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The spiking activity of cortical neurons is highly variable. This
variability is generally correlated among nearby neurons, an effect
commonly interpreted to reflect the coactivation of neurons due
to anatomically shared inputs. Recent findings, however, indicate
that correlations can be dynamically modulated, suggesting that the
underlying mechanisms are not well understood. Here, we investi-
gate the hypothesis that correlations are dominated by neuronal
coinactivation: the occurrence of brief silent periods during which
all neurons in the local network stop firing. We recorded spiking
activity from large populations of neurons in the auditory cortex of
anesthetized rats across different brain states. During spontaneous
activity, the reduction of correlation accompanying brain state de-
synchronization was largely explained by a decrease in the density
of the silent periods. The presentation of a stimulus caused an initial
drop of correlations followed by a rebound, a time course that was
mimicked by the instantaneous silence density. We built a rate
network model with fluctuation-driven transitions between a silent
and an active attractor and assumed that neurons fired Poisson spike
trains with a rate following the model dynamics. Variations of the
network external input altered the transition rate into the silent
attractor and reproduced the relation between correlation and
silence density found in the data, both in spontaneous and evoked
conditions. This suggests that the observed changes in correlation,
occurring gradually with brain state variations or abruptly with
sensory stimulation, are due to changes in the likeliness of the
microcircuit to transiently cease firing.
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Neuronal noise correlations are defined as common fluctua-
tions in the spiking activity of neurons under conditions of

constant sensory input or motor output. Traditionally, they have
been thought to arise from the dense connectivity of the cortex,
such that neighboring neurons sharing a fraction of their inputs
should also share a fraction of their output variability (1). Several
observations are consistent with this hypothesis: pairwise corre-
lations in the cortex decrease with cell pair distance (2) or with
the difference in stimulus selectivity (3), dependencies that could
follow from a variation in shared input given the anatomy of
cortical circuits. Recent findings, however, challenge this simple
interpretation. Recordings in the primate visual cortex have shown
that attention or task context can change correlation structure (4–6)
and that the magnitude of averaged correlation can be very
low (7). In anesthetized rodents correlations decrease with brain
state desynchronization (8, 9) or when animals switch from quiet
wakefulness to active whisking during waking (10). Moreover,
the commonly observed drop of spiking variability following
stimulus onset (11–13) seems to occur jointly with a transient
decrease in correlation (2, 14, 15). These observations suggest
that correlations reflect the dynamical state of the circuit more
than its hardwired connectivity.
Despite substantial progress in understanding the mechanisms

giving rise to large individual variability in recurrent networks

(9, 16–18), we still lack a canonical model that can generate cor-
relations with the same magnitude and spatiotemporal structure as
those observed in cortical circuits. Balanced networks, for instance, a
common model that reproduces the large variability of cortical
neurons (9, 18, 19), show near-zero averaged correlations (9). Nu-
merous studies have investigated the generation of synchronous
firing (20), but whether short bursts of population activity can
quantitatively account for the spike count correlations found in the
data is unclear. Recurrent networks can also generate fast oscil-
lations in the population activity, but, in a regime of low rates,
typical of cortical circuits, average spike count correlations are
negligible (21). Network models producing nonzero average corre-
lations are those exhibiting up and down dynamics (22–29). Most of
these studies have focused on investigating the mechanisms un-
derlying the slow oscillatory activity observed in cortical slices (30),
under anesthesia (31, 32), or during slow-wave sleep (33). Only
recently the impact of up and down switching on trial-to-trial re-
sponse variability (25) and on the probability distribution of multi-
unit activity (29) across brain states has been investigated. Whether
the alternation between up and down phases could quantitatively
account for the pairwise correlations observed in different brain
states and describe their stimulus-evoked dynamics remains an
open question.
To investigate the mechanisms producing correlated firing, we

recorded the spiking activity of large populations of neurons from
the auditory cortex of anesthetized rats. During spontaneous
activity, changes in correlation were largely explained by variation
of the occurrence rate of periods during which neurons in the
circuit stopped firing. Furthermore, the time course of correla-
tion in response to an acoustic stimulus reflected the transient
variation of this silence density. A computational rate model
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with fluctuation-driven transitions between silent and active
attractors could explain the experimentally observed time
course of correlation and its relation to silence density. Our
findings suggest that the dynamics of these transitions play
a fundamental role in generating noise correlations among
cortical neurons.

Results
We recorded spontaneous and stimulus-evoked population ac-
tivity from the primary auditory cortex (A1) of urethane-anes-
thetized rats (n = 6) using multisite silicon microelectrodes.
We sorted spikes off-line and obtained multiple spike trains
from isolated single units (range, 44–147) as well as some
spike trains from multiunit activity (range, 3–103). During the
experiments, the brain activity underwent spontaneous tran-
sitions across a continuum of brain states varying between a
synchronized state exhibiting alternations between active and
silent periods (Fig. 1A, Right), called up and down phases, re-
spectively (30–33), and a desynchronized state with no apparent
up and down alternations (9, 25) (Fig. 1A, Left). To quantita-
tively characterize the full spectrum of brain states we used si-
lence density (S) computed from the pooled population activity
of merged single units and multiunits during spontaneous con-
ditions. Spontaneous conditions referred to the activity during

1.5-s intervals preceding each stimulus. We divided each re-
cording session into adjacent 50-s epochs, sufficiently short to
capture fast brain state transitions and long enough to obtain
good estimates of the spiking statistics. In each epoch, we com-
puted S as the fraction of 20-ms bins during which the sponta-
neous population activity had zero spikes (Fig. 1A, brackets
above rasters). The epochs with relatively high values of S were
classified as the synchronized brain state (Fig. 1A, Right). During
those epochs, silent periods, obtained by merging consecutive
empty bins, captured mostly down periods. The epochs with S
close to zero showing shorter and less frequent silent periods,
were classified as the desynchronized brain state (Fig. 1A, Left).
We chose 20-ms bins as the discretization yielding the maximal
discriminability between brain states (Fig. S1): finer binning satu-
rated the S to 1, whereas longer bins missed brief silences yielding
near-zero S for all epochs. Moreover, we controlled that the var-
iations of S across epochs were not explained by changes in the
pooled population rate (Fig. S2 A and B; SI Methods) and that
they mimicked the state changes derived independently from the
spectral density of local field potential (LFP) (8) (Fig. S2C).

Relationship Between Spontaneous Correlations and Silence Density
in A1. We first asked whether variations in silence density could
explain the state dependence of correlations between pairs of
single units. For each epoch, we obtained the spontaneous spike
count correlation coefficient ρ computed across time during
spontaneous activity using a count window T = 100 ms and av-
eraged across single-unit pairs (Fig. 1C). As expected, ρ was
larger during synchronized state epochs where the population
activity fluctuated between silent and active periods (9, 34). In-
terestingly, the relationship between correlation and S was linear
and had a very small intercept ρ0 (Fig. 1D). This behavior was
robustly observed across experiments (Fig. S3) and over a broad
range of count windows T (Fig. 1 E and F). Moreover, the
density of high-activity periods, defined as bins with spike counts
above a certain threshold, did not show the same covariation
with ρ (Fig. 1B), showing that the density S was particularly
predictive of correlation magnitude. We next asked whether
correlations were solely due to the occurrence of silent periods
among otherwise uncorrelated activity. To test this, we generated
a surrogate dataset in which, for each epoch, silent periods were
removed and the remaining periods with spikes were concate-
nated to form a continuous recording with S = 0 (SI Methods).
Correlations in this dataset were weak in all epochs (Fig. 1 C–F),
suggesting that the increase in ρ accompanying brain state syn-
chronization in the original data was mediated by an increase in
the silent-period probability and that the additional mechanism
producing the offset correlation ρ0 remained relatively constant.

The Dynamics of Correlation During Stimulus-Evoked Responses. We
next studied the dynamics of the population in response to short
acoustic clicks (duration, 5 ms; interclick interval, 2.5 or 3.5 s).
We used a sliding spike count window (T = 50 ms) and computed
the averaged instantaneous rate, spike count correlation ρ(t) (2,
14, 15), and spike count Fano factor (11–13) by performing the
statistics across repeated stimulus presentations and averaged
over single units or single-unit pairs (Methods). Similarly, we
computed the instantaneous silence density S(t) using 20-ms
bins. To reveal the impact of brain state, we grouped trials
depending on whether they occurred in epochs of low (S < 0.05),
intermediate (0.05 ≤ S ≤ 0.2), or high (0.2 < S) brain state
synchronization (Figs. 1A and 2). Despite a difference in spon-
taneous baseline rate across states, the averaged peak response
was roughly independent of state (Fig. 2A). The dynamics of S(t)
showed a fast drop to a near-zero value in all states followed by
a fast rebound whose magnitude depended on the cortical state.
Except in the most synchronized epochs, the rebound showed an
overshoot above the baseline S(t), revealing that, after the initial
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Fig. 1. The relation between correlations and silence density during spon-
taneous activity in A1. (A) Spike rastergrams (Top) and pooled population
rate (Bottom; bin, 20 ms) from single and multiunit spike trains (n = 84)
during epochs of desynchronized (brown), intermediate (orange), and syn-
chronized (red) brain state. Top brackets indicate silent periods, i.e., con-
secutive 20-ms bins with no spikes. Vertical gray bar marks stimulus onset.
(B and C) Silence density S (B, black) and averaged spontaneous spike count
correlations ρ (C) obtained across 50-s epochs in one recording session. High
activity density, i.e., fraction of bins with more than six spikes, is shown for
comparison (B, gray; the threshold six was chosen to match the averages of
the two densities). Correlations were averaged over pairs of recorded single
units (black; n = 3,240 pairs; count window T = 100 ms) and surrogate data
(blue) obtained by removing all silent periods. Arrowheads indicate frag-
ments shown in A. (D) ρ vs. S for the two sets in C. Each dot represents a 50-s
epoch. Linear fits from experimental and surrogate data (lines) have slopes
0.22 and 0.019, and intercepts 0.007 and 0.012, respectively. (E and F) Slope
(E) and correlation intercept (F) from the linear fit of ρ vs. S as a function of
window size T (mean ± SD over n = 6 animals). Colors as in C and D.
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increase in population rate, the stimulus tended to increase the
probability of the circuit to go into silence (Fig. 2B and Fig. S4B).
After the rebound, the more synchronized epochs showed a
second drop followed by a slow recovery to baseline (Fig. 2B
and Fig. S4B). Interestingly, instantaneous average correlation
exhibited almost identical time course as S(t) in each of the
different brain states (Fig. 2C and Fig. S4C). Thus, the linear
relation between correlation and S found during spontaneous
activity, was approximately maintained instantaneously during
evoked responses (Fig. 2D). The instantaneous Fano factor fol-
lowed qualitatively similar dynamics and brain state dependence
to correlation except that the range of spanned values was nar-
rower (Fig. S5).

Computational Rate Model Reproduces ρ–S Relation Across Brain
State Changes. To understand the mechanisms underlying correla-
tions and their relation with silence density, we analyzed a model with
two sources of neuronal variability: the first reflecting variations in the
firing rate r, and the second reflecting the spiking stochasticity exis-
tent at constant rate (1, 11, 35–37). Under this assumption, spike
count correlations could be explained, at least in part, if the rate
variability was correlated across neurons (35, 37). For example, it has
been shown that individual spike count statistics can be described by
a Poisson process in which the rate varies from trial to trial following
a broad unimodal distribution (37). We tested this model in spon-
taneous conditions across different brain states and compared it with
a model in which the rate followed a bimodal distribution reflecting
network transitions between a silent (r= 0) and an active state (r> 0).
We found that the statistics of population spike counts and particu-
larly pairwise covariance, were better described by the bimodal
model, especially during synchronized epochs when ρ and S were
largest (Fig. S6). This suggests that silent periods reflected separable
events in the circuit dynamics rather than periods of very low rate
drawn from a unimodal distribution.

Assuming that rate variations are mainly produced by the
network transitions into silence, we initially considered that neu-
rons fired conditionally independent Poisson spike trains with the
same varying rate r(t). Under these assumptions, the spike count
correlation coefficient ρ(t) reads as follows (SI Methods):

ρðtÞ= Var½Rðt;TÞ�
Var½Rðt;TÞ�+ hRðt;TÞi; [1]

where Rðt;TÞ= R ​ rðt′Þdt′, named integrated rate, is the expected
number of spikes elicited by each neuron in the interval (t − T/2,
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Fig. 2. Evoked dynamics of correlations in A1 across brain states. (A–C)
Mean population-averaged rate r(t) (A; n = 81 single units), instantaneous
silence density S(t) (B), average instantaneous correlation ρ(t) (C; n = 3,240
pairs) in response to a click stimulus during the desynchronized (brown),
intermediate (orange), and synchronized (red) epochs observed in one ex-
periment (same as in Fig. 1 A–D). Statistics were obtained across stimulus
repetitions within the given brain state. Rate and correlation used T = 50-ms
sliding windows (time step, 2 ms). (D) Instantaneous correlation ρ(t) vs. S(t)
for each brain state in B and C. Darker dots correspond to the interval (−25,
515) ms, with zero being the stimulus onset. Gray lines show the linear fit to
the spontaneous ρ vs. S relation (Fig. 1D). Shaded areas in C illustrate 95%
confidence bands (bootstrap).
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Fig. 3. Bistable rate model with adaptation captures the correlation vs. si-
lence density relationship. (A) Network model composed of a self-coupled
excitatory population with rate r(t), exhibiting rate adaptation a(t) of
strength β and receiving a fluctuating external input I(t). (B) Phase plane
showing rate (cubic curves) and adaptation (straight line) nullclines and
stable fixed points (filled circles). Increasing I shifts the rate nullcline (arrow),
whereas increasing β decreases the slope of adaptation nullcline. (C) Stability
analysis in the I–β plane shows four regimes: limit cycle (light gray area),
single active attractor (gray area), single silent attractor (black area), and
bistable regime with silent and active attractors (dark gray area). Example
nullclines are superimposed on each regime (white curves). (D) Baseline mean
rate r (Left), silence density S (Middle), and correlation coefficient ρ (Right;
count window T = 100 ms; Eq. 1) as a function of I and β (black lines mark
borders of bistable regime). Increasing I at fixed β causes an increase in r and
a decrease in S and ρ, mimicking the transition toward the desynchronized
state. (E) ρ vs. S relationship obtained along the desynchronization axis β = 1
and I varying from 0.4 to 4 for conditionally independent spiking (c0 = 0; gray
line) and nonzero spiking covariability (c0 = 0.01; black line). Shaded area
shows the ρ–S pairs obtained in the model when sampling the region of the
(I, β) plane shown in C. (F) Network spontaneous activity for three (β, I) pairs
(squares in D and E) chosen to reproduce the different brain state categories
(Fig. 2): desynchronized (Top), intermediate (Middle), and synchronized
(Bottom). For each state, phase plane (Left; as in B), example rate trace
(Middle), and rate histogram (Right) are shown. Gray area in the phase
planes shows the basin of attraction of active fixed point. Dotted lines in-
dicate silence detection threshold. Values for each brain state were β = 1 s
and I = 1.1, 1.6, and 2 a.u.
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t + T/2) given r(t). The mean (angle brackets) and variance of
R(t;T) in Eq. 1 are taken with respect to the rate variability. In
the absence of transitions, r(t) is approximately constant and
both Var[R(t;T)] and ρ(t) are zero. This is consistent with the
spontaneous activity data if the small offset correlation ρ0 at S = 0
is neglected (Fig. 1D and Fig. S3). To describe the dynamics of
network transitions, we used a 2D dynamical model (22, 25) that
allowed a mechanistic interpretation of the rate variability during
spontaneous and evoked conditions (Fig. 3A). The model can be
considered a mean-field description of a population of recurrently
coupled excitatory neurons with mean rate r(t) that receive an
external input I(t) and exhibit rate adaptation a(t) (Methods).
Because of the concavity of the transfer function and the re-
current coupling, the network can exhibit bistability with a silent
attractor and an active attractor with low rate (22) (Fig. 3B). To
determine whether the model could reproduce the state depen-
dence of spontaneous correlations, we simulated its dynamics
using a fluctuating external input and computed the mean rate,
the silence density [defined as the fraction of time with r(t)
below a silence threshold] and the correlation (Eq. 1; T = 100 ms)
for a range of values of the baseline input I and the adaptation
strength β (Fig. 3D). The statistics were performed across time.
We chose an axis in the bistable region of the (I, β) plane
(squares in Fig. 3D) where the model reproduced the approxi-
mately linear ρ−S relation found in the data (compare Figs. 3E
and 1D). Beyond this region, the model yielded much higher
S values revealing that, as S approaches 1 (complete silence),
correlation tends to zero (Fig. 3E, gray area). Thus, the ρ−S
relation is generally nonmonotonic, but it can be approximately
linear for the range of S values found in the data (i.e., S < 0.5).
Finally, we relaxed the condition that spiking was conditionally
independent across neurons and explored how the correlation
changed when a small constant spiking covariability term was
introduced (SI Methods). This caused a shift in the ρ−S relation-
ship (Fig. 3E) that mimicked the offset ρ0 observed in the exper-
imental data (Fig. 1D and Fig. S3).
Although in themodel both active and silent attractors were stable

across brain states, the transition rate varied due to changes in the
effective size of their basins of attraction. In the desynchronized
state, the active basin of attraction was effectively large because the
active fixed point was far from the basin’s border, whereas the silent
basin of attraction was small (Fig. 3F, Top). Therefore, the system
remained active most of the time and the external fluctuations
triggered sporadic and short transitions into silence (Fig. 3F, Top),
yielding low S and small ρ (Fig. 3D). Decreasing I took the system
toward the synchronized state (Fig. 3D, squares) where the active
attractor was shifted closer to the basin’s border, whereas the silent
attractor was moved further (Fig. 3F, Bottom). Thus, excursions to
the silent branch were more frequent and lasted longer, yielding
high S and larger ρ (Fig. 3 D and F, Bottom). Because transitions
were triggered by fluctuations, the duration of silent and active
periods was very irregular and the temporal structure of the rate
did not show an oscillatory behavior. This nonrhythmic pattern
during synchronized epochs was also observed in the data.
As an alternative to the bistable model, we considered a mono-

stable dynamical model that produced Gaussian-like fluctuations
in r(t). Silent periods were not caused by network transitions but
simply reflected large downward deflections of r(t) that were mir-
rored by upward deflections of a similar magnitude (Fig. S7E). In
this unimodal model, states of high correlation are associated with
an increased population rate variance, yielding larger density of
both silent and high-activity events. In contrast, high activity density
in spontaneous data did not systematically increase with ρ, a feature
better captured by the bistable model (Fig. 1B and Fig. S7).

Rate Model Reproduces the Evoked Dynamics of Correlation. The
network model also reproduced the state-dependent dynamics of
correlation during click-evoked responses. A brief current step

was presented for each of the three (I, β) combinations repre-
senting different brain states (Fig. 3F), and the mean in-
stantaneous rate r(t), integrated rate variance, S(t), and ρ(t) were
computed across repeated trials (Fig. 4). Because the stimulus
produced a stereotyped response independently of whether the
network was in the silent or active branch (Fig. 4E, ii), S(t)
dropped to zero and the mean peak rate was the same for all
brain states. This caused that the rate variance, and in turn ρ(t),
also dropped to near-zero values (Fig. 4 C and D, ii, and Movies
S1 and S2). After the peak response, the rate was suppressed
below baseline due to a rebound of the silence density (Fig. 4 A
and B, iii). This was a consequence of the response-evoked in-
crease in adaptation: adapted trajectories run closer to the border
of the active basin of attraction, which increased their probability to
fall into the silent branch (Fig. 4E, iii, blue traces). The rebound in S
(t) led to an increase in rate variance, which, combined with a re-
duced r(t), produced a prominent rebound in correlation (Fig. 4A–D,
iii, and Movies S1 and S2). In the synchronized state, the rebound in
ρ(t) was followed by a second smaller drop (Fig. 4D, iii and iv, red
trace), reflecting that the system exhibited a weak oscillatory be-
havior in relaxing back to equilibrium. The model predicted that
ρ(t) in response to stimuli recruiting more adaptation should show
a larger rebound and a more pronounced second drop (Fig. S8).
Last, we searched for the minimal model reproducing the key

aspects of the correlation evoked dynamics. A simplified bistable
model with no adaptation was sufficient to reproduce the strong
drop in ρ(t) (Fig. S9). An additional mechanism that transiently
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Stimulus-evoked mean instantaneous rate r(t) (A), instantaneous silence
density S(t) (B), variance of integrated rate R(t) (C), and instantaneous cor-
relation ρ(t) (D) for the three brain states defined in Fig. 3 (same color code).
Statistics were obtained across repeated presentations of the stimulus
(square pulse of 10 ms). (E) Phase plane trajectories obtained from single-
trial evoked responses in the synchronized state. Each phase plane (con-
vention as in Fig. 3F, Left) shows a snapshot of two example trajectories
(blue and gray traces) taken at successive times i, ii, iii, and iv (dotted lines in
A–D). Histograms obtained over multiple trials (Right) correspond to r(t) at
the current time (dots). Independently of the network state at stimulus
onset, the stimulus reliably elicits an stereotyped increase of rate that
quenches the rate variability and correlations (times i and ii). Due to in-
creased adaptation following stimulation, the system moves closer to the
border of the basin of attraction of the active equilibrium point (shaded
area). This increases the probability of falling into the silent branch with
respect to prestimulus baseline (blue trace, time iii). In the synchronized
state, the network shows a second transient decrease in S(t) before returning
to equilibrium (time iv).
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increased the poststimulus silence probability (e.g., short-term de-
pression of the feedforward synaptic afferents) was necessary to
generate the rebound (Fig. S9). Negative-feedback mechanisms,
such as rate adaptation or synaptic short-term depression in the
recurrent connections (20), could generate the rebound and, in
addition, cause the second small drop in ρ(t) observed in the syn-
chronized state. The monostable Gaussian model behaved quali-
tatively different from the bistable model (Fig. S9), suggesting that
the nonlinearity underlying the transitions into silence was neces-
sary to reproduced the dynamics of ρ(t).

Discussion
We have shown that average spike count correlations among
neighboring neurons can be largely explained by transient ex-
cursions of the cortical circuit into silence. A rate network model
with adaptation showing stochastic transitions between two
attractors reproduced the ρ−S relation observed during sponta-
neous and evoked conditions. Two recent studies have proposed
that fluctuations in neuronal excitability cause noise correlations
in monkey visual cortex (34, 37). Whereas in one study corre-
lated fluctuations of excitability only accounted for a fraction of
the total correlation (37), in the other fluctuations “resembling
up and down states” explained almost all measured correlations
(34). We extended these findings by showing that, during cortical
synchronization, a bimodal distribution of the excitability cap-
tures the statistics of population spike counts in the rat auditory
cortex more accurately than the previously proposed unimodal
model (37) (Fig. S6). We showed that stochastic transitions into
silence seem to be the mechanism generating bimodal fluctuations
in excitability. Modeling these transitions allowed us to understand
the dynamics of correlation caused by sensory stimulation. We
showed that correlations measured for spontaneous activity across
brain states exhibited a tight relationship with silence density (Fig.
1D) and that, unexpectedly, this relationship was preserved in-
stantaneously during evoked responses (Fig. 2D). The correlation
ρ0 found during spontaneous activity in the absence of silent
periods (Fig. 1 C and D) could be due to a number of factors (e.g.,
very slow rate cofluctuations) but does not seem to reflect the ir-
reducible effect of the connectivity as correlation dropped to near-
zero values during evoked responses (Fig. 2C and Fig. S4C).
We hypothesized that cortical networks can be described as a

bistable system with an active and a silent attractor. During active
periods, the network produces Poisson-like, low-rate, asynchro-
nous activity due to balance between excitation and inhibition (9,
38). Fluctuations arising from external inputs or from the internal
spiking activity during active periods would generate transitions
between the two attractors. It is not clear, however, how to build
such bistable network. Balanced networks at low rates show a
linear input–output relation (38), whereas bistability requires non-
linearities (22, 24, 27, 39). Extensive theoretical work has aimed
to reconcile multistability and irregular firing, mainly in the context
of persistent activity circuits (40, 41). We simplified the prob-
lem and, assuming a balanced state during active periods, built
a rate network model to investigate the transition dynamics be-
tween the two attractors. In contrast to previous network models of
up/down transitions that, due to a strong fatigue mechanism (e.g.,
spike frequency adaptation), operate in the oscillatory regime (Fig.
3C, Top Right) (24, 28, 39), our model displays weak adaptation
and relies on fluctuations to escape from the otherwise-stable
attractors (26, 27). Moreover, by increasing the external input I,
plus optionally decreasing the adaptation strength β, the network
becomes desynchronized (Fig. 3D–F), as shown in previous models
(23, 25, 39, 42). Desynchronization is also thought to decrease the
synaptic efficacy of intracortical connections. In our model, this
would decrease the curvature of the rate nullcline and remove the
silent branch, effectively linearizing the system (25). Our findings
suggest that desynchronization implies moving away from the bi-
furcation, which increases the region around the fixed point where

the system behaves linearly (Fig. 4). However, they also show that
certain features, such as correlation rebound, cannot be captured by
a linear system and require the existence of a silent branch (Fig. S9).
Several studies have recently modeled (13, 16–18) the dy-

namics of stimulus-evoked neuronal variability (11). The pro-
posed mechanisms range from suppression of an ongoing chaotic
state (16), to the quenching of variability produced by the tran-
sitions of the network among multiple discrete states (17, 18) or
along a line attractor (13). Our model shares the idea that the
stimulus puts the system away from the bifurcation where net-
work state transitions occur. There are, however, two main dif-
ferences. First, except in ref. 13, the average correlation in these
networks was negligible. This is because either neuronal vari-
ability across the network was independent (16) or because the
transitions between network discrete states involved the co-
ordination of small subpopulations of cells (17, 18). Second, the
nature of multistability in these models followed from a specific
connectivity structure such as clustered connections (17, 18) or
local connectivity following a ring topology (13). Our bistable
network does not rely on a particular structured connectivity,
which could explain why the effect is ubiquitously observed across
cortical areas with different connectivity schemes (11).
Although our experiments were performed under urethane an-

esthesia, silent periods also occur during waking. Global dynamics
resembling up and down switching have been observed in rodents
during quiescent wakefulness (43, 44) or during a perceptual task
(45) as well as in awake primates (46). Previous studies have
hypothesized that correlations could impact the encoding of in-
formation in large networks. Our results contribute to build a
mechanistic framework for recent findings showing that, depending
on variables such as sleep pressure, task engagement, locomotion,
or sensory stimulation, circuits exhibit different dynamics that shape
the structure of correlations. Whether these correlations ultimately
impact information encoding will depend on how efficiently ani-
mals process sensory information under these different brain
states (45, 47), a question that needs to be further investigated.

Methods
Experimental Techniques.All experiments were carried out in accordance with
protocols approved by the Animal Ethics Committee of the University of
Barcelona and by the Rutgers University Animal Care and Use Committee. Six
rats (Sprague–Dawley; 250–400 g) were anesthetized with urethane (1.5 g/kg
body weight) and silicon microelectrodes (Neuronexus) with 32 or 64 chan-
nels were inserted in deep layers (depth, 600–1,200 μm) of the primary au-
ditory cortex (A1). We simultaneously recorded the spiking activity from
many single units and multiunits (means, 86 and 45, respectively) and the LFP
in response to acoustic “clicks” (5-ms square pulses; interstimulus interval,
2.5 or 3.5 s). Details on the techniques and spikes sorting procedures are
described in SI Methods.

Data Analysis. Long continuous recordings (mean, ∼2 h) were divided into
50-s epochs, and brain state was estimated in each epoch based on spon-
taneous pooled population activity, i.e., the merge of single and multiunit
spike trains during the 1.5-s intervals preceding each stimulus presentation.
Brain state was quantified using silence density (S) defined as the fraction of
20-ms time bins with no population activity (i.e., zero spikes; Fig. 1 B and D–F,
black). Silent and active periods were obtained from the merge of consecu-
tive empty and nonempty bins, respectively. High activity density (Fig. 1B,
gray) was computed, similarly to S, as the fraction of time bins with a spike
count above a given fixed threshold. We computed averaged spontaneous
correlation ρ(T) as the Pearson correlation coefficient between the spike
counts of neuronal pairs computed across time (count window T = 100 ms)
and averaged over all single-unit pairs (Fig. 1 C–F). A surrogate dataset was
created to assess the amount of correlation during active periods (Fig. 1 C–F,
blue): silent periods were removed from spontaneous activity and the
remaining active periods were concatenated to form, for each epoch, a con-
tinuous recording with S = 0.

To analyze evoked activity, we used S to classify epochs into three brain
state categories: desynchronized (S < 0.05), intermediate (0.05 ≤ S ≤ 0.2),
and synchronized (S > 0.2). We computed the mean population-averaged
instantaneous rate, correlation ρ(t) (Pearson correlation coefficient) and
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spike count Fano factor across stimulus repetitions within each state cate-
gory, using sliding windows (2, 11–15) (T = 50 ms; Fig. 2 and Figs. S4 and S5).
The instantaneous silence density S(t) in each category was defined as the
fraction of trials with no spikes in the bin (t, t + Δt) with Δt = 20 ms (Fig. 2 C
and D and Fig. S4C). Details are described in SI Methods.

Computational Model. We assumed that neuronal variability had two sources
(1, 11, 35–37): the first resulted from the variations in the population rate r(t)
mainly caused by transitions between silent and active network attractors,
and the second arising from spiking stochasticity existent at constant rate.
Neurons fired statistically identical Poisson spike trains with rate r(t). We
considered two cases: when the Poisson spike trains are conditionally in-
dependent, i.e., the only source of correlation is the fluctuations in r(t), the
spike count Pearson correlation coefficient ρ(t) is given by Eq. 1. We also
considered covariability introduced by the spiking stochasticity. This implies
that the Poisson spike trains, conditioned on the rate, had an instantaneous
covariance of amplitude c0, a coefficient that is added in the numerator of
Eq. 1 to yield the expression of ρ(t). The term R(t;T) = <n(t;T)jr(t)> in Eq. 1 is
the expected number of spikes in the interval (t − T/2, t + T/2) given r(t), and
can be numerically obtained from the integral of r(t) in that interval (we refer
to this as the integrated rate).

To describe the fluctuations of r(t), we used a rate model with adaptation
a(t) where the dynamics were given by the following (22, 25, 28):

τr
dr
dt

=−rðtÞ+ϕðαrðtÞ− aðtÞ+ IðtÞ− θÞ,

τa
da
dt

=−aðtÞ+ βrðtÞ,
[2]

where θ = 2 was the activation threshold and the external input I(t) = I +
stim(t) + σξ(t) was composed of constant term I (range, 0–4 a.u.), the stimulus
step function (amplitude, 60 a.u.; duration, 10 ms), and a noise term mod-
eled as an Ornstein–Uhlenbeck process ξ(t) (mean, 0; SD, 4.5; and time
constant, 0.5 ms). The transfer function was ϕ(x) = gx2, if 0 < x ≤ 1, ϕðxÞ=
g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 3

p
, if x > 1, and zero otherwise. The time constants were set to τr = 5 ms

and τa = 250 ms. Other parameters were α = 4.6 s and β = 0.3–3 s. Silence
density was defined as the fraction of time r(t) < 0.9 Hz. Additional details
are provided in SI Methods.
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