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The predominant p63 isoform, ΔNp63, is a master regulator of
normal epithelial stem cell (SC) maintenance. However, in vivo
evidence of the regulation of cancer stem cell (CSC) properties
by p63 is still limited. Here, we exploit the transgenic MMTV-ErbB2
(v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2)
mouse model of carcinogenesis to dissect the role of p63 in the
regulation of mammary CSC self-renewal and breast tumorigene-
sis. ErbB2 tumor cells enriched for SC-like properties display in-
creased levels of ΔNp63 expression compared with normal
mammary progenitors. Down-regulation of p63 in ErbB2 mammo-
spheres markedly restricts self-renewal and expansion of CSCs, and
this action is fully independent of p53. Furthermore, transplantation
of ErbB2 progenitors expressing shRNAs against p63 into the mam-
mary fat pads of syngeneic mice delays tumor growth in vivo. p63
knockdown in ErbB2 progenitors diminishes the expression of genes
encoding components of the Sonic Hedgehog (Hh) signaling path-
way, a driver of mammary SC self-renewal. Remarkably, p63 regu-
lates the expression of Sonic Hedgehog (Shh), GLI family zinc finger
2 (Gli2), and Patched1 (Ptch1) genes by directly binding to their gene
regulatory regions, and eventually contributes to pathway activa-
tion. Collectively, these studies highlight the importance of p63 in
maintaining the self-renewal potential of mammary CSCs via a pos-
itive modulation of the Hh signaling pathway.
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Deregulation of self-renewal may be a crucial event under-
lying tumorigenesis. Cancer stem cells (CSCs) are thought

to use numerous signaling pathways underlying normal SC bio-
logy aberrantly (1). As a result, CSCs acquire unlimited self-
renewal potential and drive tumor growth and metastases. Thus,
unveiling the molecular basis of stem cell (SC) self-renewal may
be extremely relevant in understanding how this process con-
tributes to cancer development.
Emerging evidence intimately links the p53 sister homolog

tumor protein p63 (p63) to SC biology (2–4). The TP63 gene is
expressed as multiple protein isoforms (5). The use of alternative
transcription start sites (TSSs) produces transactivating (TA)
isoforms that contain an N-terminal exon encoding a p53-like
transactivation domain (TAD) and ΔN isoforms partially lacking
this domain. ΔNp63 proteins can directly regulate transcription
due to the presence of alternative TADs (6). Both the TAp63
and ΔNp63 transcripts are differentially spliced at their 3′ ends
to generate proteins with unique C termini designated α, β, and γ
(5), whose biology has not yet been deeply studied.
ΔNp63, the predominant p63 isoform in epithelial tissues, is

indispensable for preserving the self-renewal capacity of SCs in
adult stratified epithelia and glandular structures (2–4). In nor-
mal breast tissue, the expression of ΔNp63 is strictly restricted to

the basal/myoepithelial compartment (7), where SCs are expected
to reside. The requirement for p63 in the morphogenesis of the
mammary gland was originally suggested by the observation
that complete abrogation of TP63 gene function in animal
models causes loss of the mammary epithelium (8, 9). Emerging
evidence is pointing toward a role for p63 in regulating stemness
in the adult mammary gland (3, 10, 11), although the clinical
relevance of p63 as a SC marker in breast cancer remains poorly
understood.
Ectopic expression of ΔNp63 in breast carcinoma cell lines

increases the percentage of CSC-like subpopulations and leads
to augmented cancer cell clonogenicity and tumor xenograft in-
cidence (12). Accordingly, ΔNp63 is overexpressed in the basal-
like subtype of breast cancer (13, 14), in which a specific role for
ΔNp63 in regulating CSC activity has been reported very re-
cently (11). In differentiated mammary tumors, such as luminal-
like breast carcinomas, ΔNp63 expression is instead reduced
during cancer progression (7). In invasive ductal carcinomas,
ΔNp63 positivity is generally restricted to rare tumor cells. Oc-
casional nuclear positivity for ΔNp63 in malignant cells is con-
sistent with a stem/progenitor identity and suggests that ΔNp63
enrichment would confer increased self-renewal potential. Here,
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we demonstrate that ΔNp63 promotes the stemness properties of
luminal-type breast cancer progenitors and identify the Hedgehog
(Hh) signaling pathway as a downstream effector of p63 activity
in mammary CSCs.

Results
Mammary Cancer Progenitors Are Enriched for ΔNp63 Expression. To
dissect the role of p63 in breast CSC self-renewal, we used
transgenic mice expressing mammary gland-targeted ErbB2
(MMTV-ErbB2). Expression of the activated ErbB2 oncogene
in murine mammary epithelium efficiently induces multifocal
luminal-like mammary carcinomas (15). The ErbB2 tumor has
been shown to classify with human luminal-type carcinoma (16,
17), and represents a well-established SC model of mammary
carcinogenesis (15). The expression pattern of p63 in the ErbB2-
derived mammary tumors closely mirrors the expression pattern
of p63 in human ductal carcinomas (7). p63 positivity indeed
diminishes during progression from hyperplasia to invasive
lesions that ultimately display rare immunoreactive tumor cells
(Fig. S1 A–D). Interestingly, we found that a fraction of the p63-
expressing cells were also positive for stem cell antigen 1 (Sca-1)
(Fig. S1E), which identifies a CSC population highly enriched for
tumorigenic capability in this breast cancer model (15). Thus,
p63 positivity in tumor cells is consistent with a stem/progenitor
identity in the ErbB2 tumors.
To examine the expression pattern of p63 in mammary CSCs,

we took advantage of the mammosphere culture system, which
enriches for self-renewing tumorigenic progenitors and mimics
the original tumor upon transplantation into syngeneic mice
(18). The ΔNp63 transcript (Fig. 1A) and protein (Fig. 1B) levels
were consistently increased in ErbB2 mammospheres compared
with their normal counterparts. By contrast, TAp63 expression
was very low or absent in the ErbB2 tumor spheres (Fig. 1 A and
B and Fig. S1 F and H), indicating that ΔNp63 is the pre-
dominant p63 isoform. As shown by Western blot analyses (Fig.
1B and Fig. S1 F and H), the expression pattern of the ΔNp63
isoforms was very heterogeneous in distinct tumor sphere prep-
arations, with the ΔNp63γ variant being the most abundant
isoform. To assess whether ErbB2 CSCs are enriched for p63
expression, we isolated quiescent progenitors on the basis of their
ability to retain the lipophilic fluorescent dye PKH-26 (15, 19).
Immunostaining of PKH-26negative (progenitors) and PKH-26high

(stem) epithelial cells revealed that p63 was preferentially ex-
pressed in the quiescent population (Fig. 1C). As shown in Fig.
1D, the PKH-26high subpopulations displayed augmented levels
of ΔNp63 transcripts compared with the PKH-26negative cells.
TAp63 expression was barely detectable in the PKH-26high cells
(Fig. 1E). These findings reveal that ΔNp63 is the primary p63
isoform expressed in ErbB2 CSCs.

Loss of ΔNp63 Impairs Self-Renewal and Expansion of Mammary
CSCs. Serial sphere-forming capacity represents a valid surro-
gate for assessing CSC self-renewal (18). To test whether ΔNp63
affects the self-renewal potential of mammary CSCs, we trans-
duced ErbB2 secondary mammospheres with lentiviral shRNA
targeting p63 mRNA. Assessment of gene knockdown revealed
that ΔNp63 mRNA (Fig. 2A, Right and Fig. S1G) and protein
(Fig. S1H) levels were down-regulated by ∼80% upon short
hairpin p63 (shp63) delivery. Functional inactivation of ΔNp63
in shp63-transduced ErbB2 progenitors was confirmed by re-
duced transcript levels of its direct target genes (Fig. S1I).
Depletion of p63 caused a significant decrease in the number

of sphere-forming cells during serial passages (Fig. 2A, Left),
demonstrating that the self-renewal capacity of tumor progeni-
tors was impaired in the absence of p63. Furthermore, the size of
shp63 mammospheres was reduced compared with the controls
(Fig. 2B), suggesting that p63 down-regulation may negatively affect
either the frequency of CSCs or their proliferation potential.

To corroborate further the role of ΔNp63 in the regulation of
breast cancer stemness, we performed isoform-specific inactivation
of TAp63 or ΔNp63 in the human HCC1937 breast cancer cell line
that expresses both isoforms at the endogenous level (Fig. S2A).
Specific loss of ΔNp63, but not TAp63 (Fig. S2B), decreased the
ability of HCC1937 cells to form mammospheres (Fig. S2C). Sim-
ilarly, transduction of MCF-7 cells, lacking detectable endogenous
TAp63 mRNA (Fig. S2A), with a pan-p63 shRNA-harboring len-
tivirus significantly reduced their mammosphere-forming efficiency
(Fig. S2 D and E). Taken together, these findings indicate that
ΔNp63, but not TAp63, contributes to sustain mammary CSC ex-
pansion by promoting CSC self-renewal and proliferation.
Because p63 and p53 physically interact (20), ΔNp63 can act in

a dominant negative fashion to inhibit p53 tumor-suppressive
properties. Hence, one potential mechanism by which ΔNp63
may preserve self-renewal is by functionally counteracting p53,
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Fig. 1. Expression pattern of p63 in mammary cancer progenitors.
(A) ΔNp63 and TAp63 mRNA expression levels in wild-type (WT) and ErbB2
(Tum) secondary mammospheres measured by quantitative real-time PCR
(qPCR). TATA box-binding protein (TBP) mRNA levels were used as an in-
ternal normalization control. Data are presented as mean ± SD. Five in-
dependent experiments were performed for each mouse genotype. (B, Left)
Immunoblot (IB) analysis of p63 protein levels in total cellular extracts of
control (WT) and ErbB2 (Tum) mammospheres obtained from three in-
dependent tumors. (B, Right) Densitometric quantification of p63 protein
levels in WT and ErbB2 spheres. Band intensity was normalized against
vinculin. Values are expressed as the ratio of p63/vinculin amount × 100.
(C ) Representative photographs of p63 immunofluorescence staining of
PKH-26high (Left) and PKH-26negative (Right) cells isolated from ErbB2 spheres.
Nuclei were counterstained with DAPI. Green indicates antibody staining,
red indicates PKH fluorescence, and blue indicates DAPI. (Scale bars: 10 μm.)
Transcript levels of ΔNp63 (D) and TAp63 (E) in PKH-26high and PKH-26negative

populations that were FACS-sorted from four independent labeled ErbB2
mammosphere preparations. TBP mRNA levels were used as an internal
normalization control. Data are presented as mean ± SD.
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which crucially controls the replicative properties of mammary
CSCs (15). To test this possibility, we down-regulated p63 in
secondary mammospheres obtained from the mammary gland of
p53 KO mice. We observed that p63 depletion impaired the self-
renewing ability of mammary progenitors (Fig. 2C, Left) and
reduced sphere size (Fig. 2D) even in a p53 null background.
These findings demonstrate that p63 sustains mammary CSC
replicative potential through a p53-independent mechanism.
Notably, down-regulation of p63 expression was maintained

throughout serial replatings in both ErbB2 and p53 null progen-
itors. However, at later passages, we always observed re-expression
of p63 correlating with increased self-renewing potential (e.g., Fig.
2C, Right), indicating that a positive selection reactivated the self-
renewal of CSCs.

Depletion of p63 in ErbB2 Progenitors Attenuates Mammary Tumor
Growth. To assess whether loss of p63 in mammary cancer pro-
genitors may halt ErbB2-driven tumorigenesis, we used p63-
depleted spheres for in vivo transplantation assays. We found that

depletion of p63 markedly suppressed breast cancer growth in
vivo relative to control mice (Fig. 2E). Tumor growth inhibition
was paralleled by decreased frequency of Ki-67–positive nuclei in
shp63 compared with short hairpin scrambled (shSCR) tumors
(Fig. 2 F and G).
To determine whether reactivation of p63 might also occur in

vivo in the shp63-transplanted tumors, we evaluated p63 im-
munoreactivity in tumor sections. Interestingly, we observed that
the percentage of p63-positive cells was comparable in shp63
(0.025% ± 0.02) and control (0.044% ± 0.017) tumors (P = 0.3).
Thus, given the similarity to the mammosphere culture system,
the proliferation of residual p63 proficient cells within the
implanted shp63 cell population might have overtaken the p63
KO during tumor progression.

p63 Regulates the Hh Signaling Pathway in Mammary CSCs. The Hh
signaling pathway is a relevant driver of epithelial SC self-
renewal (21). The Hh signaling cascade is initiated when one of
the three secreted ligands, Sonic Hedgehog (SHH), Desert
Hedgehog, or Indian Hedgehog (IHH), binds and inactivates
the Patched1 (PTCH1) receptor. Upon binding, PTCH1 relieves
its inhibition on Smoothened (SMO), which then activates the
Glioma-associated oncogene homologues 1, 2, and 3 (GLI 1,2,3)
family of transcription factors. The expression levels of Hh target
genes, such as Gli1 and Ptch1, are used as markers of active
canonical Hh signaling (22). The effects of Hh signaling on
mammary SC self-renewal have been ascribed to the transcrip-
tional activation of the SC marker B-cell–specific Moloney mu-
rine leukemia virus Integration site1 (BMI1) (21). Aberrant
regulation of the Hh pathway promotes self-renewal and ex-
pansion of CSCs in several human cancers (21–24).
Several reports demonstrated that in tumor cell lines, the p63

isoforms regulate the transcription of some key players of the
Hh signaling (25, 26). However, the potential contribution of the
p63-Hh cross-talk to breast cancer stemness remains unexplored.
Therefore, we examined whether p63 may sustain mammary CSC
self-renewal through the activation of the Hh pathway. Interest-
ingly, p63 knockdown in ErbB2 progenitors resulted in altered
expression of various Hh signaling components (Fig. 3A). Shh,
Ptch1, Gli2, and Bmi1 transcript levels were reduced in shp63
compared with control mammospheres. Conversely, the expres-
sion of Ihh was up-regulated in shp63 compared with shSCR
spheres. This finding is in accordance with the observation that Ihh
is targeted by ΔNp63 for transcriptional repression in quiescent
normal mammary SCs (3). The expression of other Hh molecules,
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Fig. 2. p63 supports mammary CSC self-renewal and mammary tumor
growth. (A, Left) Semilogarithmic plotting of cumulative sphere number
(±SD of quadruplicates) during in vitro passaging of control scrambled
(shSCR) and p63-depleted (shp63) ErbB2 spheres. Data are representative of
four individual experiments. GR, growth rate. (A, Right) ΔNp63 mRNA levels
were measured at passages 1 and 5. TBP expression was used as an internal
control. (B, Upper) Representative phase-contrast photographs of shSCR and
shp63 ErbB2 spheres. (Scale bars: 100 μm.) (B, Lower) Average mammosphere
size during serial replatings of shSCR and shp63 ErbB2 progenitors, calcu-
lated as cell number per sphere ± SD (P < 0.01). (C, Left) Cumulative sphere
number (±SD of quadruplicates) of shSCR and shp63 mammospheres
obtained from the p53 null (−/−) mammary epithelium. (C, Right) Data are
representative of three individual experiments. Relative ΔNp63 mRNA levels
were measured at passages 1 and 5. (D, Upper) Representative photographs
of control and p63-depleted p53−/− spheres. (Scale bars: 100 μm.) (D, Lower)
Average size (±SD) of p53−/− mammospheres expressing shRNA-targeting
p63 relative to scrambled controls (P < 0.01). (E) Growth rate of secondary
breast tumors arising from transplantation of shSCR or shp63 ErbB2 epithelial
cells into the mammary fat pad of female syngeneic recipients. Ten weeks
postinjection, all animals were killed and tumor volume was quantified. Data
represent mean ± SEM (P < 0.05). (F) Representative Ki-67 staining of shSCR
and shp63 transplanted tumors. (Scale bars: Upper, 100 μm; Lower, 50 μm).
(G) Proliferative activity of shSCR and shp63 transplanted tumors assessed as
the Ki-67 labeling index. Error bars represent mean ± SD. Data were generated
from three animals from each experimental group. *P < 0.01.
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Fig. 3. p63 activates the Hh signaling pathway in mammary CSCs. (A) Shh,
Ptch1, Gli2, Bmi1, and Ihh gene expression was quantified by qPCR using four
independent preparations of RNA obtained from shSCR and shp63 ErbB2
mammospheres. Data are expressed as mean ± SD and are normalized to TBP
expression. *P < 0.001; **P < 0.003; ***P < 0.005. Tumors from shSCR- and
shp63-transplanted mice were analyzed using SHH (B) and GLI2 (C) immuno-
histochemistry. Representative images from three independent tumors for
each experimental group are presented. (Scale bars: 100 μm.)
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such GLI1 and SMO, was not significantly affected by p63 loss. In
addition, histological examination of p63 shRNA-expressing tu-
mor transplants revealed in vivo down-regulation of SHH (Fig.
3B) and GLI2 (Fig. 3C) compared with control tumors.
Mammary SC self-renewal is regulated by a number of addi-

tional signaling pathways, including Notch, TGF-β, and Wnt/
β-catenin, which are aberrantly activated in CSCs (27). In-
terestingly, some of the components of these pathways are under
the transcriptional control of p63. For instance, p63 regulates the
expression of several molecules of the Notch pathway (28, 29).
Moreover, in basal-like breast tumors, ΔNp63 regulates CSC
properties through the induction of Fzd7 expression and sub-
sequent activation of the Wnt/β-catenin pathway (11). To assess
whether p63 also promotes SC activity through the modulation
of these two pathways, we measured the expression levels of
Notch receptors and Notch target genes, as well as the expres-
sion levels of Fzd7, in p63-depleted ErbB2 mammospheres. We
found that silencing of p63 does not significantly affect the ex-
pression of any of these genes (Fig. S3), demonstrating that
neither Notch nor Wnt/β-catenin is a relevant signaling mediator
of p63 stemness activity in our model system. This observation
may be in line with a divergent cluster-of-cluster-assignment evo-
lution of basal vs. luminal breast cancers (14).

p63 Directly Regulates the Transcription of Hh Signaling Components.
We then asked whether p63 directly binds to the regulatory
regions of some of the Hh components. Genome-wide profiling
of p63-binding sites by ChIP-sequencing analysis of human cells
(30) (Fig. S4 A–C) and mouse cells (31) (Fig. S4G) revealed
peaks of p63 binding to regions encompassing or within the Shh,
Gli2, and Ptch1 loci.
To validate the direct interaction of ΔNp63 with the regula-

tory regions of these genes, we performed ChIP experiments in
breast cancer cells and demonstrated binding of endogenous
ΔNp63 to genomic sites located in proximity to or within the
Shh, Gli2, and Ptch1 loci (Fig. 4A). To characterize the binding
capabilities of p63 to the regulatory regions of these genes fur-
ther, we performed ChIP assays in MCF-7 cells overexpressing
TAp63 or ΔNp63. We found that both isoforms are able to oc-
cupy binding sites encompassing or within the Shh (Fig. S4D),
Gli2 (Fig. S4E), and Ptch1 (Fig. S4F) genes.
Remarkably, ChIP assays in a mouse mammary epithelial cell

line revealed that ΔNp63 specifically binds to a predicted p63 re-
sponsive element within a genomic region encompassing the murine
Shh locus (−30 kb from the TSS; Fig. S4H). These findings highlight
the notion that downstream effectors of p63 in mammary CSC
regulation are conserved between humans and mice.
To study the transcriptional regulation of Shh, Gli2, and Ptch1

by p63, we generated luciferase reporter constructs encompass-
ing the p63-binding regions within these genes. Cotransfection of
the Shh, Gli2, and Ptch1 reporters with the ΔNp63 isoforms in-
creased their basal transactivation levels (Fig. 4B and Fig. S4I).
In accordance with the report by Caserta et al. (25), we found that
the TAp63 isoforms were also able to transactivate the Shh pro-
moter (Fig. S4J). The ΔNp63 isoforms activated the reporter con-
structs to different extents, reflecting their distinct transactivating
properties (32). The p63β- and p63γ-isoforms are generally more
transcriptionally active in vitro than the α-proteins, which possess
a C-terminal autoinhibitory domain reducing their activity. Sim-
ilarly, we found that overexpression of ΔNp63 isoforms in the
MCF-7 breast cancer cells determined different levels of in-
duction of Shh and Gli2 mRNA (Fig. 4C).
To validate the Hh signaling as a downstream effector of p63

in mammary CSC regulation, we assessed the effect of the SMO
inhibitor cyclopamine (CP) on the sphere-forming efficiency of
p63-depleted breast cancer cells. Fig. 4D shows that although the
addition of CP reduced the ability of control cells to form
spheres, it failed to inhibit the sphere formation potential of

tumor cells significantly further upon p63 down-regulation (Fig.
S4K). Taken together, these findings demonstrate that Shh, Gli2,
and Ptch1 are direct transcriptional target genes of p63 in mammary
cells, and that p63 loss diminished the self-renewal potential of
breast CSCs by attenuating Hh activation.
To validate the role of Hh signaling in breast cancer stemness,

we compared the expression levels of Hh transcriptional targets
between WT and ErbB2 mammospheres. ErbB2 progenitors

A
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Fig. 4. Shh, Gli2, and Ptch1 are direct p63 target genes. (A) Specific binding of
p63 to the regulatory regions of Shh (Left), Gli2 (Middle), and Ptch1 (Right)
genes. ChIP assays were performed in humanMCF-7 breast carcinoma cells using
H129 anti-p63 antibody and control IgG. p63 binds to one regulatory region
within the Shh (+22 kb from the TSS) and Ptch1 (39 kb downstream of the TSS)
genes, and to three regulatory regions (+47, +151 and +191 kb from the TSS,
denoted as #1, #2, and #3) of the Gli2 locus. (B) Luciferase reporter assays of Shh
(Left), Gli2 (Middle), and Ptch1 (Right) regulatory regions. The reporter vectors
were cotransfected with ΔNp63-expressing plasmids into the p53 null human
H1299 cell line. Cellular lysates were either assayed for luciferase activity or an-
alyzed by IB (Insets). Data are presented as mean ± SD and are representative of
three independent experiments. (C) qPCR was performed to analyze the tran-
script levels of Shh (Left) and Gli2 (Middle) quantitatively in MCF-7 cells trans-
fected with constructs expressing the ΔNp63 isoforms. (Right) Protein extracts
were subjected to IB for p63 and β-actin detection. (D) Effect of CP on the sphere-
forming efficiency (SFE) of control and p63-depleted HCC1937 cells. Cells were
transfected with control, pan-p63, and ΔNp63 siRNA oligos and then plated for
the mammosphere-forming assay in the presence of 300 nM CP or the inactive
CP analog tomatidine (Tom). *P < 0.05. (E) RT-qPCR analysis of Hh transcriptional
targets in normal (WT) and ErbB2 (Tum) mammospheres. Seven independent
preparations of RNA for each genotype were analyzed. (F) qPCR analysis of Bmi1
and p63 mRNA in human mammospheres obtained from normal breast tissue
[control (ctrl)] and primary mammary tumors (Patient). (G) Effect of Hh antag-
onists on the self-renewal of mammary CSCs. Primary spheres were dissociated
and cultured with CP or Tom for 7 d. Data are expressed as mean ± SD and are
representative of four independent experiments. *P < 0.05; **P < 0.01.
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displayed increased Ptch1 and Bmi1 transcript levels (Fig. 4E),
indicating augmented activation of the Hh pathway in tumors
compared with normal progenitors. Similarly, CSCs isolated
from primary human breast tumors expressed higher levels of
Bmi1 mRNA relative to normal progenitors obtained from re-
ductive mammoplasties (Fig. 4F, Left). Consistent with the data
obtained for the ErbB2 spheres (Fig. 1A), we found that the
expression of p63 was more elevated in cancer than in normal
mammary progenitors (Fig. 4F, Right).
We next demonstrated that pharmacological blockade of the

Hh pathway by treatment of tumor spheres with CP led to
a dose-dependent reduction of ErbB2 mammosphere-forming
efficiency (Fig. 4G). Similar to other tumor types, collectively,
these findings demonstrate that Hh function contributes to the
maintenance of the self-renewing capacity of mammary CSCs.
To validate the relationship between the expression of p63 and

the Hh signaling pathway in the clinical setting, we analyzed the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) dataset (33), a collection of 2,000 clinically anno-
tated primary breast cancer specimens. We found a strong positive
correlation between p63 and Gli2 mRNA levels (Fig. S5A). The
values of Pearson correlation between p63 and Gli2 are presented
in Fig. S5D. Comparable results for p63 and Gli2 expression were
obtained using the cBioPortal for Cancer Genomics database (www.
cbioportal.org/). As previously reported (11), our analysis of the
METABRIC dataset confirmed that expression of p63 is also sig-
nificantly correlated with expression of Fzd7 in patients with breast
cancer, at least when using one of two distinct probes (Fig. S5 B–D).

Discussion
p63, a major epithelial transcription factor, is crucial for main-
tenance of the regenerative capacity of several ectoderm-derived
tissues, including the mammary gland (2–4). Our data highlight
a role for ΔNp63 in promoting self-renewal and expansion of
ErbB2 progenitors. Notably, we observed that the ability of
ΔNp63 to sustain the self-replicative potential of mammary
CSCs does not require p53. The observation that ΔΝp63 does
not act through the inhibition of p53 suggests that p63 directly
mediates transcriptional responses that confer SC properties.
Our findings demonstrate that ΔNp63 is the predominant

isoform expressed in ErbB2 progenitors, whereas TAp63 var-
iants are detectable only in a minority of mouse mammosphere
samples, and at very low levels. ΔNp63α-, β-, and γ-isoforms are
all expressed in ErbB2 progenitors, although to varying extent,
likely reflecting the interindividual variability across mice. The
expression levels of ΔNp63 in epithelial stem/progenitor cells
correlate with their proliferating capacity (2). In the normal
mammary gland, the stem and progenitor cell subpopulations
display segregated expression of ΔNp63 and TAp63, respectively
(3). The proposed model for differential TP63 promoter use
implies that the exit of SCs from the quiescent state and elabo-
ration of mammary progenitors require the switch-off of ΔNp63
expression. In our model system, WT mammospheres express
similar levels of ΔNp63 and TAp63, likely because spheres are
composed of heterogeneous populations of progenitors exhibit-
ing various degrees of maturation. Conversely, ErbB2 mammo-
spheres and isolated CSCs are enriched for ΔNp63 expression,
suggesting that aberrant levels of ΔNp63 may lead to de-
regulation of CSC replicative properties and expansion of the
progenitor pool. Indeed, silencing the expression of ΔNp63 in
ErbB2 mammospheres and in breast cancer cell lines remarkably
reduced their number, size, and replating efficiency. Collectively,
our data prove that ΔNp63, but not TAp63, positively regulates
mammary SC activity, corroborating previous reports (11).
Consistent with a diminished self-renewing capacity, in vivo

transplantation of p63-depleted mammospheres delayed breast
tumor growth compared with control progenitors. In shp63
mammosphere cultures, we observed a partial reactivation of p63

over time that correlated with increased self-renewal. Similarly,
re-expression of p63 in transplants during tumor growth might
have attenuated the effect of p63 KO on ErbB2-driven carci-
nogenesis. Indeed, a delay in tumor onset was observed in mice
injected with spheres transduced with p63 shRNA lentiviruses
compared with their control counterparts, although the effects
did not achieve statistical significance.
To date, the molecular mechanisms underlying breast CSC

frequency and maintenance remain poorly understood. To gain
insight into the transcriptional programs downstream of p63 in the
regulation of mammary cancer stemness, we examined the en-
dogenous mRNA expression levels of several components of the
Hh signaling pathway in p63-depleted progenitors. We found that
p63 down-regulation leads to reduced expression of Shh, Ptch1,
and Gli2. Hence, because SHH signals GLI transcription factors
via ligation of the PTCH receptors, p63 seems to affect the Hh
pathway at different hierarchical levels of the signaling cascade,
namely, the ligand, its receptor, and downstream transcription
factors. As a result, the SC marker Bmi1, an Hh target gene, is
down-regulated upon p63 depletion. Together, these findings
imply that p63 activates the Hh pathway and likely influences
stemness, at least in part, through the induction of Bmi1, which is
indispensable for cell survival and self-renewal of SCs (21, 34). To
examine further how p63 interferes with the Hh pathway, we
asked whether p63 might directly control the transcription of some
of the Hh molecules. We found that p63 interacts with the regu-
latory regions of the Shh, Gli2, and Ptch1 genes, thus inducing
their expression and promoting Hh pathway activation.
Although the regulation of Shh and Gli2 expression by TAp63

and ΔNp63, respectively, has already been reported in tumor cell
lines (25, 26), we now demonstrate that several components of
the Hh pathway are transcriptionally controlled by ΔNp63 in
mammary CSCs. Additionally, we identified Ptch1 as a pre-
viously unidentified direct target of p63 transcriptional activity.
Using p53 KO mammospheres, we showed that p63 does not

require p53 to regulate mammary cancer stemness. However, the
existence of interplay between p53 and the Hh pathway has been
reported (35, 36). p53 was shown to repress tumorigenic Hh
signals by negatively regulating the activity of GLI1 (35, 37).
Interestingly, constitutively activated mutants of SMO, as well
as elevated levels of GLI1 and GLI2, inhibit p53 accumulation
by promoting binding of p53 to Mdm2 and its subsequent
ubiquitylation (38). Accordingly, given that ΔNp63 induces Gli2
expression, it is possible that cross-talk between the p53 family
members and the Hh pathway would ultimately contribute to
enhance CSC self-renewal.
We also considered the possibility that p63 might interfere

with additional signaling pathways implicated in SC self-renewal,
such as Notch and Wnt/β-catenin. However, the expression of
Notch receptors and Fzd7 was not significantly influenced by p63
silencing in our model system or by ectopic expression of ΔNp63
in the luminal-subtype MCF-7 breast cancer cell line. Fzd7-
dependent enhancement of Wnt signaling by ΔNp63 may pref-
erentially occur in basal-like mammary tumors (11). Consistently,
aberrant Wnt/β-catenin pathway activation is enriched in human
basal-like, rather than luminal-like, mammary tumors (39–41).
Constitutive Hh signaling activation, as a result of overex-

pression of Hh components, including SHH, PTCH1, GLI1, and
GLI2, has been linked to breast tumorigenesis and invasiveness
(42, 43). The mechanisms underlying the up-regulation of Hh
components in tumors are still poorly characterized. Promoter
hypomethylation and deregulation of transcription factors have
been associated with the overexpression of Hh molecules. De-
regulation of ΔNp63 expression in mammary CSCs might result
in aberrant activation of the Hh pathway, augmented SC self-
renewal, and expansion of cancer progenitors.
Overall, our findings contribute to the identification of path-

ways downstream of p63 involved in epithelial CSC regulation
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and shed light on the molecular mechanisms underlying aberrant
activation of Hh signaling in breast cancer.

Materials and Methods
Mice. FVB-Tg (MMTV-Erbb2) transgenic and p53 KO mice on a C57/BL6J
background were previously described (15). Corresponding WT strains were
purchased from Harlan Laboratories. Mice were bred and maintained in
pathogen-free rooms under barrier conditions. All mouse experiments were
performed according to local ethics committee (Ethics Committees of the
University of Tor Vergata and of the European Institute of Oncology) reg-
ulation and were approved by the Italian Ministry of Health.

Mammosphere Cultures. Mammary cells were freshly isolated from mammary
glands of WT and p53 KO mice or from tumors of ErbB2 mice, as previously
described (15). Each WT mammosphere preparation was obtained from pooling
mammary glands from n = 20 mice. For ErbB2 and p53 KO mammosphere
preparation, a single tumor or mammary gland obtained from n = 1 animal was
processed. At each passage, mammospheres were mechanically dissociated and
replated at 20,000 cells per milliliter. For serial passage experiments, 5,000 cells
from mechanically disaggregated mammospheres were plated in quadruplicate.
After 7 d, newly formed mammospheres were counted.

PKH-26 Assay. Freshly isolated mammary epithelial cells were resuspended in
PBS and incubated with a 2× PKH-26 dye (Sigma) solution (1:250) for 5 min,
blocked with 1% BSA, washed twice, and then plated to obtain primary and
secondary mammospheres. Single-cell suspensions from secondary mam-
mospheres were FACS-sorted with a FACS Vantage SE flow cytometer
(Becton Dickinson).

Statistical Analyses. Statistical evaluation was determined using a two-tailed
t test, and values were expressed as mean ± SD (or SEM). Differences were
considered statistically significant at P < 0.05. Details of all other methods
are described in SI Materials and Methods.
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