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The Dicke model with a weak dissipation channel is realized by
coupling a Bose–Einstein condensate to an optical cavity with ultra-
narrow bandwidth. We explore the dynamical critical properties of
the Hepp–Lieb–Dicke phase transition by performing quenches
across the phase boundary. We observe hysteresis in the transition
between a homogeneous phase and a self-organized collective
phase with an enclosed loop area showing power-law scaling with
respect to the quench time, which suggests an interpretation within
a general framework introduced by Kibble and Zurek. The observed
hysteretic dynamics is well reproduced by numerically solving the
mean-field equation derived from a generalized Dicke Hamiltonian.
Our work promotes the understanding of nonequilibrium physics in
open many-body systems with infinite range interactions.
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Although equilibrium phases in quantum many-body systems
have been explored for a long time with great success,

nonequilibrium phenomena in such systems are far less well
understood (1). A paradigm for exploring nonequilibrium dy-
namics is the quench scenario, where a system parameter is
subjected to a sudden change between two values associated with
different equilibrium phases. Quantum degenerate atomic gases
with their unique degree of control are particularly adapted for
experimental quench studies (2, 3). For isolated quantum many-
body systems a wealth of theoretical and experimental inves-
tigations of quench dynamics has appeared recently (4–11). A
natural extension of such studies is to consider driven open systems,
where dynamical equilibrium states can arise via a competition
between dissipation and driving, and nonequilibrium transitions
between such phases can occur as a function of some external
control parameter (12–15). A nearly ideal experimental platform
for this endeavor are quantum degenerate atomic gases sub-
jected to optical high-finesse cavities, where the usual extensive
control in cold gas systems can be combined with a precisely
engineered coupling to the external bath of vacuum radiation
modes (16).
Here, we study a dynamical phase transition in the open Dicke

model emulated in an atom–cavity system prepared near zero
temperature. The Dicke model is a paradigmatic scenario of
quantum many-body physics, still subject to intensive research
despite a history more than half a century long (17–28). It describes
the interaction of N two-level atoms with a common mode of the
electromagnetic radiation field. Hepp and Lieb already pointed out
in the 1970s that upon varying the coupling strength, this model
possesses a second-order equilibrium quantum phase transition
between a homogeneous phase, in which each atom interacts
separately with the radiation mode, and a collective phase in
which all atomic dipoles align to form a macroscopic dipole
moment (19, 22). It has been early suspected that the critical
properties of the externally pumped open Dicke model should
give rise to nonlinear hysteretic behavior in dynamical experi-
ments (20, 21). The dynamical properties of the open Dicke
model and of related many-body atom–cavity systems in the
presence of dissipation are subject of extensive recent theoretical
research (24, 25, 28–31).
With the atomic levels chosen to be momentum states of

the external motion, the open Dicke model has been recently

implemented experimentally by coupling a Bose–Einstein con-
densate (BEC) to a high-finesse resonator pumped by an external
optical standing wave (32). A transition from a homogeneous phase
(consisting of the condensate with no photons in the cavity) into
a collective phase (with the atoms forming a density grating trapped
in a stationary intracavity optical standing wave) was observed at
a critical pump strength close to the expected equilibrium transition
boundary. A related transition with thermal atoms has been studied
in earlier work (33, 34). In the formation of the collective phase the
Z2 symmetry, associated with two possible grating configurations
shifted with respect to each other by half an optical wavelength, is
spontaneously broken (34, 35). In ref. 32 the cavity dissipation rate
was more than two orders of magnitude larger than the single-
photon recoil frequency with the consequences that the intracavity
light field adiabatically adjusts to the evolution of the atomic dis-
tribution on a microsecond time scale.
In the present work, the main innovation is the use of a cavity

with ultranarrow bandwidth on the order of the single-photon
recoil frequency (36, 37). The time scales for dissipation of the
intracavity field and the coherent atomic evolution are similar.
We can thus dynamically access the nonadiabatic regime, where
both quantities are not in equilibrium and hence explore non-
equilibrium critical properties of the Dicke model in quench
experiments. For different signs of the effective detuning δeff of
the pump field with respect to the cavity resonance, we observe
fundamentally different behavior. Remarkably, the Hepp–Lieb–
Dicke transition, observed for negative detuning δeff < 0, shows
a dynamical hysteresis. The resulting hysteresis loop encloses an
area which exhibits power-law dependence upon the duration of
the quench across the phase boundary and maintains nonzero
values even at quench time scales far slower than the dynamical
time scales of the underlying single-particle Hamiltonian. We
interpret this finding in the framework of the Kibble–Zurek
model (38–40). Our observations are consistent with solutions of
the mean-field equations associated with a Dicke Hamiltonian
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(17). A second interesting consequence is the observation of an
instability boundary for positive detuning δeff > 0. The physics of
this instability, which is also predicted by the Dicke model but
not much discussed in the literature, resembles cavity-assisted
matter wave superradiance (41), recently observed to prevail at
any value of δeff for single-sided pumping (42). The system is
excited by a cascade of successive superradiant pulses to form
coherent superpositions of discrete momentum states with the
zero momentum condensate mode practically depleted. No sta-
tionary intracavity field is formed in this case. At the boundary
between the two regimes within a narrow interval around zero
detuning δeff ≈ 0 we find that the atoms cannot scatter photons at
all even at large values of the pump strength.

Experimental Scheme
In our experiment, outlined in Fig. 1A, a cigar-shaped BEC of
87Rb-atoms is prepared such that its long axis is well aligned with the
axis of a longitudinal mode of a high-finesse (F = 3:44± 0:05× 105)
optical standing wave resonator. The atoms are exposed to an op-
tical standing wave oriented perpendicularly with respect to the
cavity axis. The strength of this external pump wave is parametrized
by the depth «p of the associated light shift potential in units of
the recoil energy, which is determined spectroscopically (for
details see SI Appendix). The frequency ωp of the pump wave is
far detuned from the relevant atomic resonances, such that the
interaction with the atoms is dispersive with negligible spontane-
ous emission (for details see SI Appendix). The cavity possesses an
extremely low dissipation rate associated with the loss of photons.
The field decay rate κ= 2π × 4:45± 0:05 kHz is smaller than twice
the recoil frequency 2  ωrec = 2π × 7:1 kHz, which corresponds to
the kinetic energy transferred to a resting atom by scattering
a pump photon into the cavity and hence sets the time scale of the
atomic motion. As a consequence, the choice of ωp relative to the
resonance frequency ωc of the empty cavity selects only a small
fraction of the atomic momentum states, illustrated in Fig. 1B, to
be resonantly coupled. For a uniform atomic sample and left cir-
cularly polarized light, the TEM00 resonance frequency is disper-
sively shifted by an amount δ− = ð1=2ÞNa  Δ− with an experimentally
determined light shift per photon Δ− ≈ 2π × 0:36± 0:04 Hz. With
Na = 105 atoms δ− = 2π × 18 kHz, which amounts to 4  κ, i.e., the
cavity operates well within the regime of strong cooperative coupling
(for details see SI Appendix).

Hepp–Lieb–Dicke Transition
For negative detuning δeff ≡ωp −ωc − δ− < 0, above a critical
value of «p, a stationary intracavity light field builds up and the
atoms are captured in the ground state of the light shift potential
formed by the interference of the intracavity field and the pump
wave. In Fig. 2A, the observed intracavity power is plotted versus
δeff and «p. This graph is obtained by linearly ramping up «p at
a rate 1:4  Erec ms−1 at fixed values of δeff . The formation of the
optical lattice is readily seen by detecting Bragg maxima in the
atomic momentum spectra obtained by a time-of-flight method.
In Fig. 2B this is shown for the position in the phase diagram in
Fig. 2A marked by the white cross. Within a narrow channel
around δeff = 0, scattering of photons is entirely suppressed.
Above «p ≈ 5 this channel becomes so narrow that our limited
accuracy of the pump frequency (about ±  200 Hz) does not
provide sufficient resolution. This may be understood as follows:
For

�
�δeff

�
� exceeding κ, the intracavity field is driven in phase with

the pump field. Hence, interference of the two fields yields
a square lattice potential with minima arranged on a Bravais
lattice spanned by the primitive vectors ðŷ± ẑÞλp=2 with ŷ;  ẑ
denoting the unit vectors in y- and z directions, respectively.
The density grating formed by trapping atoms in these minima
(corresponding to the intensity maxima in Fig. 1A) satisfies the
Bragg condition for scattering photons from the pump field into
the cavity. When

�
�δeff

�
� becomes smaller than κ, the relative

phase between the intracavity field and the pump field ap-
proaches π=2 for

�
�δeff

�
�→ 0. This suppresses the interference

between both fields. As a result, the unit cell develops a second
minimum, which approaches equal depth for δeff → 0. The as-
sociated density grating, now populating both classes of min-
ima, no longer supports Bragg scattering of pump photons into
the cavity, and hence the intracavity field and the density
grating collapse.
The basic structure of the observations in Fig. 2A can be un-

derstood as follows. At low pump powers the dynamics of the
system may be described by the Heisenberg equations for the
matter and light variables associated with the Dicke Hamiltonian
with an additional term describing dissipation of the cavity light
field at a rate κ (for details see SI Appendix). These equations
possess a stationary solution describing the homogeneous phase,
when all atoms populate the condensate mode at zero intracavity
intensity. Linearization around this solution yields a stability
matrix, whose eigenvalues are readily calculated. Their real parts
denote the excitation spectrum whereas their imaginary parts
denote the corresponding exponential excitation rates. Hence, if
one of the eigenvalues attains a positive imaginary part, the
homogeneous phase becomes unstable. The maximum of the
imaginary parts of all eigenvalues, denoted by γexc, is plotted in
Fig. 2C versus δeff and «p. Fig. 2 D and E shows the excitation
frequencies (blue solid lines) and the corresponding excitation
rates (red dashed lines) along vertical sections in Fig. 2C with
fixed detunings δeff =±2π × 20 kHz. The solid red lines highlight
the maxima γexc of the excitation rates. For negative detuning,
below a critical value of «p the homogeneous phase is predicted
to be stable. As the critical value «p;c is approached, a softening
of one of the excitation modes is seen in Fig. 2D (descending
solid blue line starting at 2  Erec) and as «p;c is passed, γexc attains
positive values (solid red line), indicating instability of the ho-
mogeneous phase. In Fig. 2C, «p;cðδeffÞ is highlighted by a red
dashed line, which indicates the expected equilibrium Dicke
phase transition boundary. This boundary is also registered in the
data in Fig. 2A.

Observation of Hysteresis
As is seen in Fig. 2A, the phase transition for increasing «p is
observed at values of «p beyond the equilibrium phase boundary.
As also noted in ref. 25, this should be expected because sufficiently

A B

Fig. 1. (A) Experimental scheme. The intracavity intensity is indicated by the
red pattern with the antinodes corresponding to the locations where the
atoms are localized. The frequency and wavelength of the pump beams are
denoted by ωp and λp, respectively. (B) The available atomic momentum
states that can couple to the condensate are indicated by their momentum
components (n, m) in the y- and z directions in units of the pump photon
momentum Zk. Arrows of the same color identify scattering processes in-
volving the same kinetic energy transfer, denoted in units of the recoil en-
ergy Erec ≡ Zωrec ≡ Z2k2=2m (m = atomic mass) by the numbers on top of
the arrows.
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large values of γexc must be reached in Fig. 2C before the system
can leave the homogeneous phase in a given time. A more
complete picture is provided in Fig. 3, where the transition
through the phase boundary is studied for negative detuning
δeff =−2π × 17:5 kHz in more detail. In Fig. 3A «p is ramped up
from 0 to 4 in 1.5 ms and back to 0 again in 1.5 ms. The solid blue
and red lines show the observed intracavity intensity for the in-
creasing and decreasing sections of the ramp, respectively. Note
that this quantity measures the depth of the intracavity lattice
emerging in the collective phase and hence corresponds to the
square of the order parameter for the Dicke phase transition. A
significant hysteresis is observed. For increasing «p a sudden
jump of the intracavity intensity arises on a time scale corre-
sponding to the cavity decay rate. On the way back, the intra-
cavity intensity is smoothly tuned to zero. In the center row of
the figure (below Fig. 3 A and B), a series of consecutively
numbered momentum spectra is shown, recorded at different
instances of time during the «p-ramp, indicated by the corre-
spondingly numbered arrows in Fig. 3A. As the intracavity in-
tensity assumes finite values, a coherent optical lattice is formed
(arrow 2), as is seen from the occurrence of higher-order Bragg
peaks. As the lattice depth grows (arrows 3 and 4), tunneling
amplitudes decrease, and the relatively increased collisional in-
teraction acts to reduce particle number fluctuations resulting in

a loss of coherence. When ramping back to small values of «p,
the BEC is recovered with no notable atom loss and only few
low-energy Bogoliubov excitations (arrow 5).
In Fig. 3B a mean-field calculation (based upon a Dicke

Hamiltonian, SI Appendix) is shown for a homogeneous, infinite
system without collisional interaction, which shows the same
signatures as observed in Fig. 3A including dynamical details as
the oscillation of the red trace around «p ≈ 2:5 and the over-
shooting of the blue trace around «p ≈ 3:5. The observed hys-
teresis appears fundamentally different from that known to occur
in conventional bistable systems, where discontinuities arise for
both critical values, where the system becomes unstable. We do
not find a discontinuity at the lower critical value «p;1 in Fig. 3 A
and B; however, the system always follows the blue curve, when
this point is passed with increasing «p, irrespective of the dura-
tion τQ of the applied «p-ramp. For increasing cavity bandwidths
our mean-field calculations predict that the area enclosed by the
hysteresis decreases and finally is obscured by increasing opto-
mechanical oscillations at the phase boundary (see also figure
12a in ref. 25).

Power-Law Scaling
The dependence of the threshold values «p;1 and «p;2 for the
dynamical transitions in Fig. 3 A and B upon the quench time τQ

A

B D E

C

Fig. 2. (A) Observed intracavity photon number Np is plotted versus the pump strength parameter «p and the pump detuning δeff. (B) A momentum spectrum
is shown recorded at the point in Amarked by the white cross. The dashed red line indicates the equilibrium Dicke phase boundary obtained from the stability
analysis illustrated in C. (C) Plot of the maximal excitation rate γexc calculated from a stability analysis for the homogeneous phase of the Dicke model. For
negative δeff, the equilibrium Dicke phase transition line is highlighted by the red dashed line. For positive δeff, the dashed-dotted red line indicates the
contour γexc ≈ 0:8  ωrec, where superradiant pulses are observed in A. (D and E) For δeff =±2π ×20 kHz the real (solid blue lines) and imaginary (dashed red lines)
parts of all eigenvalues of the stability matrix are plotted. The maximal values of the latter are highlighted by the solid red lines.
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is studied in Fig. 3 C–E. These quantities are determined as
those values of «p where the intracavity intensity assumes 5% of
its maximal value reached for «p = 4. In Fig. 3C the values of
Δ«p;μðτQÞ≡ «p;μðτQÞ− «p;μðτQ =∞Þ (μ∈ f1; 2g), calculated from
curves such as that shown in Fig. 3B, are plotted versus τQ. As
shown by the solid lines, the τQ-dependences follow power laws
Δ«p;μðτQÞ∝ τ

nμ
Q with n1 =−0:57 and n2 =−0:85. The phase offset

of the sharp resonances occurring periodically at a frequency
Ω= 0:682  ωrec in the upper blue trace depends on the specific
choice of a small initial excitation, necessary to drive the system
out of the homogeneous phase, which is provided by quantum
and thermal fluctuations in the experiment. The exponents n1; n2
turn out independent of the exact initial conditions (for details
see SI Appendix). In Fig. 3 D and E we plot the experimentally
observed values of Δ«p;μðτQÞ with μ= 2 and μ= 1, respectively.
The solid lines repeat the power laws found in the calculations in
Fig. 3C with n2 =−0:85 in Fig. 3D and n1 =−0:57 in Fig. 3E.
Whereas in Fig. 3D the data nicely agree with the power-law
behavior, in Fig. 3E this is only the case for the first half of the
plot. At later times the data points assume an exponential rather
than a power-law decay, which is in accordance with the obser-
vation that for long ramp times at the end of the descending
ramp notable particle loss sets in. Our observations of power-law

behavior of Δ«p;μðτQÞ suggest an interpretation within the uni-
versal model introduced by Kibble and Zurek (38–40), which
applies for second-order phase transitions in isolated many-body
systems. According to this model a quench between two phases is
approximated by a succession of an adiabatic approach toward
and a departure from the equilibrium critical point «p;c conjoined
by a diabatic passage through the critical point, where the dynamics
is completely frozen. Furthermore, a power-law dependence for
the relaxation time is assumed, i.e., τð«pÞ∝

�
�«p − «p;c

�
�
−zμνμ , with

μ∈ f1; 2g if «p < «p;c and «p > «p;c, respectively. The identification
of Δ«p;μ with the lower and upper bounds of the diabatic region
around «p;c then leads to the prediction that zμνμ =−ð1+ ð1=nμÞÞ,
i.e., in our system: z1ν1 = 0:75, z2ν2 = 0:18 (for details see SI
Appendix). A deeper understanding of these values would re-
quire a comprehensive extension of the concept of universality to
the case of driven open systems (15).

Matter Wave Superradiance
In the δeff > 0 region of Fig. 2A, matter wave superradiance
prevails (41, 42). Short superradiant pulses with a duration on
the order of the intracavity photon life time are emitted by the
cavity, if «p reaches a critical instability boundary, highlighted by
a red dashed-dotted line in Fig. 2A. The atoms, initially populating

A B

C

D

E

Fig. 3. (A) For fixed δeff =−2π × 17:5 kHz the intracavity intensity is plotted with the pump strength ramped from 0 to 4  Erec in 1.5 ms (blue line) and back (red
line). Below A, a series of consecutively numbered momentum spectra is shown (1–5), recorded at increasing times during the «p-ramp, indicated by the
correspondingly numbered arrows in A. (B) Mean-field calculation according to A for a homogeneous, infinite system without collisional interaction.
(C) Mean-field calculations of «p,1 (Lower, red dots) and «p,2 (Upper, blue dots) are shown. The solid lines show power laws with exponents n1 =−0:57 (Lower)
and n2 =−0:85 (Upper). The measured dependence of the critical values «p,μ,μ∈ f1; 2g upon the quench time τQ is shown for μ= 2 in D and for μ= 1 in E. The
solid lines repeat the power laws found in the mean-field calculations in C. The error bars reflect the SDs for 10 measurements.
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the condensate mode at zero momentum, are thereby scattered
into superpositions of higher momentum states. This excitation is
irreversible and cannot be removed by ramping «p back to zero.
As Fig. 2 C and E shows, γexc always exceeds zero for nonzero «p.
Hence, the homogeneous phase is everywhere unstable. The
observed instability boundary corresponds to a contour of con-
stant γexc ≈ 0:8  ωrec (highlighted by the dashed-dotted red line in
Fig. 2C, replotted from Fig. 2A). The value of this constant
increases with increasing speed of the applied «p-ramp. Our
mean-field calculations show that the increase of γexc with «p
significantly reduces for increasing cavity bandwidth. Hence, in

the experimental scenario of ref. 32, matter wave superradiance
is expected to occur only at observation times or values of «p
much larger than realized there.
Fig. 4 shows the intracavity intensity for fixed positive detuning

δeff = 2π × 4 kHz with «p ramped from 0 to 4:5  Erec in 1.7 ms and
back to 0 again in 1.7 ms. At the lower edge of the graph, four
numbered momentum spectra are shown, taken at consecutive
times, indicated by the numbered arrows. At the chosen value of
δeff the scattering processes indicated by the red arrows in Fig.
1B, associated with 2  Erec energy transfer, are nearly resonantly
driven, whereas the processes indicated by blue arrows in Fig. 1B
are significantly detuned, and hence do not contribute. Accord-
ingly, at the threshold value «p ≈ 3  Erec a short superradiant light
pulse is emitted from the cavity, after which a large fraction of
the atoms is transferred to the ð±2; 0ÞZk momentum states (ar-
row 2). These states do not support a matter wave Bragg grating
necessary to maintain further scattering. Hence, the cavity field
falls to zero and the momentum states propagate toward the trap
edges, which are reached in about 1.25 ms corresponding to the
trap frequency of 200 Hz in the y direction. Reflection of the
higher-momentum components at the anharmonic trap edges
and collisions yields a rapid broadening of the momentum dis-
tribution (arrow 4).

Conclusions
We have studied quench dynamics in the open Dicke model
emulated by strongly coupling an atomic BEC to an optical cavity
providing an extremely narrow bandwidth. Our experiment
exhibits a uniquely controlled paradigm of nonequilibrium many-
body dynamics in the presence of dissipation, which appears
ideal for quantitative confrontations with theory also beyond
mean-field approximations. We hope that this work will stimu-
late new theoretical efforts to better understand the connection
between nonlinear dynamics and statistical mechanics in open
many-body systems.
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