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Enabling improvements to crop yield and resource use by enhanc-
ing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco
has been a longstanding challenge. Efforts toward realization of
this goal have been greatly assisted by advances in understanding
the complexities of Rubisco’s biogenesis in plastids and the devel-
opment of tailored chloroplast transformation tools. Here we gen-
erate transplastomic tobacco genotypes expressing Arabidopsis
Rubisco large subunits (AtL), both on their own (producing tobAtL

plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1)
chaperone (producing tobAtL-R1 plants) that has undergone parallel
functional coevolution with AtL. We show AtRAF1 assembles as
a dimer and is produced in tobAtL-R1 and Arabidopsis leaves at
10–15 nmol AtRAF1 monomers per square meter. Consistent with
a postchaperonin large (L)-subunit assembly role, the AtRAF1 fa-
cilitated two to threefold improvements in the amount and bio-
genesis rate of hybrid L8

AS8
t Rubisco [comprising AtL and tobacco

small (S) subunits] in tobAtL-R1 leaves compared with tobAtL,
despite >threefold lower steady-state Rubisco mRNA levels in
tobAtL-R1. Accompanying twofold increases in photosynthetic
CO2-assimilation rate and plant growth were measured for tobAtL-R1

lines. These findings highlight the importance of ancillary protein
complementarity during Rubisco biogenesis in plastids, the possi-
ble constraints this has imposed on Rubisco adaptive evolution,
and the likely need for such interaction specificity to be considered
when optimizing recombinant Rubisco bioengineering in plants.
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The increasing global demands for food supply, bioenergy
production, and CO2-sequestration have placed a high need

on improving agriculture yields and resource use (1, 2). It is now
widely recognized that yield increases are possible by enhancing
the light harvesting and CO2-fixation processes of photosynthesis
(3–5). A major target for improvement is the enzyme Rubisco
[ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase] whose
deficiencies in CO2-fixing speed and efficiency pose a key limita-
tion to photosynthetic CO2 capture (6, 7). In plants, the complex,
multistep catalytic mechanism of Rubisco to bind its 5-carbon
substrate RuBP, orient its C-2 for carboxylation, and then process
the 6-carbon product into two 3-phosphoglycerate (3PGA) prod-
ucts, limits its throughput to one to four catalytic cycles per second
(8). The mechanism also makes Rubisco prone to competitive
inhibition by O2 that produces only one 3PGA and 2-phospho-
glycolate (2PG). Metabolic recycling of 2PG by photorespiration
requires energy and results in most plants losing 30% of their fixed
CO2 (5). To compensate for these catalytic limitations, plants like
rice and wheat invest up to 50% of the leaf protein into Rubisco,
which accounts for ∼25% of their leaf nitrogen (9).
Natural diversity in Rubisco catalysis demonstrates that plant

Rubisco is not the pinnacle of evolution (6, 7). Better-performing
versions in some red algae have the potential to raise the yield of
crops like rice and wheat by as much as 30% (10). Bioengineering
Rubisco in leaves therefore faces two key challenges: identifying

the structural changes that promote performance and identifying
ways to efficiently transplant these changes into Rubisco within
a target plant. A significant hurdle to both challenges is the
complex biogenesis requirements of Rubisco in plant chloro-
plasts (7, 11). A number of ancillary proteins are required to
correctly process and assemble the chloroplast made Rubisco
large (L) subunit (coded by the plastome rbcL gene) and cytosol
made small (S) subunits (coded by multiple RbcS genes in the
nucleus) into L8S8 complexes in the chloroplast stroma. The
complicated assembly requirements of Rubisco in chloroplasts
prevent their functional testing in Escherichia coli and conversely
impedes, sometimes prevents, the biogenesis of Rubisco from
other higher plants, cyanobacteria, and algae (12–14). For ex-
ample, the L-subunits from sunflower and varying Flaveria sp.
showed fivefold differences in their capacity to form hybrid L8S8
Rubisco (that comprise tobacco S-subunits) in tobacco chloro-
plasts despite each rbcL transgene sharing the same genetic
regulatory sequences and showing >92% amino acid identity (13,
14). Evidently, evolution of Rubisco function may have been
constrained to maintain compatibility with the molecular chap-
erones required for its biogenesis (7, 15).
The necessity of chloroplast chaperonin (CPN) complexes for

Rubisco biogenesis has been known for some time (16). Upon
release from the hetero-oligomeric CPN ring structures in
chloroplasts (17) the folded L-subunits are thought to sequen-
tially assemble into dimers (L2) then octamers (L2)4 before
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S-subunit binding (18). The molecular details of this process
remain unclear. The maize Photosynthetic Mutant Library has
provided useful insight by identifying three chaperones with
roles associated with Rubisco synthesis, assembly, and stability:
Rubisco accumulation factors-1 (RAF1) (19) and-2 (RAF2;
a Pterin-4a-Carbinolamine Dehydratase-like protein) (20) and
Bundle Sheath Defective-2 (BSDII; a DnaJ-like protein) (21).
Results of chemical cross-linking experiments in maize leaves
suggest all three proteins might associate with the S-subunit
during Rubisco biogenesis (20). Other studies, however, suggest
RAF1 interacts with post-CPN folded L-subunits to assist in L2
then (L2)4 formation (19, 22). This function mirrors that shown
for RbcX, a Rubisco chaperone that acts as a “molecular staple”
to assemble folded L-subunits into L2 units for (L2)4 assembly
before S-subunit binding to displace the RbcX and trigger cat-
alytic potential (18). Although the function of RbcX in L8S8
Rubisco biogenesis has been resolved in exquisite molecular
detail in vitro and in E. coli, its functional role in cyanobacteria
and in leaf chloroplasts remain unresolved. Comparable molec-
ular details on RAF1, RAF2, and BSDII structure and function
remain incomplete, making it difficult to reliably assign their
roles and interactions with Rubisco in chloroplasts.
Targeted transformation of the chloroplast genome (plastome)

provides a reliable but time-consuming tool for engineering Rubisco
(23). This technology is best developed in tobacco with the cmtrL
genotype specifically made for bioengineering Rubisco and testing
its effects on leaf photosynthesis and growth (6, 7, 13, 14). Here we
use chloroplast transformation in cmtrL to examine the function of
RAF1 from Arabidopsis (AtRAF1) in Rubisco biogenesis. We show
that AtRAF1 forms a stable dimer that, when coexpressed with its
cognate Arabidopsis Rubisco L-subunits (AtL), enhances hybrid
L8

AS8
t Rubisco (containing Arabidopsis L- and tobacco S-subunits)

assembly in tobacco chloroplasts and concomitantly improves leaf
photosynthesis and plant growth by more than twofold.

Results
Coevolution of RAF1 and the Rubisco L-Subunit. Analysis of full-
length raf1 and rbcL sequences from plant, algae, and cyano-
bacteria showed that Rubisco L-subunit and RAF1 phylogenies
are topologically similar (Fig. 1A). Mirror-tree analysis revealed
that the correlation coefficient of these trees was 0.75 (P < 10−6)
suggesting coevolution of both proteins across cyanobacteria and
plants (Fig. S1). Exceptionally high correlations between RAF1
and Rubisco L-subunit pairwise nonsynonymous distances (i.e.,
those leading to amino acid substitutions) across all of the taxa
confirmed coevolution of the two proteins (Fig. 1B). We therefore
sought to test the functional significance of this complementarity

by transforming the Arabidopsis Rubisco L-subunit (AtL) and one
of its two cognate RAF1 isoforms (called AtRAF1) (Fig. S1) into
tobacco chloroplasts via plastome transformation. Based on our
previous heterologous Rubisco expression studies in tobacco (13,
14), we hypothesized that the phylogenetic divergence of AtL and
the tobacco L-subunits (tobL) (Fig. 1A) would be accompanied by
differences in ancillary protein requirements that would impede
the biogenesis of hybrid L8

AS8
t Rubisco (i.e., comprising AtL and

tobacco S-subunits) in tobacco chloroplasts.

Plastome Transformation of Arabidopsis Rubisco AtL-Subunits and
AtRAF1 into Tobacco Chloroplasts. The L-subunit of Arabidopsis
shares 94% identity with tobL, differing by only 29 amino acids
(Fig. S2A). Transplanting the Arabidopsis rbcL gene (AtrbcL)
into the tobacco plastome in place of the native rbcL gene was
achieved by cloning it into the plastome-transforming plasmid
pLEV4 to give plasmid pLEVAtL and transforming it into the
plastome of the cmtrL tobacco genotype to produce tobAtL lines
(Fig. 2A). To test the influence of coexpressing AtRAF on hybrid
L8

AS8
t Rubisco a synthetic Atraf1 gene coding the full-length

50.2-kDa Arabidopsis RAF1 homolog AY063107 (coding its
putative 62-aa N-terminal transit peptide sequence) (Fig. S2B)
and a C-terminal 6x histidine tag was cloned 39-bp downstream
of AtrbcL in pLEVAtL. The resulting plasmid, pLEVAtL-R1,
was transformed into cmtrL to produce tobAtL-R1 lines (Fig. 2A).
As shown in Fig. 1, although most plants only code for one
RAF1, tobacco and Arabidopsis code two isoforms with the two
homologs produced in Arabidopsis (∼70% identical) only show
∼50% identity to the two RAF1 isoforms produced in tobacco
(that are 95% identical) (Fig. S2C).
In both the tobAtL and tobAtL-R1 genotypes, the AtrbcL transgene

is regulated by the tobacco rbcL promoter, 5′- and 3′-untranslated
sequences, and incorporates a downstream promoter-less aadA
transgene that codes for the spectinomycin resistance used to screen
for plastome transformed plantlets (Fig. 2A). In tobAtL-R1, the
Atraf1 gene is located between both transgenes using an intergenic
sequence similar to that used in pLEVLUbS that produced a bicis-
tronic tobacco rbcL-rbcS mRNA (23).
Three independent transplastomic tobAtL and tobAtL-R1 lines

were grown in soil to maturity in air supplemented with 0.5%
(vol/vol) CO2 and fertilized with wild-type pollen. The increased
CO2 levels were necessary for the survival of the tobAtL lines in
soil early during their development as their leaves contained
little Rubisco (<3 μmol L-subunits per m2/s), significantly im-
peding viability and drastically slowing growth in air. In contrast
the tobAtL-R1 lines grew with greater vigor in air, but still at slow
rates. Comprehensive analyses on the T1 progeny of the tob

AtL and
tobAtL-R1 lines were therefore undertaken on plants grown under
0.5% (vol/vol) CO2 to ensure their viability.

Variation in the Content and Catalysis of Hybrid L8
AS8

t Rubisco in the
tobAtL and tobAtL-R1 Genotypes. RNA blot analyses showed there
were large differences in steady-state levels of the AtrbcL
mRNAs produced in tobAtL and tobAtL-R1 lines. As observed
previously, a less-abundant AtrbcL-aadA di-cistronic mRNA
(∼10% that of the AtrbcL mRNA) was produced in the young
tobAtL leaves as a result of inefficient transcription termination
by the tobacco rbcL 3′ UTR (13, 14, 23) (Fig. 2B). In contrast,
only di-cistronic AtrbcL-Atraf1 or tricistronic AtrbcL-Atraf1-
aadA mRNAs were detected in tobAtL-R1 leaves. Relative to the
rbcL mRNA levels in the wild-type tobacco controls, the total
pool of AtrbcL mRNAs were 25% and 80% lower in the de-
velopmentally comparable leaves from tobAtL and tobAtL-R1,
respectively (Fig. 2B).
In contrast to the scarcity of AtrbcL transcripts in tobAtL-R1, the

levels of hybrid L8
AS8

t Rubisco (comprising Arabidopsis L-subunits
and tobacco S-subunits) in the same leaves were >twofold higher
than the L8

AS8
t content in tobAtL (Fig. 2C). This variation in L8

AS8
t
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content between each genotype was confirmed by nondenaturing
PAGE (ndPAGE). Relative to the level of wild-type L8S8 produced
in the control, the L8

AS8
t content in tobAtL and tobAtL-R1 were re-

duced by ∼75% and ∼55%, respectively.
Quantifying AtRAF1 production in leaf protein samples was

undertaken by immunoblot analysis against varying amounts of
purified recombinant AtRAF1 (Fig. S3). The AtRAF1 antibody
recognized the ∼43 kDa AtRAF1 in Arabidopsis leaf protein
(Fig. 2D), the size expected for mature AtRAF1 after processing
of the putative 62-aa transit peptide (Fig. S1B). The antibody
detected nothing in wild-type tobacco consistent with the <50%
sequence identity between AtRAF and the two homologs in

tobacco (Fig. S2C). Compared with Arabidopsis, the AtRAF1 pro-
duced in tobAtL-R1 leaves was of equivalent size (noting it codes an
additional 6x histidines) and produced at similar cellular concen-
trations (Fig. 2D). This finding indicated the transit peptide pro-
cessing requirements of AtRAF1 were met by tobacco chloroplast
stroma proteases and that the levels produced were physiologically
comparable to those naturally made in Arabidopsis.
The catalytic properties of the hybrid L8

AS8
t were compared

with Arabidopsis and tobacco Rubisco (Table S1). Significant
reductions (24%) in carboxylation rate (kC

cat) coupled with an
improved affinity for CO2 (i.e., a 12% lower Km for CO2, KC)
were measured for L8

AS8
t albeit without significant change to its

Km for O2 (KO), specificity for CO2 over O2 (SC/O) or carboxy-
lation efficiency under atmospheric [O2] (kC

cat/KC
21%O2).

AtRAF1 Forms a Stable Dimer Complex. The AtRAF1 made and
purified from E. coli could be stably stored at −80 °C in buffer
containing 20% (vol/vol) glycerol. Multiple freeze-thaw cycles
had no discernible influence on AtRAF1 separation as two bands
above the 160-kDa aldolase standard by ndPAGE, a prominent
upper band, and >90% less abundant lower band (Fig. 3A).
Immunoblot analysis showed this AtRAF1 oligomer separated
at a slower rate than the immuno-reactive product detected in
Arabidopsis leaf protein and the slightly larger His6-tagged
AtRAF1 product (H6-AtRAF1) produced in tobAtL-R1. The
mobility through ndPAGE of H6-AtRAF1 from tobAtL-R1 after
Ni-NTA affinity purification, however, matched that of the
AtRAF1 purified from E. coli (Fig. 3A). This finding suggests the
faster migrating, more diffusely separated, AtRAF1 products
detected in the Arabidopsis and tobAtL-R1 leaf samples might
involve complexes with other proteins, the identity of which remain
unclarified. In the leaf protein samples, the Rubisco antibody only
recognized the L8S8 holoenzyme and did not react with any of the
products recognized by the RAF1 or CPN antibodies (Fig. S4).
Similarly, no Rubisco was detected in the protein purified by Ni-
NTA from tobAtL-R1 leaves. These findings suggest the AtL-subunits
do not form stable interactions with either AtRAF1 or CPN com-
plexes in Arabidopsis or tobAtL-R1 leaves.
The migration of proteins through ndPAGE is significantly

influenced by their folded quaternary structure, which can mis-
lead estimates of molecular size and subunit stoichiometry. For
example, the 500-kDa bands for tobacco and Arabidopsis
Rubisco resolve at different positions following ndPAGE (with
the latter resolving at a smaller size to the 440-kDa ferritin
protein standard) (Fig. 3A). We therefore undertook nano-
electrospray ionization (ESI)-MS analysis of the pure AtRAF1
to accurately determine its subunit stoichiometry. Under non-
denaturing conditions, the most abundant ions in the mass spectrum
corresponded to a dimer with a molecular mass of ∼86,871 Da (Fig.
3B) consistent with the predicted 43,434 Da for AtRAF1 subunits
forming a stable dimer of (AtRAF1)2. This stoichiometry matches
that determined for affinity purified RAF1 from Thermosynecho-
coccus elongatus cells (22) but contrasts with the trimer structure
predicted for RAF1 from maize (19).

Leaf Photosynthesis and Plant Growth Are Enhanced in tobAtL-R1.
Consistent with higher amounts of hybrid L8

AS8
t made in each

tobAtL-R1 line, the leaf photosynthetic CO2 assimilation rates at
varying CO2 partial pressures (pCO2) were ∼twofold faster rel-
ative to tobAtL, albeit still slower than in wild-type tobacco (Fig.
4A). Accordingly, the tobAtL-R1 genotypes grew faster than the
tobAtL plants, although again less quickly than the tobacco con-
trols (Fig. 4B). Consistent with this faster growth and higher
Rubisco contents, the tobAtL-R1 phenotype more closely re-
sembled wild-type with little evidence of the pale green, marginal
curling, and dimpling leaf phenotype seen for the tobAtL plants. This
impaired growth phenotype matches that seen in other tobacco
genotypes producing low levels of hybrid Rubisco (i.e., <3 μmol
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sites per m2/s) comprising tobacco S-subunits and L-subunits from
either sunflower (13) or Flaveria pringlei (14).

Coexpressing AtRAF1 Enhances the Postchaperonin Assembly of AtL-
Subunits into Stable L8

AS8
t Complexes. Labeling of intact leaves

with [35S]methionine showed varying rates of incorporation into
35S-Rubisco complexes among the different tobacco genotypes (Fig.
5A). Compared with tobAtL, the rates of L8

AS8
t biogenesis were

threefold faster in the tobAtL-R1, although still threefold slower than
the rate of L8S8 synthesis in the wild-type tobacco controls. Un-
labeled methionine “chase” analyses showed no change in the
35S-Rubisco signal in any tobacco genotype indicating both tobacco
L8S8 and hybrid L8

AS8
t complexes were equally stable over the 7-h

analysis period in young upper canopy leaves (Fig. 5B).

Discussion
Here we highlight a pivotal role for the chloroplast RAF1
chaperone in Rubisco L-subunit assembly and the underpinning
requirement for sequence complementarity between both proteins
for optimal rates of L8S8 biogenesis. The higher levels and quicker
production of L8

AS8
t Rubisco in tobAtL-R1 leaves (Figs. 2C and 5A)

and their corresponding faster rates of photosynthesis and growth
(Fig. 4) relative to the tobAtL genotype underscore the pervasive
role that RAF1 plays in the assembly of post-CPN folded L-sub-
units. This finding advances our understanding of Rubisco bio-
genesis in leaf chloroplasts and also highlights how chaperone
compatibility demands on L-subunit folding and assembly might
have constrained Rubisco’s catalytic evolution (7, 15).

Our phylogenetic pre-evaluation of parallel evolutionary linkages
between the L-subunit and RAF1 and subsequent translational
testing of this knowledge by plastome transformation proved highly
successful in increasing recombinant Rubisco biogenesis. The
specificity shown by Rubisco toward its regulatory protein Rubisco
activase (RCA) provides a longstanding example of sequence
compatibility requirements between both enzymes (24). Comple-
mentarity between residues in the L-subunit N-domain (residues
89–94) and those in the specificity H9 helix (resides 317–320) of
RCA determine the capacity of RCA to stimulate release of in-
hibitory sugar phosphate molecules from the catalytic sites of
Rubisco (25). Similar sequence compliance requirements between
L-subunits and other ancillary proteins likely contribute to the low
levels of Rubisco from cyanobacteria (12) and other plants (13, 14,
26) that can be produced in tobacco chloroplasts. To what extent
expressing the cognate RAF1 proteins for each Rubisco isoform
might augment their biogenesis in tobacco leaves remains untested.
Determining the extent of parallel evolutionary linkages between
the L-subunit and other molecular partners considered influential
to Rubsico biogenesis (e.g., CPN, BSDII, RBCX, RAF2) may help
identify those whose coexpression might augment recombinant
Rubisco assembly in chloroplasts and other expression systems. This
approach is particularly pertinent to the ongoing efforts to design
and express more efficient Rubisco variants in crop plants (6).
Our analysis of AtRAF1 produced in E. coli indicates that it

forms a stable dimer that differs in its migration size through
ndPAGE to the RAF1 in soluble leaf cellular protein extract
(Fig. 3A). This finding suggests RAF1 in chloroplasts might in-
teract with other proteins or cofactors that alter quaternary
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Fig. 4. AtRAF1 improved leaf photosynthesis and growth in tobAtL-R1.
(A) Leaf gas-exchange measurements of CO2-assimilation rates at 25 °C under
varying intercellular CO2 pressures (Ci) made at 1,000 μmol quanta m2/s
illumination. Shown are the average of three measurements (±SD) made on
the leaves analyzed in Fig. 2. (B) Comparison of the faster growth (as a
function of plant height ± SD) of the tobAtL-R1 lines (n = 3) relative to tobAtL

(n = 3) at 25 °C in a growth cabinet in air with 0.5% (vol/vol) CO2 under ∼400 ±
100 μmol quanta m2/s illumination. Both transplastomic genotypes grew
slower than wild-type tobacco (wt, n = 3). (C) Phenotype of the plants at the
respective age postcotyledon emergence (pce).
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structure and prevent dimer formation because of assembly with
other proteins that are sufficiently stable to ndPAGE separation,
but not to Ni-NTA purification where (RAF1)2 oligomers
matching those purified from E. coli are formed. Recent analysis
of formaldehyde-treated maize leaf protein indicated RAF1 may
interact with RAF2 and BSDII (20). Whether such interactions
are responsible for the different migration rates through
ndPAGE is a possibility that remains to be tested. Resolving the
crystal structure for the (RAF1)2 complex should help reveal its
potential for forming alternative quaternary structures that
might explain its alternative ndPAGE separation patterns and
propensity to separate as an apparently larger sized complex that
has previously been interpreted as a trimer (19, 20). For exam-
ple, are the variations in (RAF1)2 separation by ndPAGE be-
cause of its capacity to form “closed” and “open” conformations
or from interactions with ancillary proteins or cofactors?
Constraints on the steady-state AtrbcL mRNA levels in tobAtL-R1

leaves appear a leading cause to limiting L8
AS8

t biogenesis. The
steady-state pool of AtrbcL mRNA in tobAtL-R1 leaves was reduced
fivefold relative to the tobacco rbcL mRNA levels (Fig. 2B), but still
managed to produce L8

AS8
t at half the levels of L8S8 made in wild-

type (Fig. 2C). This result would suggest producing more hybrid
L8

AS8
t, possibly matching wild-type Rubisco levels, would be

feasible by enhancing AtrbcL mRNA levels. The operon struc-
ture in tobAtL-R1 matches that used previously in the trans-
plastomic LEVUbS tobacco genotype. As seen in tobAtL-R1

leaves (Fig. 2B), the LEVUbS leaves also produced a di-cistronic
rbcL-UbrbcS mRNA and a five- to sixfold less-abundant tricistronic
rbcL-UbrbcS-aadA transcript; however, they were produced at lev-
els that matched the rbcL mRNA content in wild-type (23). This
finding suggests the Atraf1 transgene likely destabilizes the di- and

tricistronic AtrbcL transcripts produced in tobAtL-R1. Future RAF1
transplastomic studies should therefore consider equipping the raf1
transgene with separate promoter/terminator regulatory elements
to those controlling rbcL expression. Alternatively a small RNA
intercistronic expression element between the rbcL and raf1
transgenes that has been shown to trigger processing of poly-
cistronic transcripts into more stable and translatable smaller
transcripts could be included (27).
Previous studies of hybrid Rubiscos comprising plant L-sub-

units have shown the pervasive role of the L-subunit on shaping
catalysis (13, 14, 28). Here, a modest yet significant reduction in
kC

cat and improvement in KC was found for the L8
AS8

t Rubisco
relative to the native Arabidopsis and tobacco enzymes, which
have comparable catalytic constants at 25 °C (Table S1). This
catalytic variability of L8

AS8
t Rubisco likely arises from

complementarity differences between Arabidposis and tobacco
S-subunits, consistent with a growing appreciation of the influential
role the S-subunits can have on catalysis (6, 29).
Here we demonstrate the importance of a chaperone compati-

bility to enhancing recombinant Rubisco production in tobacco
plastids. The finding enhances the potential for bioengineering
Rubisco in chloroplasts and provides mechanistic evidence for the
role of RAF1 in L-subunit assembly. Future applications of this
coengineering approach will focus on identifying ways to more ef-
ficiently coexpress Rubisco L-subunits and their complementary
RAF1s without compromising leaf rbcL mRNA pools. Extending
this transplastomic coexpression method to other Rubisco chaper-
ones—BSDII, RBCX, and RAF2—may prove a useful approach
for determining their biochemical function in chloroplasts.

Materials and Methods
Bioinformatics Analyses. Full-length raf1 and rbcL sequences from 26 plant, 3
algal, and 46 cyanobacterial genomes were obtained from the National
Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) and
Phytozome (http://www.phytozome.net) using the BLAST algorithm (Table
S2). Phylogenetic trees of the translated proteins were constructed by the
RAxML program (30) using the maximum-likelihood method with the fol-
lowing parameters: the Dayhoff model with γ-distributed rates, partial de-
letion, and bootstrap (1,000 replicates; random seed). L-subunit and RAF1
phylogenetic trees were compared using the Mirrortree server (31). Pairwise
nonsynonymous (leading to amino acid substitutions) and synonymous (se-
lectively neutral) sequence distances were calculated using the PAML pack-
age (32). We used the Mantel test to compute the Pearson correlation
coefficient R. The chloroplast gene, matK, encoding maturase K (absent in
most cyanobacteria genomes), which doesn’t interact with Rubisco, was in-
cluded as a negative control.

Tobacco Plastome Transformation and Growth. The rbcL gene from Arabidopsis
was PCR amplified from leaf genomic DNA with primers 5′NheIrbcL (14) and 3′
AtSalIrbcL (5′-TGTCGACTGTTTTTATCTCTTCTTATCCTTATCCT-3′) and the 1,439-
bp NheI-SalI AtrbcL product cloned into pLEV4 (14) to give pLEVAtL (GenBank
accession no. KP635965). A synthetic Atraf1 gene whose codon use matched
tobacco rbcL was synthesized by GenScript and cloned downstream of AtrbcL
in pLEVAtL using the intergenic sequence used in pLEVLUbS (23) to give
pLEVAtL-R1 (GenBank accession no. KP635964). pLEVAtL and pLEVAtL-R1
were each biolistically transformed into five leaves of the tobacco-masterline
cmtrL as described in ref. 23, with four and seven spectinomycin-resistant
plants, respectively, obtained. Three independent plastome transformed
lines of each genotype were grown to maturity in soil in a growth atmo-
sphere supplemented with 0.5% (vol/vol) CO2, as described previously (13),
and fertilized with wild-type pollen. The resulting T1 progeny were used for
all analyses.

RNA Blot, PCR, Protein, and PAGE Analyses. Total leaf genomic DNA was
isolated using the DNeasy Plant Mini Kit and used to PCR amplify and se-
quence the transformed plastome region using primers LSH and LSE (14).
Total RNA extracted from 0.5-cm2 leaf discs was separated on denaturing
formaldehyde gels, blotted onto Hybond-N nitrocellulose membrane (GE
Healthcare) and probed with the 32P-labeled 5′ UTR probe (Fig. 2A), as
described previously (13). The preparation, quantification (against BSA) of
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soluble leaf protein, and analysis by SDS/PAGE, ndPAGE, and immunoblot
analysis was performed as described previously (33).

Rubisco Content and Catalysis. Rates of Rubisco fixation in soluble protein
extracts from three different leaves of each tobacco genotype and Arabi-
dopsis were measured under varying concentrations of NaH14CO3 (0–43 μM)
and O2 [0–25% (vol/vol)] and the Michaelis constants (Km) for CO2 (KC), and
O2 (KO) determined from the fitted data (14). The maximal rate of carboxy-
lation (VC) was extrapolated from the Michaelis–Menten fit and then divided
by the amount of Rubisco active sites quantified by [14C]-2-CABP binding
(33, 34) to determine the turnover rate (kCcat). Rubisco CO2/O2 specificity
(SC/O) was measured using ion exchange purified protein, as described
previously (13).

Growth and Photosynthesis Analysis. All plants were grown in a growth
chamber at 25 °C in air containing 0.5% (vol/vol) CO2 as described previously
(13). Leaf photosynthesis rates were measured using a LI-6400 gas-exchange
system (LI-COR) on the fifth upper canopy leaf of each tobacco genotype
once they had reached comparable stages of physiological development.

Recombinant RAF1 and CPN60α Purification and Antibody Production. Genes
coding Arabidopsis RAF1 (AY063107) and Chaperonin 60α2 (NM_121887)
were cloned into plasmid pHueAct and expressed as N-terminal 6-Histidine-
ubiquitin (H6Ub) tagged proteins in BL21(DE3) cells and purified by affinity
chromatography (Fig. S3). Antibodies to both purified proteins were raised
in rabbits.

Mass Spectrometry. Purified AtRAF1 stored at −80 °C in buffer containing
20% (vol/vol) glycerol was dialyzed (14,000 MWCO) against 100 mM am-
monium acetate buffer adjusted to pH 7.2. The protein concentration was
measured using a Nanodrop2000c (Thermo Fisher Scientific) and adjusted to
3 μM (monomer concentration) before mass spectrometry. Positive ion nano-
ESI mass spectra were acquired using a Waters Synapt HDMS fitted with
a Z-spray nano-ESI source. Spectra were acquired using a MCP potential of

1,850 V, capillary voltage of 1.5 kV, extraction cone voltage of 4 V, and
sampling cone voltages of 30, 80, and 150 V. The source temperature was set
to 30 °C, the nanoflow back pressure to 0.1 bar, and the backing pressure to
3.93 mbar. The trap and transfer collision energies were 6.0 V and 4.0 V,
respectively. Spectra were acquired over the 500–10,000 m/z range and 40–50
acquisitions. The instrument was calibrated using a CsI solution (10 mg/mL
in water).

Pulse-Chase Labeling with 35S. Plants of comparable size (∼38 cm in height)
stored overnight in a darkened laboratory were equilibrated for 15 min with
∼500 μmol photons m2/s illumination (at the surface of the youngest near
fully expanded leaf sampled). Upper canopy leaves of equivalent age were
infiltrated through the abaxial stomata by syringe (Fig. S5) with 3–4 mL of
Trans35S-label (ICN) diluted to 0.25 mCi/mL−1 (9.25 MBq/mL−1) with in-
filtration buffer (10 mMMes-NaOH pH 5.5, 10 mMMgSO4). This process took
45–60 s. Leaf discs (0.5 cm2) were collected after 15, 30, and 45 min and
frozen in liquid nitrogen. After 60 min the leaves were infiltrated with in-
filtration buffer containing 10 mM methionine and leaf samples taken after
2, 4, and 7 h. The soluble leaf protein was separated by ndPAGE, the proteins
fixed by Coomassie staining before drying the gels and exposing to a Stor-
age Phosphor screen GP (Kodak) for 2 d. The autoradiograph signals were
visualized using a PharosFX Molecular Imager and quantified with Quantity
One software (Bio-Rad).

Affinity Purification of 6xHis-tagged AtRAF1 from tobAtL-R1 Leaves. Soluble leaf
protein from tobAtL-R1 and wild-type tobacco (negative control) was purified
by Ni2+-nitrilotriacetic acid (Ni-NTA) agarose (Qiagen) chromatography and
analyzed by SDS PAGE, ndPAGE and immunoblotting for evidence of stable
interactions between AtRAF, AtL-subunits, and CPN (Fig. S4).
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