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Vascular permeability is a vital function of the circulatory
system that is regulated in large part by the limited flux of
solutes, water, and cells through the endothelial cell layer.
One major pathway through this barrier is via the inter-
endothelial junction, which is driven by the regulation of
cadherin-based adhesions. The endothelium also forms
attachments with surrounding proteins and cells via 2 classes
of adhesion molecules, the integrins and IgCAMs. Integrins
and IgCAMs propagate activation of multiple downstream
signals that potentially impact cadherin adhesion. Here we
discuss the known contributions of integrin and IgCAM
signaling to the regulation of cadherin adhesion stability,
endothelial barrier function, and vascular permeability.
Emphasis is placed on known and prospective crosstalk
signaling mechanisms between integrins, the IgCAMs- ICAM-
1 and PECAM-1, and inter-endothelial cadherin adhesions, as
potential strategic signaling nodes for multipartite regulation
of cadherin adhesion.

Introduction

Vascular permeability is an innate function of the circulatory
system that regulates the flux of fluid, protein, and immune cells
from blood to tissue. In most non-inflamed tissues, vascular per-
meability is controlled by the “barrier” comprised by the micro-
vascular wall, which includes the endothelial glycocalyx, the
endothelium, basement membrane, and any accessory cells (i.e.
pericytes or smooth muscle cells) wrapped around the outer sur-
face of the vessel. Though each of these components contributes
to the permeability of the vascular wall, most studies have focused

on the role of the endothelium, which forms an effective barrier
to the movement of protein and cells from blood to tissue.1,2

The endothelium occupies a unique physiological niche,
receiving soluble signals from both the blood and tissue, and
interacting, directly and indirectly, with cells from both compart-
ments. Direct interactions between the endothelium and its
immediate physical environment are mediated by adhesion
receptors, which in addition to the cadherins, include the integ-
rins, immunoglobulin-cell adhesion molecules (IgCAMs), junc-
tional adhesion molecules (JAMs), claudins, and occludin. While
direct regulation of cadherin adhesion is known to occur down-
stream of permeability-promoting soluble signals, recent evidence
suggests that adhesion events mediated by other adhesion recep-
tors, notably the integrins and IgCAMs, can modify cadherin sig-
naling to effect vascular permeability. In this review, we discuss
what is known about regulation of VE-cadherin based inter-
endothelial junctions by endothelial adhesion signaling, what
affect this has on the modification of vascular permeability in
vivo (if known), and identify remaining questions that are critical
to understanding the complex crosstalk between endothelial
adhesion receptors.

Regulation of Inter-Endothelial Adherens Junctions
Under Resting Conditions

The path which solutes, fluid, and cells take through the
endothelial barrier is divided into 2 routes. Transcellular per-
meability occurs via clathrin- and caveaolae-mediated vesicu-
lar transport, whereas paracellular permeability occurs via
dynamic regulation of inter-endothelial junctions. Regulation
of inter-endothelial junctions is controlled at the level of
homotypic VE-cadherin adhesion between neighboring cells.3

VE-cadherin expression on the plasma membrane is pro-
moted and stabilized by the expression of cytoplasmic adaptor
proteins p120-catenin and b¡catenin which bind to the jux-
tamembrane and C-terminal portion of the VE-cadherin
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cytoplasmic domain, respectively. b¡catenin also mediates
the connection between VE-cadherin and the actin cytoskele-
ton via adaptor proteins such as a¡catenin4,5; this connec-
tion is absolutely required for junction maintenance. In
addition, VE-cadherin adhesion is regulated by actin cytoskel-
etal dynamics. Confluent endothelial monolayers, as we
would expect to find in vivo, exhibit predominantly circum-
ferential actin fibers (also termed cortical actin) and few
radial stress fibers. Many stimuli that affect vascular perme-
ability also induce actin cytoskeletal turnover via the activa-
tion of RhoA, which is accompanied by loss of cortical actin
and increased radial stress fibers (for review, see 6). In unsti-
mulated endothelial cells, vascular permeability is maintained
at basal levels by the low level action of Rac1 or Cdc42
GTPases. Under resting conditions, these enzymes stabilize
the circumferential actin fibers that support robust VE-cad-
herin adhesions. Activation of Rac1 or Cdc42 have been
noted downstream of S1P7 and cAMP/Rap1 signaling,8,9

both of which are known to stabilize endothelial cell
junctions.

Regulation of Inter-Endothelial Adherens Junctions
During Inflammation

Much of our knowledge of endothelial junction regula-
tion comes from the study of inflammation. During inflam-
mation the endothelium responds to a complex array of
signals and acquires new capacities, i.e. the endothelium
becomes “activated.” Endothelial activation is marked by
localized leakage of protein-rich fluid and recruitment and
activation of circulating leukocytes, accompanied by a break-
down of intercellular junctions and a decrease in barrier
function.1,10 These events are also characteristic of the endo-
thelial dysfunction seen in many disease states, including
arthritis and atherosclerosis, and are even observed during
the abnormal formation of new vessels.11 Studying the regu-
lation of vascular permeability during the inflammatory
response has led to many breakthroughs in the field, how-
ever it is important to remember that permeability in and
of itself is not pathological. Basal permeability is an essential
function of the vascular system. Care should be taken to
represent inflammation-induced permeability in terms of
increased permeability over baseline, or, as some have
termed it, as “hyper-permeability.”

Studies of inflammatory hyper-permeability have revealed
that VE-cadherin adhesion is primarily down-regulated by
mechanisms that induce the disassembly of the cadherin-cate-
nin adhesion complex. Internalization of the VE-cadherin
receptor can occur via clathrin- or cavaeolae- mediated path-
ways, where it can be targeted for either degradation or recy-
cling. VEGF stimulation, for example, promotes the
endocytosis of VE-cadherin downstream of active Src, which
promotes the activation of p21-activated-kinase (PAK) and
subsequent phosphorylation of VE-cadherin on Ser665. Phos-
phorylation of this residue promotes the recruitment of

b¡arrestin-2 and clathrin-mediated internalization.12 Short-
term stimulation with LPS also stimulates clathrin-mediated
internalization, however longer treatment with LPS promotes
the association of VE-cadherin with caveolin-1, and siRNA
mediated knockdown of caveolin-1 rescues VE-cadherin
plasma membrane localization.13

Junction disassembly can also induce phosphorylation of
VE-cadherin or its associated adaptor proteins, p120- and
b¡catenin. Phosphorylation of VE-cadherin at Y658 or
Y731, leads to dissociation of p120 and b¡catenin respec-
tively.14 Other phosphorylation sites on VE-cadherin that
have been reported to affect junction stability include Y733,
Y645, and Y685.15 Phosphorylation of p120 at S879 by
PKC-a inhibits its association with the VE-cadherin cyto-
plasmic domain, and increases VE-cadherin internaliza-
tion.16 b¡catenin is phosphorylated on multiple residues;
Y654 and Y489 are targeted by Src/RTK17 and Abl,18

respectively, and disrupt binding to VE-cadherin, whereas
phosphorylation of Y142 disrupts binding to a¡catenin.19

Phosphorylation of cadherin complex proteins is itself
downregulated by the presence of junctional phosphatases,
including VE-PTP,20 SHP-2,21 and DEP1,22 thus increased
expression or activation of these phosphatases can also regu-
late endothelial permeability.

Integrin signaling in endothelial cells

Integrins form a well-characterized class of adhesion molecules
that bind to components of the extracellular matrix (ECM) and
IgCAMs. Integrins are expressed as a heterodimer of a and b
subunits, which form a calcium-dependent interface required for
ligand binding. Integrin adhesion can be induced in a bidirec-
tional manner, e.g., by activating the integrin molecule through
intracellular signal transduction, or by ligand binding to the
extracellular domains. Subsequent signaling can promote further
integrin activation, in addition to many other signaling events. In
epithelial monolayers, the occurrence of crosstalk signaling
between cadherin and integrin-based adhesions is well estab-
lished, where assembly of adherens junctions limits integrin
expression to the basal surface in epithelial monolayers.23,24

Integrins can be observed within epithelial cell-cell contacts, but
integrin activation is restricted in close proximity to the adherens
junction due to local down-regulation of integrin expression25

and depletion of phosphatidylinositol-4,5-bisphosphate (PtdIns
(4,5,)P2,PIP2).

26 While endothelial cell-cell contacts lack the
strict segregation of epithelial layers, the same cadherin-adhesion
dependent crosstalk mechanisms are assumed to occur in the
endothelium.

Quiescent endothelial cells express a wide array of integrins,
including modest levels of a1b1, a2b1, a5b1, and a6b1, as well
as low levels of a3b1, a6b4, and avb5.

27 During angiogenesis,
these cells highly up-regulate a5b1 and avb3, which have been
considered targets for anti-angiogenic therapy. In endothelial
cells, integrins are required for cell proliferation, migration, and
sprouting angiogenesis, among other functions.27-29
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Regulation of the Endothelial Barrier and Vascular
Permeability by Integrin Adhesion

b3 integrins have been known to indirectly regulate VE-cad-
herin adhesion and endothelial permeability via increasing
VEGF signaling.30,31 However, b3 knockout mice exhibit
increased endothelial leak (Miles assay) in response to LPS or
VEGF, when compared to wildtype animals.32,33 Curtis, et al34

demonstrated that blocking b1 and b3 adhesion using a soluble
peptide containing the b1/b3 integrin-binding motif RGD also
weakened the transendothelial resistance of unstimulated cells.
Application of the RGD peptide also blocked Rac activity and
decreased the appearance of cadherin complexes.34 These data
suggest that integrin adhesion could promote endothelial barrier
function, perhaps by promoting the stability of circumferential
actin.

On the other hand, studies performed using either function
blocking antibodies to avb5, or b5 knockout animals, have
shown a decrease in vascular permeability induced by VEGF,
TGFb, thrombin or LPS in vitro, or by mechanical ventilation
in vivo.35 b5 knockout mice also showed increased survival in a
mouse model of sepsis.36 In addition, an interesting study by
Alghisi, et al interrogated the effect of the avb3 antagonist cilen-
gitide on endothelial leak. Cilengitide blocked avb3 adhesion to
matrix, but unlike studies performed in b3 knockouts, induced a
redistribution of the integrin to cell edges. There, avb3 remained
active, and induced phosphorylation of VE-cadherin on Y658
and Y731, causing a loss of VE-cadherin from cell contacts and
an increase in monolayer leak.37 Thus activation of b5 or avb3

integrins appears to down-regulate endothelial barrier function,
whereas activation of b1 integrins promotes endothelial barrier
function.

Additional clues can be gathered from the effects of extra-
cellular matrix proteins on vascular permeability. In vivo, one
could expect that changes in extracellular matrix expression
and availability as ligand could change during vascular injury
or in response to an inflammatory stimulus. Indeed, concen-
trations of fibronectin, a large ECM protein both expressed
by the endothelium and a major plasma protein, are increased
following vascular injury and during vascular development.38-
42 Though fibronectin is a ligand for a5b1 and avb3, addi-
tion of fibronectin to endothelial cell culture blocked
TNF¡a-induced endothelial leak.34 As TNF¡a inhibits b1

integrin activation, this effect is likely due to an increase in
b1 integrin activity. Similarly, porcine coronary venules
treated with an RGD containing peptide that inhibits fibro-
nectin-integrin binding displayed a 2-3-fold increase in per-
meability to albumin.43 In contrast, treatment of cultured
endothelial cells with purified vitronectin or an integrin bind-
ing fragment of fibrinogen, both ligands for avb3, increased
VE-cadherin internalization via activation of avb3.

43 In sup-
port, vitronectin knockout animals exhibit a blunted increase
in permeability in response to ischemic injury,44 however
full-length fibrinogen, which binds to the endothelium via
ICAM-1 and a5b1, also induces endothelial leak.45 Thus the
outcome of endothelial integrin-based adhesion is likely

determined by the specific integrins and integrin-ligands
expressed in the vascular environment.

Integrin-Adhesion Dependent Regulation
of Cadherin Adhesion

Though endothelial integrin adhesion can clearly modulate
VE-cadherin based adhesions, the mechanism or mechanisms by
which this occurs remain obscure. Multiple signaling pathways
are activated downstream of integrin ligation, including many
also known to regulate vascular permeability downstream of
inflammatory stimuli. These signaling mechanisms can be
grouped into 2 large categories, those that regulate cadherin
phosphorylation and junction disassembly, and those that medi-
ate changes in the interaction of cadherin-based adhesions with
the actin cytoskeleton. While these broad categories are imper-
fect, we will use these as a framework to briefly discuss what is
known about the signals downstream of integrins that regulate
vascular permeability.

Regulation of junction disassembly by integrin adhesion
Integrin adhesion activates a number of kinases, including

Src,46 focal adhesion kinase (FAK),47 and integrin-linked kinase
(ILK).48 Src family kinases phosphorylate residues on VE-cad-
herin and b¡catenin that are important for the cadherin/
b¡catenin interaction. Though the direct evidence is limited,
activation of Src downstream of avb3 activation has been shown
to induce phosphorylation of VE-cadherin at Y658 and Y731.49

Integrin adhesion also induces activation of the Src family kinases
Fer50 and Fyn,51 which can mediate phosphorylation of Y654
and Y142 of b¡catenin. However, in the absence of direct evi-
dence, it is unclear whether Fer or Fyn activation downstream of
integrins significantly regulates inter-endothelial junction
stability.

Integrin-mediated Src activation also promotes activation of
FAK, which traditionally promotes the turnover of integrin-
based adhesions. FAK contains a kinase, and multiple protein-
protein interaction domains, which are considered key to the
temporal regulation of Rho and Rac GTPase. FAK is involved in
TGFb¡induced vascular permeability along with its upstream
regulator, Src.52 An extensive study by Jean, et al found that in
tumor-associated endothelial cells, human lung endothelial cells,
and human umbilical vein endothelial cells, FAK inhibition
decreases VE-cadherin Y658 phosphorylation. FAK can also be
activated downstream of growth factor receptors. FAK activation
is required for VEGF-dependent phosphorylation of VE-cad-
herin Y658 and recent studies have demonstrated that FAK can
directly phosphorylate this residue (Fig. 1). Pulmonary endothe-
lial cells isolated from FAK kinase-dead knock-in mice showed
decreased monolayer leak and decreased Y658
phosphorylation.53

On the other hand, numerous studies have linked FAK activa-
tion to barrier-promoting effects. Embryonic endothelial cells
derived from FAK knockout mice exhibit increased permeability
compared with wild type.54 Loss of FAK expression in
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pulmonary artery endothelial cells, results in extended barrier dis-
ruption after thrombin stimulation.55 In addition, tyrosine phos-
phorylation of FAK in pulmonary artery endothelial cells is
associated with barrier enhancement,56-58 and occurs down-
stream of the barrier-promoting activity of S1P59 (Fig. 1). Pars-
ing the barrier-promoting and -disrupting effects of FAK
activation is a significant challenge, not the least because of the
diversity of downstream signals modulated by FAK. It is
extremely likely that integrin-mediated activation of FAK does
play a role in regulation of the vascular barrier, however lack of
direct evidence, and the absence of models in which the relative
contribution of integrin-activated FAK can be measured, limits
our ability to define its precise role.

Regulation of endothelial actin cytoskeletal turnover
by integrin adhesion

Changes in actin turnover are a well-characterized outcome of
integrin adhesion signaling. Integrin adhesion can activate
Arp2/3 to promote actin polymerization and branching. Integrin
signaling also activates multiple members of the Rho GTPase
family, including RhoA, Rac1 and 2, and Cdc42. As previously
discussed, Cdc42 and Rac activation are important for formation
of circumferential actin bundles that are associated with stable
cell-cell contacts. Heightened Rac activity can also block RhoA
activation, which is associated with increased actin-myosin con-
tractility and is generally believed to negatively regulate

endothelial cell-cell contact and promote vascular permeability.
However, RhoA-mediated activation of the formin mDia inhibits
VEGF-stimulated permeability by sequestering Src and prevent-
ing VE-cadherin internalization,60 suggesting that there may be
conditions in which RhoA activation may not exert negative reg-
ulatory pressure on endothelial permeability.

In addition, many proteins that regulate actin filament
dynamics and are important for endothelial barrier regulation are
also components of the integrin cytoplasmic adhesion complex.
For example, phosphorylation of paxillin via an Src-FAK-ERK
mechanism stimulates increased permeability in HPAEC and is
associated with activation of RhoA.61 Vasodilator stimulated
phosphoprotein (VASP) is classically associated with actin fila-
ment polymerizaton downstream of integrin activaton. VASP
also mediates cAMP-mediated Rac1 activation during cell-cell
contact formation.62 VASP null endothelial cells exhibit
impaired b1 integrin dependent adhesion and VE-cadherin adhe-
sion, though cadherin expression and localization appears nor-
mal. VASP deficiency also correlates with reduced actomyosin
contractility and Rac dependent formation of cortical actin,
which likely contributes to the loss of integrin and cadherin
mediated adhesion.8

a¡actinin is an actin crosslinking protein involved in the
maturation of integrin-based adhesions. a¡actinin can also link
the VE-cadherin complex to the actin cytoskeleton by simulta-
neously binding a¡catenin and actin and promoting cortical
actin rearrangement.63 Vinculin is a scaffolding protein that
interacts with multiple proteins in the integrin cytoplasmic adhe-
sion complex.64 Vinculin is associated with mature focal adhe-
sions where it stabilizes integrin-based adhesions and permits the
transmission of actin-generated mechanical forces across the cell
membrane.65 Vinculin is also recruited to cadherin-based adhe-
sions by a¡catenin where it reinforces the connection of the
actin cytoskeleton with VE-cadherin66 (Fig. 1). The association
of a¡actinin and vinculin with both integrin- and cadherin-
based adhesions suggests the possibility that there could be a
competition-based crosstalk between the 2 types of adhesion
receptors. This would depend on a¡actinin and vinculin con-
centrations, as well as the number and stability of integrin and
cadherin adhesions. Both a¡actinin and vinculin are highly
abundant, as are integrins and cadherins, in most cell types.
However, local control of protein concentrations could be suffi-
cient to exert negative regulatory pressure due to competition for
these cytoplasmic actin-binding proteins. This hypothesis has yet
to be explored to any significant extent, and parsing the individ-
ual and communal roles of a¡actinin and vinculin in integrin
and cadherin signaling will require future studies.

Endothelial IgCAM-Mediated Regulation
of Endothelial Cell-Cell Contact

and Vascular Permeability

Endothelial immunoglobulin superfamily cell adhesion mole-
cules (IgCAMs) are key regulators of leukocyte-endothelial inter-
action. In the vascular endothelium, intercellular adhesion

Figure 1. Intracellular regulation of VE-cadherin by integrins. Activa-
tion of avb5 or avb3 causes activation of c-Src (Src) and subsequent acti-
vation of focal adhesion kinase (FAK). FAK phosphorylates tyrosine 658
on VE-cadherin, prompting loss of cadherin adhesion. FAK also phos-
phorylates paxillin (pax), which leads to the activation of Rho GTPase
and the formation of radial stress fibers. Alternatively, the Src-family kin-
ases Fer and Fyn phosphorylate tyrosines 654 and 142 on b¡catenin.
While Fer and Fyn can be activated downstream of integrin ligation, no
evidence yet exists for integrin-mediated phosphorylation of b¡catenin.
Activation of b1 and b3 integrins conversely promotes cadherin adhe-
sion. Activation of FAK downstream of sphingosine-1-phosphate
recptor-1 (S1P1R) as well as integrin-dependent activation of vasodila-
tor-stimulated phosphoprotein (VASP) triggers activation of Rac1
GTPase. Rac then promotes the stability of cortical actin and of cadherin
adhesions.
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molecule -1 (ICAM-1) is expressed constitutively at low levels
and acts as a ligand for b2 integrins expressed on circulating leu-
kocytes. ICAM-1 ligation by leukocyte integrins stimulates the
firm adhesion required for extravasation. VCAM-1 is induced by
cytokine stimulation of the endothelium, and is a ligand for
a4b1 and a4b7 integrins expressed on leukocytes. VCAM-1
expression is important for leukocyte adhesion and rolling,67-70

and to some extent leukocyte extravasation,71-73 but its involve-
ment in the regulation of vascular permeability is unclear.
PECAM-1 is highly expressed by endothelial cells, as well as on
the surface of platelets, monocytes, neutrophils, and some types
of T-cells. PECAM-1 expression is concentrated at endothelial
cell-cell contacts, where it mediates leukocyte diapedesis via
homotypic PECAM-1 interactions with the transmigrating
cell.74 Similar to PECAM-1, junctional adhesion molecules
(JAMs) are also found at endothelial cell-cell contacts, and medi-
ate both endothelial-endothelial and endothelial-leukocyte inter-
actions (reviewed in 75). A thorough review of IgCAM adhesion
signaling in inflammation was published earlier this year,76 so
our treatment of this topic will be brief.

ICAM-1
Activation of ICAM-1 signaling leads to increased leukocyte

transmigration, increased vascular permeability and loss of the
endothelial barrier, and rearrangement of the actin cytoskeleton.
ICAM-1 activation also stimulates the downregulation of endo-
thelial junction proteins VE-cadherin, occludin, and the tight
junction adaptor proteins ZO-1 and ZO-2.77 Most studies have
examined the effect of ICAM-1 mediated signaling following the
activation of inflammatory signaling pathways. However, recent
evidence suggests that ICAM-1 signaling can be activated by liga-
tion in the absence of inflammatory stimulus. Sumagin, et al78

demonstrated that rolling leukocytes or antibody-mediated
ICAM-1 crosslinking could stimulate an ICAM-1 dependent
increase in vascular permeability in unstimulated mouse cremas-
ter arterioles. This is supported by other work showing that over-
expression ICAM-1 in unstimulated endothelial cells decreases
endothelial barrier function.79 Crosslinking ICAM-1 with
ICAM-1 coated beads also promotes endothelial leak, as well as
recruiting VCAM to sites of ICAM-1 clustering.80 Treatment of
cells with TNF¡a or VEGF81 leads to an up-regulation of
ICAM-1 expression after as little as 4 hours of treatment.
Increased ICAM-1 expression is subsequently necessary for endo-
thelial permeability and leukocyte transmigration. TNF¡a stim-
ulation has also been shown to induce a redistribution of ICAM-
1 in vivo, where the heterogeneous distribution of ICAM-1 regu-
lates the location of leukocyte adhesion.82

Functionally, ICAM-1 activity appears to require both the
extracellular and intracellular domains. Blocking antibodies
directed against the extracellular domain of ICAM-1 reduce leu-
kocyte adhesions and vascular permeability in both mouse pial
and cremaster vessels.83,84 Studies employing a truncation
mutant of ICAM-1 lacking the cytoplasmic domain have demon-
strated that this domain is required for ICAM-1-mediated leuko-
cyte transmigration, but not leukocyte-endothelial adhesion.85,86

The studies by Greenwood, et al and Sumagin, et al utilized a

cell permeable cytoplasmic domain construct that inhibits endog-
enous ICAM-1 activity. As in the truncation experiments, treat-
ment of brain microvascular cells or mouse cremaster venules
with penetratin-ICAM-1 peptide strongly inhibited transendo-
thelial migration but did not affect leukocyte adhesion.85,87 Fur-
thermore, treatment with this inhibitory peptide decreased the
number of gaps in VE-cadherin staining observed in venules in
response to fMLP.87 However, in human dermal microvascular
cells, the absence of the cytoplasmic domain was not able to
inhibit ICAM-1-induced loss of endothelial barrier function.79

Based on the relatively small number of studies, and the concept
that transendotheilal migration is accompanied by an increase in
solute translocation across the endothelium, it is not appropriate
at present to conclude that cytoplasmic ICAM-1 signaling is
uninvolved in the regulation of vascular permeability. However,
just how the relatively short ICAM-1 cytoplasmic domain would
mediate such regulation is not abundantly clear.

The ICAM-1 cytoplasmic domain has been reported to bind
to several actin binding proteins, including a¡actinin,88 cortac-
tin,89 and ezrin.90 Recent evidence suggests that binding to some
of these partners is independent,88 indicating that several distinct
pools of ICAM-1 receptor may be present in the cell. Ligation of
ICAM-1 transduces a signal that causes rearrangement of the
actin cytoskeleton, likely via increasing cytoplasmic calcium lev-
els,91 though the exact mechanism remains unclear. ICAM-1
ligation has been shown to activate Rac1, RhoA, PKC, Src family
kinases, and the docking protein p130Cas.92 Inhibition of RhoA
in ICAM-1 over-expressing cells mimics the effects of truncating
the cytoplasmic domain on leukocyte transmigration and adhe-
sion,86 suggesting that RhoA signaling is a major regulator of
ICAM-1-mediated leukocyte-endothelial interactions. Src activa-
tion downstream of ICAM-1 ligation induces phosphorylation of
caveolin-1, which is required for transcellular vascular permeabil-
ity following neutrophil adhesion.93 Rac1 activation downstream
of ICAM-1 mediates the activation of NADPH oxidase (Nox)
and the production of reactive oxygen species (ROS). The rise in
ROS levels promotes activation of the kinases Src and Pyk2,
which can phosphorylate VE-cadherin on Y658 and Y731.94

Interestingly, crosslinking VCAM-1 also stimulates calcium sig-
naling and activation of Nox.95 Analogous to ICAM-1 signaling,
Vockel, et al demonstrated that VCAM-1-mediated ROS pro-
duction also leads to activation of Pyk296 (Fig. 2). They show
that this pathway stimulates the dissociation of VE-cadherin and
VE-PTP to disrupt endothelial cell contacts, leaving open the
question of whether VCAM-driven Pyk2 also stimulates the
phosphorylation of VE-cadherin.

PECAM-1
PECAM-1 expression, on the other hand, blocks neutrophil

migration in response to TNF¡a:97 PECAM-1 expression is
increased by barrier promoting substances like statins,97 and
reduced by barrier disrupting agents like TNF¡a and ionizing
radiation.98 Knockdown of PECAM in endothelial cells in cul-
ture increases monolayer leak.99 Blocking PECAM-1 using a
function-blocking antibody decreases neutrophil-endothelial
interactions and decreases permeability in multiple disease
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models.100,101 PECAM-1 knockout mice demonstrate pulmo-
nary fibrosis preceded by enhanced vascular leakiness and deposi-
tion of hemosiderin in the lung.102 PECAM knockouts also
exhibit increased survival when challenged with endotoxin,103

and an earlier incidence of experimental autoimmune encephali-
tis.104 In addition, endothelial cells isolated from PECAM defi-
cient animals demonstrate increased leak in response to LPS103

and histamine.104 While the intracellular pathways regulated by
PECAM-1 are not completely defined, PECAM-1 mediated
interactions can lead to activation of PLC–g,105 Akt and upregu-
lation of eNOS via STAT3,106 or increased Gaq/11 signaling.107

One interesting signaling mechanism involves the Immunorecep-
tor Tyrosine-based Inhibitory Motif, or ITIM domain, in the
PECAM-1 cytoplasmic tail. Phosphorylation of tyrosines 663
and 686 in the ITIM domain promotes binding of the tyrosine
phosphatase SHP-2.108 PECAM-1 can also bind to b¡catenin.
However, in contrast to SHP-2 binding, b¡catenin tyrosine
phosphorylation -rather than PECAM phosphorylation- was
required for this association. This suggests that PECAM,
b¡catenin and SHP-2 form a ternary complex, which brings
tyrosine-phosphorylated b¡catenin in close proximity to a phos-
phatase. In fact, expression of an ITIM-defective PECAM-1
mutant severely increases b¡catenin tyrosine phosphorylation,
supporting the idea that PECAM-1 coordinates the

dephosphorylation of b¡catenin, and perhaps the subsequent
stabilization of b¡catenin/VE-cadherin association, via its inter-
action with SHP-2.

Regulation of Vascular Permeability
by Cadherin Adhesion

Finally, we would like to quickly pay attention to a rather
overlooked facet of cadherin signaling that may also play a signif-
icant role in the regulation of vascular permeability. Dissociation
of p120 and b¡catenin from VE-cadherin can stimulate feed-
back mechanisms to both promote and disrupt cadherin adhe-
sion. As our understanding of endothelial junctions moves past
the concept of junctions as static structural elements to one that
encompasses the highly dynamic nature of the cadherin adhesion,
it becomes clear that p120 and b¡catenin likely function to
modulate cadherin adhesion when both bound to- and dissoci-
ated from- the receptor.

p120 regulates local RhoA activation by recruiting the RhoA
specific GTPase activating protein, p190RhoGAP, to the cad-
herin cytoplasmic complex.109 However, in fibroblasts, cyto-
plasmic p120 can bind directly to RhoA and inhibit its intrinsic
ability to dissociate guanosine diphosphate,110 similar to the
action of RhoGDI. In endothelial cells, overexpression of p120
blocks neutrophil transmigration.111 However, this study from
the Luscinskas laboratory determined that this was not due to the
binding of p120 and RhoA, but rather to the ability of cyto-
plasmic p120 to inhibit the association of active Src with VE-cad-
herin. Others have shown that in Chinese hamster ovary cells,
p120 can bind to Vav2, an exchange factor for Rac1, Cdc42, and
RhoA, and mediate Rac1 activation.112 These data suggest that
conditions that increase cytoplasmic p120 levels would limit
RhoA activation and perhaps impair actin cytoskeletal reorgani-
zation. However, loss of p120 from the cadherin adhesion com-
plex can also lead to the nuclear localization of p120.113 How
p120 is translocated into the nucleus is unknown. What is known
is that once there, association of p120 with the transcription fac-
tor Kaiso leads to increased expression of Rho in corneal endo-
thelial cells.114 In bovine pulmonary artery endothelial cells and
human brain endothelial cells, Kaiso and p120 co-immunopre-
cipitate. Knockdown of p120 increased the expression of a Kaiso
reporter construct 2-fold but also significantly reduced Kaiso pro-
tein levels.115 The study by O’Donnell et al in brain microvascu-
lar and pulmonary artery endothelial cells supports the idea that
p120 depletion increases the transcriptional activity of Kaiso but
also suggests that loss of p120 activates NFkB and AP-1116. Fur-
ther studies are needed to fully understand the role of nuclear
p120 signaling in the endothelium. However, in epithelial can-
cers, loss of cadherin function is associated with an increase in
nuclear Kaiso and a worse prognosis. This suggests the possibility
that loss of VE-cadherin mediated adhesion could trigger changes
in endothelial cell morphology or gene expression due to an
increase in the cytoplasmic or nuclear localization of p120,
respectively. More information is needed about the levels of
p120 required to gain effective Rho inhibition, how those levels

Figure 2. Intercellular regulation of VE-cadherin by ICAM-1 and
VCAM-1. Ligation of ICAM-1 recruits the actin binding proteins a-actinin
(a¡act), ezrin (ezr), and cortactin (cort). ICAM-1 activity leads to activa-
tion of Rac, which is a regulatory component of NADPH oxidases (NOX).
Nox activation following binding of GTP-bound Rac stimulates the for-
mation of reactive oxygen species (ROS). ROS can subsequently activate
Src kinase and protein tyrosine kinase 2b (Pyk2). Src and Pyk2 then phos-
phorylate Y658 on VE-cadherin and stimulate junction disassembly. In
addition, ICAM-1 activates Rho GTPase, leading to stress fiber formation,
as well as PKCs (PKC), which mediate ICAM-1 dependent increased vas-
cular permeability in the absence of an inflammatory stimulus. Ligation
of VCAM-1 also activates Pyk2 to promote the loss of interaction
between VE-PTP and VE-cadherin, increasing phosphorylation of junc-
tion proteins and stimulating junction disassembly.
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relate to VE-cadherin protein expression, and what genes are reg-
ulated by nuclear p120, before a realistic model of p120 regula-
tion of vascular permeability, incorporating all cellular pools of
p120 catenin, can be formed. Feel free to speculate wildly.

The binary signaling properties of b¡catenin, on the other
hand, have been well established, if not well mapped, in endothe-
lial cells. In addition to its role as a cytoplasmic adapter for cad-
herin adhesion, b¡catenin is the key second messenger in
canonical Wnt (Wingless and INT-1) signaling. In this pathway,
Wnt binding to the cell surface receptor Frizzled (Fzd) and co-
receptor LRP5/6 causes intracellular association of disheveled
(Dvl) with Fzd. Activation of Dvl causes inactivation of the con-
stitutive b¡catenin destruction complex (axin/adenomatous pol-
yposis coli (APC)/glycogen synthase kinase 3b (GSK3b)) that
normally targets cytoplasmic b¡catenin for proteosomal degra-
dation.117,118 b¡catenin then is free to translocate into the
nucleus, where it interacts with the TCF/LEF family of transcrip-
tion factors (reviewed in118). Wnt signaling in microvascular
endothelial cells increases the proportion of cytoplasmic
b¡catenin, TCF/LEF transcriptional activity, proliferation and
tube formation.119,120 Expression of Wnt-1 in human umbilical
vein endothelial cells stimulates proliferation and survival and
promotes the expression of IL-8.121 In resting adult vasculature,
b¡catenin is rarely seen in the cytoplasm or nucleus.122 How-
ever, b¡catenin is targeted to the nucleus by inflammatory stim-
uli,113,123 suggesting nuclear b¡catenin could play a role in the
loss of the endothelial barrier and vascular permeability.

Disassembly of adherens junctions, such as after endothelial
exposure to activated neutrophils, is accompanied by the release
of b¡catenin.14,124 Some inflammatory mediators, such as
PGE2125 and thrombin,113 can inhibit GSK3b, thus blocking
cytoplasmic b¡catenin degradation. Others, such as VEGF, can
increase nuclear b¡catenin activity by stimulating nitrosylation
of b¡catenin.126 Nitrosylation of b¡catenin by VEGF-induced
eNOS, or b¡catenin nitration by macrophage derived NO,127

leads to the shuttling of b¡catenin into the nucleus. There, it
can activate transcription by binding to the TCF/LEF family of
transcriptional repressors. Interestingly b¡catenin nitration
appears to also promote the interaction of nuclear b¡catenin
with NFkB p65.127 However, b¡catenin nuclear localization
following loss of VE-cadherin adhesion does not necessarily
require inactivation of the degradation complex or additional
post-translational modification of b¡catenin. Taddei, et al
showed that VE-cadherin null cells exhibit higher levels of
nuclear b¡catenin.128 Our lab has shown that loss of the junc-
tional scaffolding protein KRIT1 leads to loss of VE-cadherin
adhesion and increased nuclear b¡catenin in vitro, and increased
vascular permeability in vivo.129,130 Thus modification of inter-
endothelial cell contacts is capable of switching the predominant
mechanism of b¡catenin signaling from junctional to nuclear.

b¡catenin dependent transcriptional activity encompasses the
up- and down-regulation of a wide variety of genes, in a cell con-
text-dependent manner. Taddei et al showed that b¡catenin, in
concert with FOXO1, suppressed the expression of the tight
junction protein claudin 1128. In KRIT1 deficient endothelial
cells, nuclear b¡catenin promotes the expression of cyclin dD1,

fibronectin, and VEGF-A130. Other b¡catenin target genes
(e.g., c-myc, cyclinD1, cox-2, IL-8) have been linked to inflam-
mation.121,131,132 The b¡catenin dependent transcriptome in
endothelial cells is likely to vary significantly from that in epithe-
lial cells, as well as between in vitro and in vivo conditions. How-
ever, there appears to be sufficient evidence to consider nuclear
b¡catenin signaling when examining the regulation of vascular
permeability, particularly under pathological or stimulated
conditions.

Concluding Remarks

Endothelial cells in vivo mediate their attachment to their
environment through a panoply of adhesion receptors. Some of
these are active only during inflammation, whereas others func-
tion in both stimulated and unstimulated conditions. Even in
vitro, endothelial cells plated on tissue culture plastic are exposed
to extracellular matrix molecules found in calf serum, and secrete
an extensive matrix of their own within 24 hrs of plating (Dr.
Glading, unpublished observation). Cell-cell contacts of cultured
endothelial cells contain plentiful PECAM-1, and resting cells
express low levels of ICAM-1. Thus the components necessary
for “other” adhesion receptors to modify the responses measured
in the laboratory are present and accounted for. The absence of
an extensive body of literature describing in detail how other
adhesion molecules regulate inter-endothelial cell contacts, endo-
thelial barrier function, and vascular permeability rather under-
scores the inattention this area has received. When one considers
how to approach this problem, the presence of common signaling
nodes in inflammatory signaling pathways, integrin signaling,
and IgCAM signaling spark a certain automatic focus. Activation
of Src family kinases, alterations to the connection between cad-
herins and the actin cytoskeleton, and cytoskeletal regulation by
RhoA and Rac1 appear to be key regulatory checkpoints in the
regulation of endothelial cell-cell contact and vascular permeabil-
ity. Fully understanding how each of these fundamental signaling
nodes is regulated in vitro, whether in the context of adhesion
receptor signaling, or during inflammation, may be the necessary
basis needed to address the complexities of an in vivo system.
Issues that should be considered when approaching these ques-
tions include variation in signaling due to endothelial cell origin,
which should not be underestimated. Rather than being treated
as unwanted sources of error, these variations likely provide vital
clues to the physiological differences between vascular beds. In
addition, cells may use different mechanisms to regulate basal
permeability vs. inflammation-mediated hyper-permeability,
thus the unstimulated condition should not be overlooked.

All cellular functions operate in the context of expression of a
specific subset of genes. Stimulation of endothelial cells or intact
vessels clearly triggers significant changes in the cellular transcrip-
tome. While the nuclear functions of p120- and b¡catenin have
been known for quite some time, the impact of these binary sig-
naling molecules on the endothelial barrier and vascular perme-
ability has been artificially restricted to their function at
cytoskeletal adaptors. Recent evidence suggests that nuclear
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functions of p120- and b¡catenin could underlie a novel regula-
tory mechanism for vascular permeability.130 Recent technologi-
cal advances should make it possible to investigate nuclear p120-
and b¡catenin contributions to vascular permeability on a large
scale. Nevertheless, the complexity of signaling mechanisms regu-
lating the endothelial barrier and vascular permeability appear to
be expanding exponentially, meaning that more and more

sophisticated techniques, perhaps merging in vivo physiological
measurements with computational biology, may be needed to
assess this emerging regulatory system.
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