosis (125).

EV infections can also directly target host proteins involved in cell death signaling for 

proteolytic cleavage and inactivation via the virally encoded cysteine proteases discussed 

above (Section 3). For example, 3Cpro of CVB3 cleaves Toll/IL-1 receptor domain 

containing adaptor inducing interferon-beta (TRIF), a protein involved in apoptotic 

signaling, and inhibits its apoptotic functions (126). Another example of a viral protein 

directly inhibiting cell death is the viral protein 2B. Expression of the CVB nonstructural 

protein 2B causes Ca2+ release through its ability to from pores in the ER membrane (71). 

2B is highly conserved among enteroviruses and the PV 2B also is responsible for Ca2+ 

release from the ER (127). Because Ca2+ efflux from the ER and its subsequent influx into 

the mitochondria is known to cause apoptosis (65), it may seem that 2B would then be a pro-

apoptotic protein. And indeed, in some cases viral proteins causing release of Ca2+ stores are 

pro-apoptotic (128). However, 2B of CVB3 seems to prevent apoptosis through destruction 
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of the Ca2+ gradients necessary for the cell to initiate intrinsic apoptosis (72,129). The 

virally-encoded 3A can also inhibit apoptosis through yet another mechanism. 3A from PV 

interferes with protein trafficking to greatly reduce the levels of TNFR on the cell surface, 

thereby downregulating extrinsic apoptosis (130), and during PV infection levels of other 

apoptosis inducing cell surface receptors are reduced as well (131). These mechanisms are 

summarized in Figure 3.

6. Conclusion

Cell death is a tightly regulated and controlled process. Unwarranted death of many cell 

types, especially neuronal cells, is extremely deleterious to the health of an individual and 

must be avoided. However, under some circumstances, including the presence of an 

intracellular pathogen, it is to the overall benefit of the host for infected cells to be 

eliminated. This elimination can be triggered through a variety of pathways that can lead to 

necrotic or apoptotic cell death, according to the identity of the trigger and the identity of the 

cell.

Enteroviral infections can lead to serious pathologies, and these pathologies often result 

from cell death. Myocarditis, type I diabetes, and meningoencephalopathies can all result 

from cell death due to EV infections in the myocardium, pancreas, or CNS. In addition to 

causing pathology, cell death is an essential mechanism of enteroviral egress, and thereby is 

responsible for cell-to-cell spread. An EV that infects a host cell has a variety of 

mechanisms by which it triggers cell death. Depending on the species or serotype of the EV 

and the identity of the infected host cell, any number of these mechanisms may be used 

simultaneously to induce cell death. Broadly, EVs induce cell death through modulation of 

Ca2+ gradients, induction of the UPR, and/or activation of MAPK signaling pathways, all of 

which can be precipitated by various aspects of viral replication, including expression of 

EV-encoded cysteine proteases, generation of immunogenic dsRNA, and interaction of EV 

capsid protein with host cell receptors. Cells then undergo necrotic or apoptotic cell death, 

depending on the identity of the infected cell. The balance between cell death induction and 

cell death prevention/delay is finely tuned during an EV infection, as evidenced by the 

evolutionary success of these viruses. EVs are efficient at replicating within a cell and are 

successful at spreading both to neighboring cells and to a new host. This success is partially 

due to their exquisite interaction with the cell death signaling pathways of their host. 

Understanding the ways in which EVs induce and control cell death is critical in 

understanding the pathogenesis and spread of these important human pathogens.
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Highlights

• Enteroviruses commonly induce cell death as a means to promote egress and 

spread.

• The strategies by which enteroviruses induce and alter cell death pathways are 

complex.

• Here, we review the mechanisms of cell death associated with enterovirus 

infections.

Harris and Coyne Page 21

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mechanisms for the induction of apoptosis
Apoptosis can be induced through a number of mechanisms upon EV infection which 

include (1) release of ER-derived Ca2+ stores, (2) activation of the unfolded protein response 

(UPR), and (3) activation of stress activated protein kinases (SAPKs).
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Figure 2. Mechanisms for the induction of apoptosis in EV-infected cells
The induction of apoptosis during an EV infection occurs in a number of ways including (1) 

the release of ER-derived Ca2+ stores by the PV virally-encoded virporin 2B, (2) the direct 

cleavage of host proteins by the virally-encoded cysteine protease 2Apro and 3Cpro, (3) the 

detection of dsRNA produced as a replication intermediate by components associated with 

the innate immune system, and (4) direct binding of the EV capsid protein VP2 to the pro-

apoptotic host cell component SIVA.
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Figure 3. Mechanisms by which EVs antagonize host cell death pathways
EVs utilize a variety of diverse mechanisms to alter host cell death signaling which include 

(1) destruction of Ca2+ gradients by the production of virally-encoded viroporins such as 2B, 

(2) direct cleavage of pro-apoptotic host cell components by the virally-encoded 2Apro and 

3Cpro cysteine proteases, (3) activation of PI3K/Akt signaling pathways, and (4) 

internalization of TNFR by the virally-encoded 3A protein.
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Table 1

A summary of the manner of cell death induced by EV infection in the indicated cell types.

Cell type Cell death Reference

Murine cardiomyocyte line (HL-1) Apoptosis 18, 82

In vivo murine cardiomyocytes Apoptosis 19, 20, 99

Biopsied human cardiomyocytes Apoptosis 21

Primary rat β-cells Intrinsic apoptosis 31

Biopsied human pancreatic islets Likely apoptosis, by nuclear morphology 33, 34

In vivo murine neurons and neuronal stem cells Apoptosis 41, 49, 52

Human neuronal cell lines (IMR5, SK-N-MC) Apoptosis 42, 47

Human glioblastoma cell line (SF268) Apoptosis 48

Human cervical adenocarcinoma cell line (HeLa) Apoptosis 61–68, 75, 80, 86, 102, 121, 124

Human cervical adenocarcinoma cell line (HeLa) Caspase-independent apoptosis 68

In vivo murine pancreatic tissue Apoptosis 98, 99

Human intestinal epithelial cell line (Caco-2) Necrosis 102

Human kidney cell line (HEK293) Apoptosis 126
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