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Summary

Array-based group testing algorithms for case identification are widely used in infectious disease 

testing, drug discovery, and genetics. In this paper, we generalize previous statistical work in array 

testing to account for heterogeneity among individuals being tested. We first derive closed-form 

expressions for the expected number of tests (efficiency) and misclassification probabilities 

(sensitivity, specificity, predictive values) for two-dimensional array testing in a heterogeneous 

population. We then propose two “informative” array construction techniques which exploit 

population heterogeneity in ways that can substantially improve testing efficiency when compared 

to classical approaches which regard the population as homogeneous. Furthermore, a useful 

byproduct of our methodology is that misclassification probabilities can be estimated on a per-

individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data 

collected in Nebraska as part of the Infertility Prevention Project.
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1. Introduction

Group testing, where individual specimens are first pooled together and then tested 

simultaneously, is recognized as a cost-effective strategy to screen large numbers of 

individuals for infection or other binary characteristics. Dorfman (1943) first conceptualized 

the idea of group testing (pooled testing) in screening military inductees for syphilis during 

World War II. Since this seminal work, group testing has been applied to a variety of areas, 

including infectious disease testing (Pilcher et al., 2005; Westreich et al., 2008), drug 

discovery (Xie et al., 2001; Remlinger et al., 2006), and genetics (Berger, Mandell, and 

Subrahmanya, 2000).

Statistical research in group testing has traditionally followed a bifurcated structure, 

consisting of work in case identification and prevalence estimation (including regression 
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modeling). This paper deals with the former in the context of infectious disease testing, 

motivated by our involvement with the Infertility Prevention Project; see Section 5. In the 

case identification problem, the primary goal is to classify each individual as positive or 

negative. If a pool tests negative, then all individuals in the pool can be declared negative; 

this enables one to diagnose multiple individuals at the expense of a single test. If a pool 

tests positive, further testing is required to determine the diagnosis of each individual in the 

pool. We refer to the process of retesting individuals in positive pools as decoding.

Decoding positive pools can take on many forms. This has triggered the development of 

many decoding algorithms which, when compared to individual testing, can greatly reduce 

the number of tests needed. Each algorithm can be categorized as one of two types: 

hierarchical or non-hierarchical. A hierarchical algorithm involves retesting non-overlapping 

subsets of individuals from positive pools, in multiple stages, until each individual is 

classified as positive or negative. Dorfman’s original strategy is a two-stage hierarchical 

algorithm. In the first stage, the (master) pool is tested; if positive, each individual is retested 

in the second stage. Higher-stage algorithms can be effective at increasing efficiency but are 

also more complex. For example, Pilcher et al. (2005) consider a three-stage algorithm 

where individuals are first tested in a master pool of size 90. If positive, subpools of size 10 

are tested in the second stage, and individual testing is used to decode all positive subpools 

in the third stage. Litvak, Tu, and Pagano (1994) propose a multiple-stage hierarchical 

algorithm where positive pools are subsequently “halved” until all positive and negative 

individuals have been identified.

The most commonly used non-hierarchical procedure is array testing, where individual 

specimens are assigned to the cells of an array. In two-dimensional array testing, also known 

as matrix pooling, row pools and column pools are tested in the first stage. The second stage 

involves individual testing for specimens not classified as negative in the first stage. 

Phatarfod and Sudbury (1994) introduced the statistical community to array testing for blood 

screening, although its previous use in genetics applications is well documented; see Berger 

et al. (2000) and the references therein. Berger et al. (2000) describe two- and higher-

dimensional arrays for DNA library screening; however, like Phatarfod and Sudbury (1994), 

their work assumes that diagnostic tests are error-free. Kim et al. (2007) and Kim and 

Hudgens (2009) have recently proposed array testing decoding algorithms which account for 

imperfect testing; their work provides a comprehensive investigation of the operating 

characteristics of two- and higher-dimensional array testing, including efficiency and 

classification accuracy. Perhaps because of these advances, array testing is now commonly 

used for case identification in infectious disease testing and related applications (May et al., 

2010, Tilghman et al., 2011).

Until now, statistical research in array testing for case identification has assumed that each 

individual has the same probability of positivity, say, p. However, in most infectious disease 

situations where array testing is potentially applicable, available covariates can provide 

valuable information about the true statuses of the individuals. For example, clinical, 

demographic, and behavioral information can shed enormous light on which individuals are 

more likely to be positive for chlamydia, gonorrhea, and other infections (Centers for 

Disease Control and Prevention, CDC, 2010). If this information is available, then it is more 
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natural to conceptualize the population of individuals as heterogeneous with different 

probabilities of positivity. Recent research by Bilder, Tebbs, and Chen (2010) and 

McMahan, Tebbs, and Bilder (2011) has shown that exploiting this information can provide 

large gains in efficiency when using Sterrett (1957) and Dorfman (1943) retesting 

algorithms, respectively, both of which are hierarchical in nature. In the light of this work, 

one might naturally wonder if incorporating covariate information could lead to similar 

gains when array testing is used.

In this paper, we generalize the two-dimensional array testing work of Kim et al. (2007) to 

account for population heterogeneity. In Section 2, we derive expressions for the efficiency 

and for individual-specific probabilities of misclassification in a heterogeneous population. 

In Section 3, we propose two “informative” array testing procedures which exploit 

population heterogeneity, and in Section 4, we demonstrate that these are more efficient than 

traditional array procedures which regard the population as homogeneous. Additionally, we 

provide a thorough comparison involving our new procedures and the most efficient 

hierarchical procedures proposed by Bilder et al. (2010) and McMahan et al. (2011). In 

Section 5, we implement our methods using chlamydia and gonorrhea testing data collected 

in Nebraska for the Infertility Prevention Project. In Section 6, we conclude with a 

discussion.

2. Operating Characteristics

2.1 Notation and Assumptions

Consider an array with J > 1 rows and K > 1 columns, and denote by  the individual 

assigned to the (j, k) cell, for j = 1, 2,…, J and k = 1,2,…, K. Let  denote the true binary 

status of , and let  denote the true probability of positivity. We assume 

that the  are mutually independent random variables.

Array testing begins by testing the J rows and K columns. Define  and 

, for j = 1,2,…, J and k = 1,2, …, K, where I(·) is the indicator function. 

That is,  if the jth row (kth column) contains at least one positive individual 

and  otherwise. Let Rj = 1 (Ck = 1) if the jth row (kth column) tests positive 

and let Rj = 0 (Ck = 0) otherwise. As in Kim et al. (2007), we assume that diagnostic test 

outcomes are independent, conditional on the true statuses of the pools (individuals) being 

tested. We also assume that if a pool contains at least one positive individual, it will test 

positive with probability Se (test sensitivity) and if a pool consists entirely of negative 

individuals, it will test negative with probability Sp (test specificity). Finally, we assume that 

Se and Sp do not depend on the size of the pool; this assumption is standard in the group 

testing literature.

Under the assumption that Se = Sp = 1, Phatarfod and Sudbury (1994) propose that  be 

classified as negative if Rj = 0 or Ck = 0 and that  be retested individually if Rj = 1 and Ck 

= 1. However, when diagnostic tests are not perfect, it is possible that one or more row 
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(column) tests positive while all columns (rows) test negative. Acknowledging this potential 

ambiguity, we partition all individuals in the array into one of two classes:

and . In this paper, we adopt the classification methodology in Kim et al. (2007); 

that is, individuals in  are classified by individual testing and individuals in  are 

classified as negative without additional testing.

2.2 Efficiency

Let Tjk denote the number of tests required to classify  after initial row and column 

testing has been completed. Similarly, let T denote the number of tests required to decode 

the full array so that , where

(1)

We call E(T) the efficiency and now present closed-form expressions for each probability in 

(1). Derivations are in Web Appendix A.

The first probability in (1) is the easiest to calculate; it is given by

where  and  denote the probability that the jth 

row and kth column, respectively, are truly negative. To find the second probability in (1), 

one must consider each of the 2K configurations of the true column statuses; i.e., 

, where , for k = 1,2,…, K. Define , for c = 1,2,

…, K, to be the set of all c-combinations of  and let , the empty set. 

In our notation, the set  corresponds to the event

For example, suppose that K = 3 so that , , , 

, and . In this example, the set 

corresponds to , the event that columns 1 and 2 are truly positive and 

column 3 is truly negative. We show in Web Appendix A that
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where , and the set 

function

where . Finding the third probability in (1) proceeds analogously. Define , for r 

= 1, 2, …, J, to be the set of all r-combinations of  and let . The set 

 corresponds to

and

where, with  the set function

2.3 Classification Accuracy

Let  denote the event that individual  is classified as positive (negative) and 

define the pooling sensitivity to be  and the pooling specificity to be 

. We emphasize that pooling sensitivity and pooling specificity are 

individual-specific; i.e.,  and  are different for different individuals (a byproduct 

of heterogeneity). We show in Web Appendix B that, under two-dimensional array testing,
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where  and 

.

We also show in Web Appendix B that  satisfies the equation

where γ0(·, ·), γ1(·, ·),  and  were defined in Section 2.2. Define the 

pooling positive predictive value to be  and the pooling negative 

predictive value to be . Direct applications of Bayes’ Rule give

These formulae are also individual-specific, and therefore provide valuable information 

about which individuals are more likely to be correctly diagnosed. In Section 5, we illustrate 

the potential use of these probabilities to detect those individuals most likely to be 

misdiagnosed for chlamydia and gonorrhea. When pjk = p, for all j and k,  and 

 are constant functions of p, Se, and Sp (Kim et al., 2007). In other words, treating 

the population as homogeneous offers no insight on which specific individuals may be 

misdiagnosed.

3. Informative Array Construction

3.1 Motivation

In this section, we describe two construction techniques which exploit heterogeneity among 

individuals in an array. The goal of using each construction is to reduce E(T) when 

compared to traditional (random) assignments which do not acknowledge heterogeneity. We 

henceforth restrict attention to square arrays with dimensions K × K; i.e., J = K.

Suppose N = K2 individuals are to be assigned to an array, and denote the true status of , 

the ith individual, by , where . Note that we have adjusted our double 

subscript notation from Section 2 to acknowledge that individuals have not yet been 

assigned to the array. To motivate an informative construction, we take an Oracle’s 

perspective under the assumption of no testing error. Suppose the true statuses 

are known before testing begins and define  and 
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. In this situation, to minimize the total number of tests, an 

Oracle would assign individuals to the array in a way that minimizes the number of rows 

and columns that are positive. Of course, depending on the size of the array and the size of 

, there are multiple arrangements available. The salient point is that many of these 

arrangements would “cluster” individuals belonging to  within the array. By ordering the 

N individuals  corresponding to p(1) ≤ p(2) ≤ ⋯ ≤ p(N), we propose two 

specific arrangements that preserve the underlying flavor of the Oracle’s approach.

3.2 Gradient Design

Our gradient construction clusters higher-risk individuals in the left-most columns of the 

array. Specifically, we start by placing the highest-risk individual  in the (1,1) cell, the 

second highest-risk individual  in the (2,1) cell, and so on, until the first column is 

filled. Then, individual  is placed in the (1, 2) cell, individual  in the (2, 2) 

cell, and so on, until the second column is filled. This process continues, moving from left to 

right across the array, until the lowest-risk individual  is placed in the (K, K) cell. The 

motivation for this design is that, especially in low prevalence settings, only a small number 

of the K2 individuals are likely positive. Therefore, when compared to an uninformative 

arrangement, placing the highest-risk individuals on one side of the array can reduce the 

number of columns which test positive. Figure 1 (left) illustrates the gradient design when K 

= 3. A gradient arrangement could also target the right-hand side of the array or the rows 

instead of the columns; we adopt the left-hand/column arrangement, as depicted in Figure 1, 

without loss of generality.

3.3 Spiral Design

Another method of clustering is to assign the higher-risk individuals to a square sub-array 

within the master array. Specifically, starting at the upper left-hand corner of the array 

(again, without loss), our spiral construction technique assigns the highest-risk individual 

 to the (1, 1) cell, the next three highest-risk individuals , , and  to 

cells (2, 1), (2, 2), and (1, 2), respectively, and so on, until the lowest-risk 2K − 1 individuals 

are placed in the bottom row and right-most column. Figure 1 (right) displays a spiral 

construction when K = 3. The goal of the spiral design is to isolate positive individuals in a 

small square, leaving a large majority of the rows and columns to test negative.

3.4 Discussion

Among all two-dimensional array arrangements, our results in Section 4 provide 

overwhelming evidence that gradient and spiral designs can rarely be beaten in terms of 

efficiency. However, we do not assert that either construction will minimize E(T) over the 

N! possible arrangements of . In fact, because matrices can be rotated 

and/or reflected (about center columns, center rows, or the diagonal) and because rows/

columns can be rearranged, the number of unique values of E(T), for a given set of N = K2 

individuals with different risk probabilities, is slightly less than N!. Towards finding an 

“optimal” arrangement, we believe that the necessary optimization and counting techniques 

would prove to be too difficult to implement in practice and would likely be at most 
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marginally more efficient than either a gradient or spiral design. An exhaustive search over 

all possible arrangements could be used if K is very small; such an exercise would be 

computationally infeasible otherwise. It is also important to note that both gradient and 

spiral arrangements are simple to construct. This may be the most important consideration if 

lab technicians are filling the arrays manually.

4. Comparisons

We first compare our gradient (GA) and spiral (SA) designs to “uninformative” array testing 

(A); i.e., where individuals are assigned to cells at random. We then compare the most 

efficient informative array design to two other recently proposed informative hierarchical 

algorithms.

4.1 Array Comparisons

Let p denote the mean prevalence in the population. To acknowledge heterogeneity, we 

specify that true probabilities pi follow a beta distribution with parameters α and β = β(α, p) 

= α(1 − p)/p. It is easy to show that this distribution has mean p and variance p2(1 − p)/(α + 

p). Consequently, smaller values of α correspond to more heterogeneity. The performance of 

our informative designs depends on both the mean prevalence p and the amount of 

heterogeneity through α. The distribution associated with α = 0 should be viewed as the 

limiting distribution as α → 0. In Web Appendix C, we prove that this limiting distribution 

is Bernoulli with mean p. This distribution is not realistic in practice, but it is useful in 

serving as the distribution with the maximum amount of heterogeneity.

Let X(1), X(2), …, X(N) denote the order statistics of a random sample from a beta(α, β) 

distribution, where β = α(1 − p)/p, and set , for i = 1,2, …, N. When α = 0, 

. When α > 0, E(X(i)) can be found using standard 

calculations involving order statistic distributions (which we carry out numerically in R). In 

this section, we characterize performance using arrays containing . 

Doing so provides an assessment that does not introduce extra variability from having to 

simulate the individual probabilities. Define  where , to be the 

efficiency when using array procedure . Using the expressions in Section 2, we can 

calculate E(T|GA) and E(T|SA) exactly. Calculating E(T|A) exactly would unfortunately 

involve averaging over the N! values of E(T), one for each arrangement of 

. This is not attempted for the same reasons outlined in Section 3.

In our first investigation, we set Se = Sp = 1. This removes the effect of imperfect testing and 

presents an unobscured comparison of GA, SA, and A. We let the mean prevalence p = 0.01, 

0.05, 0.10, and 0.20. For each p, we first find the optimal (i.e., most efficient) array 

dimension K for A using the work of Hudgens and Kim (2011). This same K is then also 

used for GA and SA (doing this slightly handicaps the performance of GA and SA). To 

examine different levels of heterogeneity, we let α = 0,0.05,0.10,0.50, and 1. For each (α, p) 

configuration, we select 10,000 arrangements of . at random, where N = 
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K2, and compute E(T) for each one. In Figure 2, we display box-plots of the 10,000 values of 

E(T)|N, along with the corresponding values of E(T|GA)|N and E(T|SA)|N. From Figure 2, 

it is easy to see that both GA and SA can greatly improve efficiency; when compared to the 

median efficiency of A, the best of the two informative designs confers gains of up to 4%, 

10%, 18%, and 25%, when p = 0.01,0.05,0.10, and 0.20, respectively. GA and SA perform 

better when p is larger and/or when the variability in the population is larger (α is smaller), 

and GA performs marginally better than SA except occasionally for larger p. It is worth 

noting that when the efficiency of A is larger than that of individual testing; i.e., when E(T)|

N > 1, GA and SA can still provide a sizeable reduction in testing costs.

In a second investigation, we assess the effect that testing error has on the efficiency, taking 

Se ∈ {0.90, 0.95, 0.99} and Sp ∈ {0.90, 0.95, 0.99}. To examine different levels of 

heterogeneity, we take α ∈ {0.10, 0.50, 1}, and we consider mean prevalence levels p ∈ 

{0.01, 0.02, …, 0.20}. For each (p, Se, Sp) combination, we first find the most efficient array 

size K for A using the work of Kim et al. (2007), which accounts for testing error. We then 

compute the per-individual efficiencies E(T|GA)/N and E(T|SA)/N for each (α, p, Se, Sp) 

combination using the expressions in Section 2; E(T|A)/N is approximated using Equation 

(13) in Kim et al. (2007) for each specified (p, Se, Sp) combination. Figure 3 displays the 

results when α = 0.50; Web Appendix C contains the α = 0.10 and α = 1 figures and an 

analogous comparison of GA, SA, and A in terms of classification accuracy. From Figure 3, 

we see that imperfect testing does not alter the main efficiency findings; GA and SA are 

uniformly more efficient than A, substantially so when p is larger. GA remains marginally 

more efficient than SA when α = 0.50 and α = 1 (less heterogeneity). When α = 0.10 (more 

heterogeneity), the opposite can be true when p is larger. Finally, our classification accuracy 

results in Web Appendix C show that nothing is sacrificed on average by constructing arrays 

informatively.

4.2 Comparisons with other Informative Procedures

We now compare informative array testing to other informative decoding procedures 

proposed recently in the literature. Specifically, we compare the most efficient array design, 

GA, to the most efficient Dorfman procedure in McMahan et al. (2011), PSOD, and the 

most efficient Sterrett procedure in Bilder et al. (2010), FIS. For complete details on PSOD 

and FIS, see the respective references. Both PSOD and FIS are hierarchial in nature.

PSOD is a Dorfman-type algorithm, so positive pools are decoded using individual testing; 

that is, like two-dimensional array testing, PSOD is a two-stage procedure. When compared 

to the Dorfman algorithm which regards the population as homogeneous, PSOD gains 

efficiency by grouping lower-risk (higher-risk) individuals into larger-sized (smaller-sized) 

pools. FIS is a Sterrett-type algorithm, so its number of stages is at least three and can be as 

many as 2(K − 1), where K is the pool size. When compared to two-stage procedures, FIS 

can gain substantial efficiency because the number of individual tests is often reduced. This 

phenomenon is commonly seen in the group testing literature; namely, higher-stage 

procedures almost always increase efficiency. It is important to note that PSOD and FIS 

require multiple distinct pool sizes to complete the decoding process, so their use may be 

limited in applications where assays must be calibrated to accommodate differently sized 
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pools. By comparison, array testing uses only the master row/column pool of size K and 

individual testing.

Using the same values of p, Se, and Sp as in Figure 3, we provide in Figure 4 a per-individual 

efficiency comparison of GA, PSOD, and FIS when α = 0.50; Web Appendix D contains the 

corresponding α = 0.10 and α = 1 figures. The efficiency for each procedure is computed 

using the order statistic distributions described in Section 4.1. The optimal master pool size 

is used for FIS at each (p, Se, Sp) configuration, while for GA, we continue to use the K × K 

array that is optimally sized for A. PSOD identifies optimal (variable) master pool sizes at 

each (p, Se, Sp) configuration using the greedy algorithm outlined in McMahan et al. (2011), 

which, for purposes here, is implemented within “blocks” of size N = K2. As in Section 4.1, 

we handicap the performance of GA by using the optimal uninformative array size. 

Therefore, when interpreting the Figure 4/Web Appendix D comparisons, one should keep 

in mind that optimally sized versions of PSOD and FIS are not subjected to this type of 

penalty.

Between the two-stage procedures when α = 0.50, GA is generally more efficient than 

PSOD when the mean prevalence is lower, roughly, p < 0.09. This GA/PSOD efficiency 

“borderline” can be less (p < 0.07) when Se and Sp are both close to unity, but it can also be 

greater (p < 0.12) when assay tests are not as accurate. Not surprisingly, FIS is the most 

efficient among all three procedures, although GA closely rivals FIS when p is small; e.g., p 

< 0.02. In application, potential users should be aware that while FIS can reduce the number 

of tests, it is also far more difficult to implement, especially when the decoding process is 

not automated and when lab technicians must prepare test samples by hand at each decoding 

stage. For example, when α = 0.50, p = 0.01, and Se = Sp = 0.95, FIS needs, on average, 6.8 

stages to decode positive pools (see Web Appendix D). In this situation, using FIS could 

dramatically lengthen the expected time needed to dignose each individual. On the other 

hand, GA reverts to individual testing in its second and final stage.

The corresponding α = 0.10 and α = 1 figures in Web Appendix D display the same general 

ordering among GA, PSOD, and FIS. When α = 0.10 (more heterogeneity), the region of 

superiority of GA over PSOD in terms of efficiency is notably smaller; however, when α = 1 

(less heterogeneity), it is notably larger. We have found that larger values of α more 

accurately describe levels of heterogeneity typically seen in application. As expected, 

optimally sized FIS remains the most efficient regardless of α, but its expected number of 

stages ranges from 4.7 to as high as 14.4 (see Web Appendix D). In this light, the additional 

amount of complexity associated with FIS makes the simpler two-stage procedures 

markedly more attractive.

5. Infertility Prevention Project Data

The Infertility Prevention Project (IPP) is a national program, funded by the CDC, aimed at 

providing screening and treatment for individuals with chlamydia and/or gonorrhea 

infection. Chlamydia and gonorrhea are the two most common sexually transmitted diseases 

(STDs) in the United States. Untreated individuals can experience serious medical 

conditions, including pelvic inflammatory disease (PID) and ectopic pregnancy in women 
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and sterility in men. Since its origination in 1988, the IPP has been effective at reducing the 

incidence of chlamydia/gonorrhea infection and enhancing the treatment and follow-up for 

those infected. The IPP is carried out separately in each of the 50 states; in Nebraska, 

roughly 20–30 thousand individuals are screened each year at testing sites located 

throughout the state. Individual specimens (urine or swab) collected at these sites are 

transported to the Nebraska Public Health Laboratory (NPHL) in Omaha for testing.

At both the regional and state levels, one of the current objectives of the IPP is to expand 

testing services to screen more individuals for chlamydia and gonorrhea while reducing 

laboratory costs on a per-individual basis. To accomplish this goal, our medical colleagues 

at the NPHL have expressed an interest in adopting group testing for chlamydia and 

gonorrhea surveillance as part of the IPP screening process. In addition to cost 

considerations, our colleagues are also concerned about being able to correctly identify those 

individuals infected with these diseases. This is particularly relevant because about 80% 

(50%) of all chlamydia (gonorrhea) positive individuals are asymptomatic (CDC, 2010). We 

therefore provide an assessment of the potential use of informative array testing and 

illustrate how it could be adopted to achieve our colleagues’ goals. Of course, this 

assessment may be valuable to investigators in other infectious disease contexts.

In Nebraska, there were 23,146 individuals screened in 2008 and 27,551 individuals 

screened in 2009; all individuals were screened for both infections. At the time of testing, 

clinicians collected additional covariate information on each individual, including age, race, 

and other clinical/behavioral risk factors. A complete listing of all covariates is given in 

Table 1. Acknowledging differences in test kit sensitivities and specificities, we cross-

classify each individual according to gender and specimen (urine or swab) creating four 

strata. Values of Se and Sp for each stratum, provided to us by the NPHL, are listed in Table 

1 for each infection. Our goal is to implement two-dimensional array testing procedures 

using the 27,551 individuals from 2009. We do so separately within each infection-gender-

specimen stratum.

For each infection, we treat the 2009 diagnoses as the true statuses. For uninformative array 

testing (A), we assign, by column, the 2009 individuals to optimally sized arrays 

chronologically based on the specimen’s NPHL arrival date (that is, covariate information is 

not used in the assignment). Optimal array sizes for A are determined using the 2008 

estimated mean prevalence levels; see Equation (2) in Kim et al. (2007). Using the 

individual diagnoses in 2008 and the corresponding covariates, we fit a first-order logistic 

regression model within each infection-gender-specimen stratum; for GA and SA, we assign 

the 2009 individuals to arrays chronologically (as with A), where within-array arrangements 

are based on the estimated probabilities computed from the 2008 model fits. For GA and 

SA, we use the same array sizes as those optimally sized for A. As noted in Section 4, doing 

this penalizes GA/SA, but otherwise ensures the fairest comparison. In each infection-

gender-specimen stratum, “leftover” individuals not placed in a full-sized array are decoded 

using Dorfman retesting; this is done in the same manner for GA, SA, and A. To implement 

each procedure, we simulate pool (and, if necessary, individual) diagnoses using the Se and 

Sp levels in Table 1.
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Table 2 displays the mean number of tests and accuracy measures when screening 

individuals for chlamydia and gonorrhea in 2009. Because the 2009 diagnoses are simulated 

for each infection, we implement each procedure B = 1000 times for each infection-gender-

specimen configuration to average out simulation error; i.e., values in Table 2 are averaged 

over these 1000 simulations. To assess the merit of other recently proposed informative 

procedures, and their potential use as part of the IPP, we also include PSOD and FIS in the 

comparison. PSOD is implemented using blocks of size N = 100 arranged chronologically 

by arrival date, identically to how PSOD is evaluated using the Nebraska IPP data in 

McMahan et al. (2011). The FIS master pool size used for 2009 decoding is chosen to be the 

one that minimizes the number of tests when applying FIS to the 2008 training data.

Among the array procedures, GA and SA are often much more efficient than A; for 

example, when screening 1,910 male subjects for gonorrhea using swabs in 8 × 8 arrays, the 

mean number of tests expended is 929.4 for A, 796.7 for SA, and 770.6 for GA. However, 

there is at least one instance where ordering individuals informatively provides little or no 

benefit (e.g., gonorrhea-female-urine). Further inspection reveals that for this cohort, the 

adequacy of the first-order logistic regression model for the 2008 data is questionable. With 

regards to the classification accuracy measures, there are few noticeable differences (beyond 

what is likely Monte Carlo error) between A and the informative procedures; that is, 

ordering within the arrays has little or no effect on accuracy. There is moderate evidence 

that GA and SA can increase the positive predictive value when Se and Sp are close to unity.

When compared to PSOD, informative array testing often provides substantial savings in the 

number of tests. For example, when screening 4,972 female subjects for chlamydia using 

urine samples in 9×9 arrays, the mean number of tests expended is 2082.4 for GA and 

2533.5 for PSOD. In this same stratum, FIS is marginally more efficient than GA, needing 

2051.0 tests (using master pools of size 13), but FIS requires an average of 9.2 stages to 

decode master pools which test positive. As we saw in Section 4, the two-stage PSOD 

procedure can outperform GA and SA when the mean prevalence p is larger (see the male-

swab strata). However, in those strata where p is smaller (e.g., gonorrhea-female/male-urine 

strata), both GA and SA are far more efficient than PSOD and can also nearly outperform 

FIS. This last finding is especially noteworthy, because FIS requires 8.8–10.6 stages (and 

multiple distinct pool sizes) to complete the decoding process in these strata.

To illustrate how our informative array procedures produce individual-specific predictive 

values, we display in Web Appendix E the estimated values of  ( ) for each 

female subject who was diagnosed as positive (negative) for chlamydia in the first of our 

1000 implementations. Similar figures for the female-gonorrhea and male-chlamydia/

gonorrhea cohorts are also included. The information in these figures strongly suggests the 

possibility of using estimates of  and . to “back-end screen” specific 

individuals who may have been misdiagnosed. One way this could be done is to simply use 

additional individual testing for those subjects with incongruously low values of  or 

. We plan to investigate this in future research.

Two additional details warrant brief remarks. First, in our implementation of the informative 

procedures in 2009, we used logistic model fits from 2008 including all of the covariates as 
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first-order terms. We also performed identical analyses in each stratum using first-order 

models with the “best” subset of covariates (as judged by the Bayesian Information 

Criterion). Second, we have also reproduced the analyses in Table 2 assuming that the 

maximum allowable array size (MAAS) is K* × K*, where K* = 10. Current empirical 

research in chlamydia and gonorrhea screening suggests the choice of K* = 10 to avoid 

dilution effects (see, e.g., Shipitsyna et al., 2007). The results from each additional analysis 

provided the same general conclusions regarding the potential advantages of GA and SA. 

However, using the best subsets models did not always improve the efficiency and using K* 

= 10 increased the number of tests needed to screen for gonorrhea infection in three of the 

four strata. Results from the best subsets model fits and those assuming a MAAS of K* = 10 

are provided in Web Appendix E.

6. Discussion

We have generalized previous statistical work in two-dimensional array testing to 

incorporate population heterogeneity. Our work shows that exploiting individual covariate 

information sensibly can provide large gains in array testing efficiency while maintaining 

overall classification accuracy. We have also shown how our methodology affords one the 

flexibility to target potentially misdiagnosed individuals using individual-specific predictive 

values. Our R programs, which can be downloaded at www.chrisbilder.com/grouptesting/

array, calculate the efficiency and the classification accuracy measures described in Section 

2.

We have illustrated the implementation of informative array testing using chlamydia and 

gonorrhea data collected as part of the IPP; however, our methodology is clearly applicable 

in other infectious disease contexts. Furthermore, we believe this work may be suitably 

adapted for use in other applications where array testing has been used for classification. For 

example, to identify lead compounds in drug discovery, high throughput screening via array 

testing has been shown to be an efficient alternative to individual testing (Warrior et al. 

2007). In this and related applications, certain chemical descriptors are known to be good 

predictors of compound activity; that is, it may be appropriate to treat individual compounds 

as heterogeneous with different probabilities of positive activity (Remlinger et al., 2006). 

Further research is needed to assess this potential extension in the light of blocking and 

synergistic effects which may arise due to pooling (Xie et al., 2001). Our work may also be 

applicable in screening large DNA libraries (Berger et al., 2000) if individual clone status, 

for example, whether or not a clone contains a specific DNA sequence, can be modeled 

appropriately.

Our generalization of (two-dimensional) array testing to heterogeneous populations is driven 

by an underlying goal to increase efficiency, especially in the current disease screening 

environment where there is a strong desire to keep overall testing costs low. Extensions of 

our work could include the use of a master array test (Kim et al., 2007) or the development 

of procedures using higher-dimensional arrays (Kim and Hudgens, 2009). One might expect 

the corresponding heterogeneous versions to confer even more efficiency gains than those 

seen in this paper.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gradient and spiral array construction. We depict 3×3 constructions using individuals 

 corresponding to p(1) ≤ p(2) ≤ ⋯ ≤ p(9). Constructing K × K arrays for 

other values of K is done similarly.
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Figure 2. 
Efficiency comparison with perfect testing. Box-plots of values of E(T)/N for 10, 000 

randomly-selected arrangements of A. GA (∆) and SA (+) are also included. The optimal 

square array size K has been used for each value of p; see Hudgens and Kim (2011). Note 

that the vertical axis scaling is not uniform across the plots.

McMahan et al. Page 17

Biometrics. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Efficiency comparison with imperfect testing. Per-individual efficiency for GA, SA, and A 

with α = 0.50. E(T\A) has been approximated using Equation (13) in Kim et al. (2007). The 

optimal square array size K has been used for each (p, Se, Sp) configuration.
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Figure 4. 
Efficiency comparison with other informative procedures. Per-individual efficiency for GA, 

PSOD, and FIS with α = 0.50. The optimal pool size has been used for each (p, Se, Sp) 

configuration; see Section 4.2.
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