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The epithelial tight junction determines the paracellular
water and ion movement in the intestine and also prevents
uptake of larger molecules, including antigens, in an
uncontrolled manner. Claudin-2, one of the 27 mammalian
claudins regulating that barrier function, forms a paracellular
channel for small cations and water. It is typically expressed in
leaky epithelia like proximal nephron and small intestine and
provides a major pathway for the paracellular transport of
sodium, potassium, and fluid. In intestinal inflammation
(Crohn’s disease, ulcerative colitis), immune-mediated
diseases (celiac disease), and infections (HIV enteropathy),
claudin-2 is upregulated in small and large intestine and
contributes to diarrhea via a leak flux mechanism. In parallel
to that upregulation, other epithelial and tight junctional
features are altered and the luminal uptake of antigenic
macromolecules is enhanced, for which claudin-2 may be
partially responsible through induction of tight junction
strand discontinuities.

Introduction

The function of the epithelial barrier as part of the innate
immunity of the small and large intestine depends on the apical
plasma membranes of enterocytes and the junctional complexes
between them.1 The main diffusion barrier within this junctional
complex is formed by the tight junction (TJ) which contains
transmembrane proteins. These TJ proteins are organized as het-
eropolymers forming strands at the apical pole of the basolateral
membrane that interact in trans with TJ proteins of adjacent
cells.

The expression pattern of the TJ protein family claudins with
27 members in mammals is both organ- and segment-specific.2

The majority of these, including claudin-1, -3, -4, -5, -7, and -8,
confer barrier properties and are often found in tight epithelia
like the distal regions of the intestine (Table 1). Others, such as
claudin-2, induce channel formation within the TJ, and are
mostly expressed in leaky epithelia like the proximal intestine.

However, whether they are more tightening or more channel-
forming, functional consequences should be assumed to be more
significant in an intermediate tight epithelium like the colon and
rectum than in a leaky epithelium as the small intestine.

During intestinal inflammation, the protein pattern of TJ
strands can undergo rapid changes. A frequent regulatory event
during inflammation is the increased expression of claudin-2 and
its insertion into TJ strands. Starting in the lower crypt, upregu-
lation extends the expression of claudin-2 toward the surface epi-
thelium. The functional role of this modified expression and the
consequential increase in leakiness, however, is less clear so far.

Aim of this review article is to summarize our present know-
ledge about the channel-forming TJ protein claudin-2 in the
inflamed intestine in different diseases, especially in regard to
function, regulation and therapeutic aspects.

Structure and Function of the Cation and Water
Channel Claudin-2

Claudin-2, which is predominantly expressed in leaky epithe-
lia, is known as a channel-forming TJ protein permeable to small
cations and water.3,4 Claudin-2 is a 24.5 kDa integral membrane
protein of 230 amino acids which, like all claudins, consists of
4 transmembrane helices, 2 extracellular loops (ECL), a small
intracellular loop, a short intracellular NH2 terminus and a lon-
ger intracellular COOH terminus.5 The COOH-terminus con-
tains a PDZ-binding motif through which claudin-2 is able to
interact with the scaffolding proteins MAGUKs (membrane-
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associated guanylate kinases), Zonula occludens-1 (ZO-1), -2,
and -3.6,7 Trans-interactions have been demonstrated for clau-
din-2 with neighboring claudin-2 (homodimeric) or with clau-
din-3 (heterodimeric), but not with claudin-1.8 Lim and
coworkers showed by using single-molecule force spectroscopy
that trans-interactions in claudin-2 are ECL1-ECL1-mediated
and not ECL2-ECL2- or ECL1-ECL2-mediated.9

The ECL1 includes the claudin signature sequence
(WGLWCC) and is formed by amino acids 29–81, making it
larger than ECL2.10 The ECL1 is discussed as the pore-lining
domain being critical for the channel formation of claudin-2,
which is estimated to have a diameter of 6.5 A

�
at its narrowest

site.11,12 Two highly conserved cysteines in the ECL1, C54 and
C64, are connected intramolecularly by a disulfide bond and nec-
essary for lining the pore by stabilizing the fold in ECL1, but
have no influence on claudin-2 trafficking.13,14 Additional pore-
lining residues were identified in a study using cysteine-scanning
mutagenesis and thiol group modification including, from the
narrowest to the widest part of the pore, S68, S47, T62/I66,
T56, T32/G45, and M52.15 Pore-lining residues from D65 to
S68 in the ECL1 are believed to be the most important ones for
the paracellular functions of claudin-2, and the negatively
charged D65 is already known to be determinative for cation
selectivity.11,12 Additionally, through electrostatic interactions
with D6512 and weaker interactions with negatively charged
p-electrons of the Y67 aromatic residue16, cations are able to per-
meate the pore in a dehydrated or partially dehydrated state.

The channel formed by claudin-2 is selectively permeable to
small cations without significant discrimination between LiC,
NaC, and KC and in addition it is permeable to water molecules
(diameter of 2.8 A

�
).3,4,12 Water and cation transport appear to

be coupled with paracellular NaC flux inducing paracellular water
flux and in turn, osmotically-induced water flux driving paracel-
lular NaC movement. As a consequence of the selectivity and
dimensions of the claudin-2-based channel, anions, uncharged
oligomers like mannitol and lactulose, and macromolecules like
4 kDa FITC-dextran are not able to pass through.3,12,17 Thus,
different paracellular pathways have been postulated for small
ions and for macromolecules.18 Small ions predominantly pass
through claudin-based channels of the bicellular TJ (high-capac-
ity, charge- and size-selective “pore pathway”). This means that
the uptake of antigens and pathogens during inflammation and/

or infection is not mediated by the claudin-2 channel itself.
Instead, it is suggestive that concomitant alterations of other TJ
proteins and possibly the change in TJ ultrastructure during clau-
din-2 upregulation could contribute to the leaky gut under path-
ologic conditions.

Using freeze-fracture electron microscopy to investigate TJ
ultrastructure (TJ strand count and meshwork depth) it was
revealed that claudin-2 incorporation into the TJ network does
not affect the number, but it could affect the pattern of TJ
strands. In mouse fibroblasts transfection with claudin-2 resulted
in discontinuous strands on the P-face, whereas continuous
strands were found after transfection with claudin-1.5,19,20 The
same was observed in MDCK I cells transfected with claudin-2
and in MDCK II cells with high endogenous claudin-2, TJ
strands were discontinuous on the P-face, and on the E-face
intramembranous particles were scattered within the grooves.19

In contrast, in MDCK C7 cells, no changes in TJ ultrastructure
could be observed after incorporation of claudin-2 into the TJ.4

Claudin-2 shows a tissue-specific distribution pattern, with
higher expression of claudin-2 in leaky epithelia like in the proxi-
mal nephron and small intestine and less in tight epithelia like in
the collecting duct and colon21–23 Additionally, in the human
small intestine, claudin-2 is expressed along the crypt-villus axis,
whereas in the fetal colon the expression is limited to the crypt
base and in the adult colon tissue it is even absent. Similarly, in
Caco-2 cells claudin-2 is expressed only in undifferentiated stages
with high permeability.24

Claudin-2 KO mice show a decreased transepithelial conduc-
tance in the small intestine due to a decrease in NaC permeabil-
ity.25 Interestingly, claudin-2 loss did not change the intestinal
homeostasis of NaC and KC, presumably as the result of an
expression pattern of claudin-2 restricted only to crypts. This is
in contrast to the other known cation channel of the intestine,
claudin-15, which is expressed in both, villi and crypts in mice.25

Claudin-15 is indispensable for luminal NaC homeostasis, a pre-
requisite for efficient glucose absorption in the small intestine.
The crystal structure of claudin-15 has recently been described
and revealed a characteristic b-sheet fold which is anchored to a
transmembrane 4-helix bundle by a consensus motif. The extra-
membrane b-sheet domain consists of 5 b-strands, 4 of which
build the ECL1 and one the ECL2. The negatively charged
amino acids responsible for cation selectivity are located on one
edge of the b-sheet domain.26 Together with the crystal structure
of claudin-2, which is still unknown, our molecular understand-
ing of paracellular ion channels will be further advanced.

Regulation of Claudin-2

Expression of claudin-2 is changed under different pathologic
conditions, such as cancer, infectious diseases, and inflamma-
tion.27 In inflammatory bowel diseases (IBD), an increase in
claudin-2 is associated with a decrease and/or redistribution of
sealing TJ proteins including claudin-1, -3, -4, -5, and/or -8.
These changes in conjunction with the induction of epithelial

Table 1. Expression of predominant claudins in human intestine

small intestine large intestine Ref.

Claudin-1 CC CC 30,51,116,115

Claudin-2 CC C 23,30,51,116

Claudin-3 C CC 23,30,51,116

Claudin-4 C CC 23,30,51,116,115

Claudin-5 CC 30,116

Claudin-7 C CC 23,30,51

Claudin-8 C CC 23,30

Claudin-12 CC CC 23

Claudin-15 CC C 23

Cmild expression;CC strong expression.
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apoptosis lead to barrier dysfunction and increased ion and water
permeability, which in turn results in leak-flux diarrhea.28–30

Under inflamed conditions, cytokines such as tumor necrosis
factor-a (TNFa) and interleukin (IL)-13 are increased and
induce an upregulation of claudin-2 as shown in cell culture stud-
ies.29,31–33 For example, the pro-inflammatory cytokine TNFa
caused an increase in claudin-2 expression via phosphatidylinosi-
tol-3-kinase (PI3K) signaling in the colonic HT-29/B6 cell
line32,34, while IL-13 did the same in T84 colon cells (Fig. 1).29

Additionally, IL-17 increased claudin-2 expression in T84 cells
via the MEK-ERK pathway35 and IL-6 induced an upregulation
in Caco-2 cells and mouse colon through MEK-ERK and PI3K
signaling (Fig. 1).33 Activation of these pathways resulted in an
increased expression of the transcription factor Cdx2, thereby
enhancing claudin-2 promoter activity.33

Cdx2 and Cdx1 possessing the Cdx homeodomain are the
most important transcription factors involved in claudin-2
expression that have been identified in human intestinal epithelial
cells so far. The Cdx2-induced claudin-2 promoter activation is
augmented by hepatocyte-nuclear factor (HNF)-1a, an organ-
specific regulator of claudin-2 expression that is essential in the
ileum and liver, but not in the kidney.36 Functional crosstalk
between Cdx-related transcriptional activation and Wnt signaling
is involved in the regulation of promoter-mediated claudin-2
gene expression, and is thought to be essential for the differentia-
tion of epithelial cells.37 In human intestine, it was shown that in
addition to Cdx2 and HNF-1a, expression of the transcription
factor GATA4 correlated with claudin-2 abundance (Fig. 1). In
line with decreased claudin-2 expression, no GATA4 is expressed
in the colon and in differentiating intestinal Caco-2 cells.24

GATA4 appears to interact functionally with Cdx2 and HNF-
1a to modulate transcription of different intestinal genes38, and
cotransfection of Cdx2, GATA4 and HNF-1a increased claudin-
2 promoter activity in the intestinal Caco-2 cell line.24 Further-
more, in Caco-2 cells and mouse intestine, claudin-2 is also upre-
gulated by the transcription factor complex activator protein 1
(AP-1) induced by IL-6 and JNK (c-Jun N-terminal kinase) acti-
vation39, and by signal transducers and
activators of transcription 6 (STAT6),
which is induced by IL-13 in ulcerative
colitis (Fig. 1).40 Inhibition of STAT6
phosphorylation or transfection with
STAT6 siRNA prevented claudin-2
upregulation in T84 and HT-29
cells.40–42 On the other hand, the perox-
isome proliferator-activated receptor a
(PPARa) appears to downregulate clau-
din-2 (Fig. 1) as PPARa knockout mice
exhibit enhanced intestinal claudin-2
expression and increased lactulose/man-
nitol uptake ratio in experimental coli-
tis, probably by indirect means.43

Claudin-2 is also regulated on post-
translational level (Fig. 1), e.g. by alter-
ing the phosphorylation levels. By
prediction software, Gonz�ales-Mariscal

and coworkers identified 10 potential phosphorylation sites for
the carboxyl tail of human claudin-2.44 So far, the phosphoryla-
tion site S208 has been demonstrated to have a regulatory effect
by promoting the localization of claudin-2 in the plasma mem-
brane of MDCK cells and reducing its trafficking to lysosomes.45

The same group demonstrated that claudin-2 is downregulated
in MDCK cells by modification of residue K218 by small ubiqui-
tin-like modifier-1 (SUMO-1).46 Finally, claudin-2 can be regu-
lated by other claudins. For example, insertion of claudin-8 in
MDCK II cells displaced endogenous claudin-2 from the TJ,
downregulated its expression, and tightened the paracellular
barrier.47,48

Claudin-2 in Diseases of the Small and Large
Intestine

Impaired barrier function is a central finding in several intesti-
nal diseases presenting with inflammation and/or diarrhea. These
barrier defects often include an increase in claudin-2 expression,
which occurs in the IBDs, Crohn’s disease and ulcerative colitis,
infectious diseases including human immunodeficiency virus
(HIV) infection, and gluten-sensitive enteropathy (Table 2).30,49–
52 However, the barrier disturbances in these diseases are differen-
tially mediated, and while alterations in the expression and/or
localization of TJ proteins predominate in some, induction of epi-
thelial apoptosis and/or leaks/erosions play an important role in
others. Furthermore, claudin-2 is not the only TJ protein dysregu-
lated in intestinal diseases, and changes in barrier-strengthening
and other channel-forming TJ proteins must also be considered in
the overall picture of barrier modification processes.

Crohn’s Disease
The importance of an intact epithelial TJ network as a central

part of epithelial barrier integrity and disease pathogenesis is
especially evident in Crohn’s disease. Inflammatory areas can be
seen throughout the whole gastrointestinal tract but are most

Figure 1. Summary of claudin-2 regulation. Figure is based on references.24,29,32–36,38–46 See text for
detailed description.
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frequent in the distal small intestine and in the large intestine.
Mucosal immune stimulation through a leaky barrier is a funda-
mental event in Crohn’s disease and an important pathomechan-
ism in the onset, recurrence, and persistence of disease activity.
In addition, clinical symptoms such as leak flux diarrhea result
from a leaky barrier, for which the increased claudin-2 expression
is a predominant feature.

This upregulation is an early and functionally important alter-
ation in the inflamed mucosa of Crohn’s disease patients, while
TJ proteins with sealing properties, including claudins-3, -4, -5,
and -8 and occludin, are downregulated and redistributed off the
TJ domain (Table 2).29,30,53 Functional consequences of dysre-
gulated TJ protein expression were found in endoscopic biopsies
from patients with mild to moderate Crohn’s disease, which, in
addition to altered TJ protein composition, displayed changes on
ultrastructural level; decreased TJ strand numbers, increased
strand discontinuities and pearl string-like strands, as well as
impaired barrier function.30 The extent to which the increase in
claudin-2 expression contributed to the appearance of strand dis-
continuities is not clear, yet. However, the fact that strand breaks
appear in inflamed tissues with high claudin-2 content and clau-
din-2 transfection into L-fibroblasts–in contrast to claudin-1 or
-3 transfection–induces the formation of discontinuous strands,
points to an important role of claudin-2 in this context.5

Enhanced epithelial endocytosis in Crohn’s disease could be
an additional mechanism by which not only bacterial transloca-
tion is enhanced but also TJ strands are removed. So far, this has
been studied for occludin in response to TNFa.54 Which TJ pro-
teins are also concerned by this mechanism is still not fully
understood but claudin-5 and -8 are possible candidates, since
they are found to be internalized in Crohn’s disease. Whether or
not claudin-2 is endocytosed in parallel as well, is not known but
even under inflammatory conditions most of the immune reac-
tivity of claudin-2 has been detected in the TJ and not in subapi-
cal cellular compartments.30

TNFa and interferon-g (IFNg) are important effector cyto-
kines in Crohn’s disease, and have been originally presented as
the typical Th1-cytokine profile of the disease.55 Additional cyto-
kines contributing to impaired epithelial function have been
identified, including the Th2-cytokines IL-4 and -13, IL-17, IL-
1b, and IL-6, and even mast cell released mediators such as hista-
mine have been found to play a role.56,57 However, it remains to
be seen whether its pro- or anti-inflammatory effects on the intes-
tinal epithelium will prevail.58,59 Notably, these cytokines induce
intestinal barrier defects in cultured epithelial cells and animal

models that resemble those found in Crohn’s disease patients,
including TJ changes and epithelial apoptosis induction.60 Cyto-
kines can influence TJs through either transcriptional regulation
or reorganization of their subcellular distribution within the
enterocyte. For example, TNFa stimulates claudin-2 protein
expression via the PI3K pathway37 and, in combination with
IFNg, also downregulates the barrier-forming claudins -1, -5,
and -7.61 In addition, induction of myosin light chain kinase
(MLCK), an important regulator of general TJ physiology and
involved in pathologic changes seen in IBD62, by TNFa or IL-
1b leads to reduction in barrier function.63,64 As shown for
TNFa, an increase in MLC phosphorylation by MLCK results
in reorganisation of perijunctional F-actin, leading to the translo-
cation of occludin into the cytosol by a caveolin-1-dependent
endocytic process.58,65 Endocytosis-mediated barrier changes are
also induced by IFNg, which stimulates the macropinocytosis of
occludin, JAM-A, and claudin-1 via Rho/Rock signaling.66

Barrier disturbances have long been postulated as a significant
cofactor in the etiology of Crohn’s disease. Elevated intestinal
permeability precedes relapse or even onset of the disease in some
patients.67,68 Genetic predispositions to barrier defects could
lead to inappropriate immune stimulation and chronic intestinal
inflammation. For example, polymorphisms in caspase recruit-
ment domain 15 nucleotide-binding oligomerization domain 2
(CARD15/NOD2), a sensor of bacterial cell wall components
and immune system stimulator, are associated with higher muco-
sal permeability and an increased susceptibility to Crohn’s dis-
ease.69–71 The precise mechanisms linking CARD15/NOD2
mutations and increased intestinal permeability are still
unknown. One possibility is that impaired production of antimi-
crobial defensins associated with CARD15/NOD2 mutations
could facilitate bacterial translocation into the mucosa, leading to
inflammation and cytokine-mediated TJ changes.72–76 In sup-
port of this thesis, CARD15/NOD2 knockout mice, which are
more susceptible to TNBS colitis, show intestinal changes that
include enhanced bacterial translocation, elevated TNFa, IFNg,
and IL-4, decreased ZO-1 and -2, and increased permeability.77

Although potential changes in the expression of claudin proteins
were not reported, all 3 cytokines are known to have significant
effects on TJ protein expression, including the regulation of clau-
din-2.30,32,34,78 A more direct link between claudin-2 and the
induction of colitis is found in SAMP1/YitFc mice, which show
an increase in claudin-2 expression and intestinal permeability
that precedes the onset of a spontaneous Crohn’s disease-like
ileitis.79

Table 2. Altered claudin expression profile in intestinal barrier defects

Disease claudin-1 claudin-2 claudin-3 claudin-4 claudin-5 claudin-7 claudin-8 claudin-15 occludin Ref. #

Crohn’s disease D " # D # D # not detected # 30

ulcerative colitis #, D " D # # # 50,51

celiac disease D " # D # D " # 52

HIV # " D D 100

In addition, claudin-11, -12, -14 and -16 were not detected, neither in Crohn’s disease patients nor in controls.30 Claudin-2 was not detectable in controls of
all diseases." increased, # decreased, and D unchanged expression of tight junction protein versus control.
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Ulcerative Colitis
Upregulated claudin-2 expression and increased intestinal per-

meabilities are also characteristic of ulcerative colitis, the other
major IBD, which affects the large intestine. As for Crohn’s dis-
ease, intestinal barrier defects in ulcerative colitis are multifacto-
rial, and elevated claudin-2 levels are accompanied by a
downregulation and relocalization of barrier forming TJ proteins,
including claudin-1, -4, and -7, and occludin (Table 2)50,51, a
higher rate of apoptosis, and epithelial lesions.80 Furthermore,
the role of claudin-2 in structural TJ strand defects leading to dis-
continuous and pearl string-like strands is complicated by the fact
that there are higher levels of claudin-2 in ulcerative colitis than
in Crohn’s disease, but less strand breaks.29,81

The key effector cytokine in ulcerative colitis, IL-13, is consid-
ered to be an important factor in epithelial barrier dysfunction.50

Epithelial permeability is increased by IL-13 through claudin-2
upregulation, and the induction of epithelial apoptosis and inhi-
bition of epithelial restitution processes, which lead to the devel-
opment of microerosions and lesions.50,82,83 Mechanisms
regulating IL-13-induced claudin-2 expression include both
PI3K and STAT6 signaling pathways.29,40 Notably, in STAT6-
deficient mice, attenuation of oxazolone-induced colitis is associ-
ated with a decrease in claudin-2 expression.41

Genetic predisposition to ulcerative colitis via barrier dysfunc-
tion could arise from mutations in transcription factors that
regulate TJ protein expression. Hepatocyte nuclear factor-4a
(HNF-4a), a transcriptional regulator of TJ proteins, was
recently identified as a susceptibility locus for ulcerative colitis in
a genome-wide association study, and intestinal expression is
decreased in ulcerative colitis patients and dextran sodium sulfate
(DSS)-treated mice.77,84 In the absence of HNF-4a, deregulation
of TJ protein expression, including an upregulation of claudin-2
and downregulation of claudin-4 and -7, and increased intestinal
permeability occurs, and a chronic IBD-like inflammation spon-
taneously develops in mice.38,84,85 HNF-4a likely regulates clau-
din-2 expression in a manner similar to HNF-1a, which
enhances claudin-2 transcription through HNF-1-binding sites
in the promoter region.36 Thus, claudin-2 expression in ulcera-
tive colitis may be increased as the result of a HNF-4a mutation.

Celiac disease
Celiac disease is an autoimmune enteropathy triggered by the

gliadin fraction of dietary gluten in genetically prone individuals.
In celiac disease, the small intestine is affected with a longitudinal
gradient of more involved proximal and less altered distal seg-
ments, where the gliadin or its cleavage products have already
been completely degraded or absorbed. As in IBD, barrier distur-
bances are a key feature of celiac disease, and play a key role in
disease pathogenesis.86 Compromised barrier integrity is a com-
ponent of disease induction by facilitating the unwanted access
of immunogenic gliadin peptides to the mucosal immune system,
which triggers innate and adaptive immune responses. The aber-
rant immune response mediates intestinal barrier changes,
including a characteristic mucosal transformation toward villus
atrophy, that are reflected in the typical clinical presentation–
chronic diarrhea, malabsorption, and weight loss.

Both paracellular and transcellular mechanisms contribute to
the transport of gliadin. During early stages of the disease, endo-
cytotic uptake and apical-to-basolateral transcytosis is a common
route for gliadin passage87,88 while deregulation of the paracellu-
lar pathway by TJ alterations is more typically associated with
advanced stages.89–91 However, the occurrence of increased intes-
tinal permeability in healthy relatives of patients92 and the dis-
covery of disease susceptibility genes encoding for proteins
involved in TJ assembly (MYO9B, PAR-3, MAGI-2) suggest
that a primary barrier defect could facilitate the onset and/or per-
petuation of the disease. Whether primary defects can contribute
to the uptake of gliadin or its cleavage products and trigger dis-
ease activation is yet to be diagnosed, as a role for the paracellular
pathway in gliadin transport–at least in early stages of the dis-
ease–is controversial.87,93

TJs in celiac disease show significant structural defects, includ-
ing less and more discontinuous strands, and changes in protein
composition and localization (Fig. 2).94,95 Duodenal biopsies
from children with celiac disease revealed an upregulation of
claudin-2 that correlates with disease severity.91 In a detailed
analysis of TJs in advanced celiac disease, the expression and
localization of several proteins were altered, and these changes,
rather than apoptosis or lesions, were responsible for functional
paracellular leaks.90 Expression of claudin-2 and also -15 was
increased in patient biopsies. However, in contrast to the TJ-
localization of claudin-2, claudin-15 was primarily found in
intracellular vesicles. Thus, claudin-15 likely contributes little to
the barrier disturbances; rather, considering its central role in
intestinal glucose absorption25, it may be more functionally rele-
vant for glucose malabsorption in celiac disease. Notably, clau-
din-15 knock-out mice present a megaintestine morphology with
hypertrophic villi, indicating a role in epithelial growth and dif-
ferentiation regulation.25 Thus, claudin-15 could possibly be
involved in the mucosal architecture changes in celiac disease,
too.

Also contributing to the barrier defect, barrier-forming pro-
teins, claudin-3, -5, -7, and occludin were concomitantly down-
regulated (Table 2).90 Expression of both claudin-3 and -5 was
not only decreased, but also distributed off the TJ domain and
into intracellular vesicle-like compartments, possibly due to
changes in intracellular trafficking (e.g., altered endocytosis or
disturbed movement to the plasma membrane). While experi-
mental data on trafficking of TJ proteins in celiac disease is not
available, IFN-g, a key effector cytokine in celiac disease, is an
important regulator of TJ endocytosis.96 IFN-g upregulated
claudin-2 in celiac disease if disease activity is very pronounced as
in Marsh IIIc (complete villus atrophy).88 Additionally, TGFß2
seems to be involved in epithelial-mesenchymal-transition
(EMT) with a concomitant change in cell polarity that also causes
elevated epithelial permeability due to altered expression and
assembly of TJ proteins claudin-2, -3, -5, -7 and ZO-1.52

HIV-enteropathy
Untreated HIV infection is characterized by loss of CD4-

positive T lymphocytes as well as by systemic immune activation
which are linked to each other via HIV-associated immune
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activation as a driving force for T-helper cell depletion.97,98 Ele-
vated serum concentrations of microbiota lead to hyperimmune
activation. Based on this, a defect of the intestinal mucosal
barrier–so far mainly studied in the small intestine but presum-
ably also affecting the large intestine–has been proposed to allow
for increased translocation of gut microbiota. Evidence for this
comes from studies combining a quantitative analysis of barrier
function with structural data which suggest epithelial apoptosis
and altered TJ protein expression as structural correlates of the
HIV-associated barrier defect.99,100 Intestinal expression of clau-
din-2 was found to be increased in untreated HIV-infected
patients100 which probably contributes to increased transepithe-
lial cation and water fluxes and to the onset of diarrhea (via a leak
flux mechanism). Thus, it is reasonable to conclude that changes
in TJ ultrastructure are responsible for the increase in epithelial
permeability for small-molecular weight solutes. However,
according to our present understanding these alterations contrib-
ute most likely only in part to the accelerated macromolecule
translocation. The latter could e.g. also be due to epithelial apo-
ptosis with a parallel increase in perforin-expressing CD8C lym-
phocytes in the mucosa.99 TJ changes and epithelial apoptosis
are due to the increased production and release of pro-inflamma-
tory cytokines like IL-2, IL-4, and TNFa during HIV-infection
of the mucosa.100 An increased production of inflammatory cyto-
kines such as TNFa, IL-6, IL-8 after incubation with HIV-1 was
indeed found in cultured intestinal epithelial cells.101

Even the mucosa of patients with primary HIV infection
showed increased expression of genes related to immune activa-
tion and decreased expression of genes related to epithelial
repair.102 Thus, the mucosal barrier defect develops already dur-
ing primary HIV infection. An additional effect may be exerted

by HIV itself, which during
primary infection actively
replicates within the intesti-
nal mucosa.103,104 As
shown in cell culture stud-
ies, the viral (glyco)proteins
gp120, Tat and Vpr can
directly affect epithelial bar-
rier function by inducing
alterations of TJ protein
expression and epithelial
apoptosis.105,106

After termination of the
immunological events of
primary infection, HIV
infection enters the chronic
stage which is characterized
by continual viral replica-
tion, chronic hyperimmune
activation and a progressive
decline of peripheral CD4
positive T-lymphocytes.
During this stage of infec-
tion, perforin-expressing
CD8 T cells cannot be

detected anymore in the mucosa of the gastrointestinal
tract.99,107,108 Despite this, mucosal barrier remains compro-
mised–as indicated by an increase in permeability for ions and
small-molecular weight solutes as well as a higher rate of epithe-
lial apoptosis in chronic disease99–indicating additional immu-
nological trigger mechanisms for the induction of barrier
dysfunction. The mechanisms responsible for this include TJ
protein expression changes for claudin-1 (decreased) and clau-
din-2 (increased) (Table 2).99

The question however, which mechanisms maintain the
increased mucosal production of inflammatory cytokines in
chronic HIV infection, has not been fully resolved, since there
are no measurements on endocytotic antigen uptake so far.
Another putative factor is IL-22 which was shown to play a cru-
cial role in mucosal repair and regeneration and which is downre-
gulated by the influence of macrophages in HIV-infected
patients.109

Therapeutic Aspects

For inhibiting claudin-2 upregulation in intestinal diseases
several therapeutic options could be discussed. In general, all
strategies which inhibit the increase in production of cytokines
involved in claudin-2 alterations are a target for therapeutic inter-
vention. It has been shown that anti-TNFa therapies for patients
with IBD cause “mucosal healing” which suggests restitution of
the intestinal barrier function.110 The underlying mechanisms
were identified by an in vitro study on 2 intestinal cell models,
Caco-2 and T-84. The anti-TNFa antibody adalimumab antag-
onized the decrease in transepithelial electrical resistance (TEER)

Figure 2. Freeze fracture electron microscopy of epithelial tight junctions from the jejunum of controls (left) and
acute celiac disease patients with villus atrophy (right) obtained from Schulzke et al.95 Significant reduction in the
number or horizontally oriented strands and the depth of the tight junctional strand network was observed. Addi-
tionally, strand discontinuities appeared in celiac disease.
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and the appearance of irregular membrane undulations and pre-
vented internalization of TJ proteins upon combined exposure to
IFNg and TNFa. Adalimumab inhibited the TNFa induced
changes in expression of claudin-1, -2, -4, and occludin and the
activation of the PI3K signaling which was observed in T-84
cells. In both cell models, the cytokine-induced increase in phos-
phorylation of myosin light chain and the activation of p38
MAPK and NFkB signaling which accompanies the decline in
TEER is inhibited by adalimumab. Thus, adalimumab prevents
barrier dysfunction induced by TNFa, on the levels of function
and structure as well as signaling cascades.

Another possibility for protection of the intestinal barrier
includes the treatment with butyrate, a short-chain fatty acid pro-
duced by microbial fermentation of carbohydrates in the colon. A
study employing a mouse model of DSS colitis revealed an attenu-
ation of inflammation and mucosal lesions after oral administra-
tion of sodium butyrate.111 It was shown by a microarray study,
that in the human colonic epithelial cell line HT-29 the expression
of 19,400 genes was changed in response to butyrate. Among
these, 221 genes specifically associated with the processes of prolif-
eration, differentiation, and apoptosis were identified, 59 of these
genes were upregulated and 162 downregulated, in accordance
with the known butyrate effects. The claudin-2 gene belongs to
the genes which were downregulated after butyrate treatment.112

This downregulation depends on a reduced binding affinity of
transcription factors within the claudin-2 promoter.113 In response
to butyrate treatment, many different parameters could be
involved in the protective action on intestinal barrier function,
such as upregulation of barrier-forming TJ proteins claudin-1,
occludin, ZO-1, ZO-2, anti-inflammatory effects, and regulation
of cell proliferation, differentiation and apoptosis.

For another natural compound, the plant alkaloid berberine,
barrier protective effects have recently been revealed.34 Berberine
is used in traditional Eastern medicine for the treatment of diar-
rhea and gastroenteritis. The alkaloid has been shown to cause a
downregulation of claudin-2 which is associated with the antidi-
arrheal effect. Additionally, it was found to completely antago-
nize the TNFa-mediated barrier defects in the intestinal cell
model HT-29/B6 and in rat colon. TNFa induced a decrease in
TEER and an increase in permeability for the paracellular marker
fluorescein. This was due to the removal of claudin-1 from the TJ
and the increase in claudin-2 expression. Berberine prevented

TNFa-induced claudin-1 disassembly and upregulation of clau-
din-2. The effects of berberine seem to be due to inhibition of
the PI3K/Akt signaling pathway which is involved in claudin-2
expression and the src-kinase and NFkB pathways responsible
for claudin-1 assembly within the TJ. It has been shown that ber-
berine exerts a protective effect on intestinal injury in rats chal-
lenged with lipopolysaccharides (LPS).114 In rats, pretreatment
with berberine prior to the administration of LPS significantly
suppressed the increased levels of TNFa, IL-1ß and nitric oxide
in the plasma as well as the activation of toll-like receptor 4 and
NFkB in the ileum.

However, one has to keep in mind that none of the possible
therapeutic interventions discussed here exert an effect which was
exclusively specific for claudin-2. Nevertheless, since all these
compounds affect different components contributing to intesti-
nal barrier function, they may be suitable for multimodal thera-
pies. Additionally, compounds which prevent production, release
or action of pro-inflammatory cytokines such as TNFa, IFNg,
IL-2, IL-4 and IL-13 exert protective effects on intestinal diseases
associated with epithelial barrier dysfunction.

Conclusions

Claudin-2 is a structural component of tight junction strands
which forms cation channels. However, the functional conse-
quence for epithelial barrier function depends on the background
of all other claudins in the TJ. In small and large intestine, clau-
din-2 expression allows for a better passage of sodium and water
by formation of paracellular channels being permeable to these.
Claudin-2 seems to contribute also to TJ strand discontinuities,
although it can not be the only determinator of this phenome-
non. Therefore, claudin-2 distinctively upregulated in most
inflammatory and infectious diseases of the intestine is rather a
contributor or even only an indicator than the reason for an
increased macromolecule passage through the intestinal wall.
Though, claudin-2 itself contributes to diarrhea in many intesti-
nal diseases via a leak flux mechanisms.
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