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The human hand is a complex structure that performs various functions for activities of daily living and
occupations. This paper presents a literature review on the methodologies used to evaluate hand
functions from a biomechanics standpoint, including anthropometry, kinematics, kinetics, and electro-
myography (EMG). Anthropometry describes the dimensions and measurements of the hand. Kinematics
includes hand movements and the range of motion of finger joints. Kinetics includes hand models for

tendon and joint force analysis. EMG is used on hand muscles associated with hand functions and with
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1. Introduction

The human hand is composed of a thumb, index finger, middle
finger, ring finger, little finger, and palm, which includes the thenar
eminence, the hypo thenar eminence, and creases. The fingers
contain 19 bones of distal phalanges, middle phalanges, and
proximal phalanges, and metacarpal bones. Thus, the fingers have
metacarpophalangeal (MCP), proximal interphalangeal (PIP), and
distal interphalangeal (DIP) joints, whereas the thumb has carpo-
metacarpal (CMC), MCP, and interphalangeal (IP) joints. The wrist
contains the following eight bones: the hamate, pisiform, triquetral,
capitate, lunate, trapezoid, trapezium, and scaphoid [1]. In total, the
hand has 27 bones and 28 muscles [2]. These numerous bones and
muscles enable the hand to perform various functions.

The hand is frequently used in activities of daily living and in-
dustrial fields because of its many functions. This can cause
numerous musculoskeletal disorders (MSDs) in the hand relative to
the lower limbs, such as De Quervain’s tenosynovitis, trigger finger,
ganglionic cysts, hand—arm vibration syndrome, and BlackBerry
thumb [3]. Hand disorders account for one third of all injuries at
work, one fourth of lost work time, and one fifth of permanent
disabilities [4]. Hand discomfort and injuries occur when a task
requires a hand strength that exceeds the worker’s capability, an

awkward posture, and/or repetitive motion. Individuals with hand
MSDs are limited in their activities due to their reduced grip
strength and ability [5—8].

The handgrip is an important and basic function for various
movements. Object manipulation with a stable handgrip is one of
the most frequent movements performed in activities of daily living
and occupational fields. A reduction in the grip strength and control
ability can be attributed to physical and psychosocial factors.
Physical factors can include a reduction in the number of con-
tracting muscle fingers, reduction in the firing rate of motor units,
and change in the muscle fiber type. Psychosocial factors can
include pain, a fear of pain, and a fear of reinjury [8]. Pain can
reduce the grip force, which decreases voluntary muscle activity.
This manifests as decreases in the force generation, electromyo-
graphic (EMG) activity [9—11], motor unit discharge rate [12], and
ability to maintain a grip force [13,14]. MSDs can cause a person’s
physical and psychological capacities to deteriorate.

Many researchers in the ergonomics field have been trying to
understand how humans use their hands and which factors affect
the hand-function capacity. In particular, the physical capacity of
the hand has typically been evaluated by biomechanical method-
ologies. Biomechanical analysis of the human hand can be divided
into anthropometry, kinematics, kinetics, and EMG [15].The
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application of biomechanical principles is important for preventing
MSDs in order to improve working conditions and performance. In
ergonomics, safety, and health, the hand is mainly evaluated to
reduce the risk of MSDs. In product development, the hand is
actively studied for the design of hand tools and cell phones. In
rehabilitation, the hand is studied to evaluate the difference be-
tween patients and healthy individuals. Studying the hand is
important for the development of hand-related simulations and
robots in the digital manufacturing simulation and intelligence
robot fields.

Detailed information on the technologies and methodologies
used for hand analysis is required for nonexperts in the field of
biomechanics such as hand-tool designers and safety supervisors
to understand and choose easy and suitable methods. Hand
anthropometry is simply the basis of biomechanical analysis. The
range of motion (ROM) is the most commonly used functional
measurement variable. Anatomical measurements and the ROM
are usually used to design hand products and rehabilitation. The
three-dimensional (3D) motion analysis system is currently the
most commonly used technique to measure kinematic variables
such as the trajectory, angle, velocity, and acceleration. This
system needs marker sets and kinematic models for analysis.
Several kinds of marker sets and kinematic models have been
developed based on the purposes of different studies, and the
accuracy of the system has been improved. Thus, it can provide
important information for researchers to choose a suitable
method. Kinetic hand models have been developed for analyzing
the internal load (force and moment) of tendons and muscles
during static and dynamic motions. These kinetic hand models
have advantages and disadvantages with regard to the mea-
surement method and complexity. Information from kinetic hand
models can help a researcher design an experiment design. EMG
is most commonly used in various research fields to evaluate the
muscle activity, fatigue, and conduction velocity. For accurate
analysis, understanding the use of the EMG equipment, electrode
placement, muscle position, and signal-processing methods is
important.

This paper presents a literature review of some technologies and
methodologies used for hand-function analysis based on a biome-
chanical approach and the results of previous studies related to
hand functions. The following four categories of hand-function
analysis are covered: (1) anthropometry, (2) kinematics, (3) ki-
netics, and (4) EMG.

2. Methods

For this review, a systematic search was conducted using
PubMed, Elsevier Science, and ScienceDirect databases, and Google
Scholar on studies published from 1960 to 2014. The search was
restricted to papers published in English and containing the terms
“hand biomechanics,” “hand function,” “hand anthropometry,”
“hand kinematic,” “hand kinetic,” “EMG of hand,” “finger joint
angle,” “finger tendon force,” or “biomechanical hand model” in the
title, abstract, or keywords. The initial search of the database yiel-
ded about 450 results. After a review of the titles and abstracts to
reject duplicated articles, 245 articles were selected. After applying
inclusion and exclusion criteria, 19 articles related to hand
anthropometry were selected, and 31 articles related to hand ki-
nematics were identified from the manual targeted search. Eigh-
teen articles or books related to hand kinetics, 10 articles related to
hand EMG, and 26 articles related to hand anatomy, MSDs, posture,
and functions were selected. In total, 104 articles were selected for
inclusion in the current review (including 6 books and 6 reports). In
the following sections, the term “reviewed articles” refers to the
104 selected articles.

3. Hand anthropometry
3.1. Technology for hand anthropometry evaluation

Hand anthropometry is important to the design of products for
human hands. Examples include machine guards, hand tools, and
luggage handles. Hand anthropometric parameters are categorized
into anatomical measurement variables such as the length, width,
and circumference [16—18]; functional measurement variables
such as the handgrip span, flexion and extension ROMs of the fin-
gers and wrist, and abduction/adduction and deviation ROMs of the
wrist in engineering anthropometry [16,18—20].

Hand anthropometry can be directly measured using digital
calipers, circumference tapes, and finger circumference gauges
[16,21] and can also be measured from photographs [18,22] and
scans [23,24]. Goniometers and 3D motion analysis systems are used
to measure the width, flexion, and extension ROMs [25]. Direct
measurement is easy and efficient, but skin movement and experi-
menter error can occur. Photography measurement requires less
time than direct measurement, and the recorded information can be
repeatedly used [26], but measuring the circumference is difficult.
Although 3D scans can be used to measure diverse hand areas pre-
cisely, data can be distorted due to movements during the scan.

3.2. Anatomical measurement variables

In general, anthropometry for anatomical measurement vari-
ables is divided into general and application surveys. General sur-
veys are used to explain the hand variation of large populations.
Their main purpose is to describe populations. By contrast, appli-
cation surveys are used to gather data for a specific product.
Therefore, an application survey often uses few individuals but
with strictly defined populations such as occupational groups [18].

Following the trend of general surveys for hand anthropometry,
Vicinus [27] measured 44 dimensions of both hands in 253 males.
The results for the left and right hands were significantly different.
The left hand had a larger breadth than the right hand, whereas the
right hand had a larger length than the left hand. Moreover, the
correlation between the hand length and breadth dimensions was
generally poor. Garrett [28,29] conducted a comprehensive general
survey on 148 males and 211 females to measure 34 dimensions of
the hand and 17 dimensions of engineering anthropometry [16].
This study showed a wider range of hand dimensions than previous
studies. Gooderson et al [30] measured 62 dimensions of the left
and right hands in 300 males and 187 females in the British army.
Similar to Vicinus [27], they found a low correlation between the
hand length and breadth dimensions. Greiner [18] measured 64
hand dimensions. Recently, Okunribido [31] measured 18 di-
mensions of the hand in 37 females from Ibadan and western
Nigeria and compared them with those of other populations. The
results showed that hand dimensions differed between pop-
ulations. Similarly, Mandahawi et al [32] measured 24 hand di-
mensions in 115 males and 120 females and analyzed the difference
between sexes and between Jordanians and other populations.
Their results showed significant differences with regard to the sex
and population.

With regard to examples of application surveys for hand
anthropometry, Barter and Alexander [33] measured 18 hand di-
mensions in 100 individuals to develop a glove sizing system. In
their study, hand dimensions were selected for developing the
glove system, and these dimensions are not normally measured in
most hand surveys. Rosenblad-Wallin [34] measured 33 hand di-
mensions for the development and design of army gloves.

Hand anthropometry data are used to design ergonomic tools or
equipment and space. Thus, the measurement criteria and



Table 1

Summary of hand anthropometry dimensions
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Breadth/circumference

No. Variable No. Variable No. Variable

1 D1 length 26 D2 MCP link length 51 D2 PIP joint breadth

2 D2 length 27 D3 MCP 1 link length 52 D3 PIP joint breadth

3 D3 length 28 D4 MCP link length 53 D4 PIP joint breadth

4 D4 length 29 D5 MCP link length 54 D5 DIP joint breadth

5 D5 length 30 D1 PIP link length 55 D2 DIP joint breadth

6 Crotch 1 height 31 D1 DIP link length 56 D3 DIP joint breadth

7 Crotch 2 height 32 D2 DIP link length 57 D4 DIP joint breadth

8 Crotch 3 height 33 D2 MCP link length 58 D5 DIP joint breadth

9 Crotch 4 height 34 D2 PIP link length 59 Hand breadth from digitizer
10 D1 height 35 D3 DIP link length 60 D1 IP joint breadth

11 D2 height 36 D3 MCP link length 61 Hand breadth

12 D3 height 37 D3 PIP link length 62 D2 PIP joint circumference
13 D4 height 38 D4 DIP link length 63 D3 PIP joint circumference
14 D5 height 39 D4 MCP link length 64 D4 PIP joint circumference
15 D1 tip to wrist crease length 40 D4 PIP link length 65 D5 PIP joint circumference
16 D2 tip to wrist crease length 41 D5 DIP link length 66 D2 DIP joint circumference
17 D3 tip to wrist crease length 42 D5 MCP link length 67 D3 DIP joint circumference
18 D4 tip to wrist crease length 43 D5 PIP link length 68 D4 DIP joint circumference
19 D5 tip to wrist crease length 44 Palm length 69 D5 DIP joint circumference
20 D1 link length 45 Hand length 70 D1 IP joint circumference
21 D2 link length 46 Wrist-index grip length 71 Hand circumference

22 D3 link length 47 Wrist-thumbtip length

23 D4 link length 48 Forearm-hand length

24 D5 link length 49 Hand length from digitizer

25 D1 MCP link length 50 Thumbtip reach

D1, Digit 1 (thumb), D2, Digit 2 (index finger), D3, Digit 3 (middle finger), D4, Digit 4 (ring finger), D5, Digit 5 (little finger), MCP, metacarpophalangeal, PIP, proximal

interphalangeal, DIP, distal interphalangeal, IP: interphalangeal.

dimensions of hand anthropometry differ according to the study
purpose, such as general and application surveys. Although the
hand dimensions measured in application surveys were focused on
specific user groups, they were part of those considered in general
surveys. Table 1 presents the hand anthropometry dimensions for
the previous studies summarized in this literature review. The di-
mensions in Table 1 represent the length, breadth, and circumfer-
ence, which are commonly used as basic data in hand
anthropometry.

4. Hand kinematics
4.1. Technology for hand kinematics

Numerous studies have evaluated the angle, velocity, trajectory,
and acceleration during various hand functions. The following are
common devices used for measuring various hand functions: X-
rays, magnetic resonance imaging (MRI), manual goniometers,
electrogoniometry, video technique, and marker-based motion
analysis systems [35—41]. X-ray and MRI analyses are common
methods for clinical observation. However, X-ray measurements
carry the risk of radiation exposure [35]. The thumb tra-
peziometacarpal joint is difficult to measure with goniometry [42].
To compensate for these limitations, current research is actively
studying the use of motion analysis systems for measuring hand
functions. Motion analysis systems analyze the posture and
movement continuously by calculating the 3D trajectories and have
the benefit of obtaining more reliable data than other methods
[41,43—45]. A motion analysis system requires reflective markers to
adhere to hand joints for measurement; the angle, velocity, tra-
jectory, and acceleration of each joint are then evaluated using a
model based on a mathematical algorithm.

Four types of marker sets can be used for hand analysis. There
are three skin-marker attachment methods. The “one marker per
joint” attachment method attaches markers to each finger joint
head [41,46—51]. The “two markers per segment” method attaches
markers to the distal and proximal heads of the finger segments
[52—55], and the “three markers per segment” method attaches
markers with a triangular shape to finger segments [56,57]. The
“one marker per joint” attachment method has been used to
analyze static conditions such as power and pinch grips. The “two
markers per segment” attachment method has been used to
analyze dynamic movements such as a pinching motion or the ROM
of finger joints. The “three markers per segment” attachment
method has been used to analyze dynamic movements such as a
gripping motion or the ROM of finger joints. The “cluster marker”
attachment method has been used to measure the ROM of finger
joints [58,59]. The “one marker per joint” attachment method has

Table 2
Marker attachment method and kinematic model of previous studies

Model Attachment method Authors

Gupta et al [46],
Carpinella et al [49],
Baker et al [51],
Bazanski [63]

Ryu et al [52],

Chiu et al [53],
Sakai et al [54]

Buczek et al [56],
Cerveri et al [57]

Degeorges et al [58],
Gehrmann et al [59]

Cheng and Pearcy’s model One marker *

Two markers '

Eulerian angle model Three markers

Cluster marker

* One marker per joint
f Two markers per segment.
 Three markers per segment.
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been recommended for use in the clinical research field because it
causes less discomfort to patients when they move their hand, and
it is easy to use the same marker placement for each patient. The
“two markers per segment”, “three markers per segment”, and
“cluster marker” attachment methods have been recommended for
use in the biomechanical field because they are less affected by skin
movement.

The Eulerian angle model [25,53,60,61] and Cheng and Pearcy’s
model [62] are commonly used to analyze the angle, velocity, tra-
jectory, and acceleration of a motion based on the measured
markers. The Eulerian angle model is the most commonly used
model for motion analysis and explains the orientation of a rigid
body in space. An arbitrary direction in space is obtained by three
rotations using Eulerian angles. From this, the finger joint flexion/
extension, abduction/adduction, and supination/pronation are
calculated. Thus, each model uses different mathematical algo-
rithms. The velocity, trajectory, and acceleration are also calculated
from this model. The Eulerian angle model can calculate the rota-
tion angle, whereas Cheng and Pearcy’s model cannot. However,
the Eulerian angle model can overestimate or misinterpret the
flexion/extension and abduction/adduction angles based on 3D
joint rotations [62].

Table 2 lists the marker attachment methods and models used in
previous studies. The calculated angles differ according to the ki-
nematic model and marker attachment method. Cheng and Pear-
cy’s model uses the one marker per joint and two markers per
segment attachment methods for hand analysis. This model and
the marker attachment methods can only calculate the angle of 2D
planes because a 3D axis cannot be defined with only one or two
markers. By contrast, an Eulerian angle model with the three
markers per segment and cluster marker attachment methods can
be used to calculate the angles of all dimensional planes.

4.2. ROM of hand

The ROM of the hand is the most commonly used functional
measurement variable. The ROM measurements include the
flexion/extension, abduction/adduction, and pronation/supination
of the CMC, MCP, and IP joints of the thumb, and MCP, PIP, and DIP
joints of the other four fingers [25]. Finger motion measurements
are divided into active ROM (AROM) and passive ROM (PROM) [64].
Similarly, Hume et al [65] classified their finger motion measure-
ments as functional ROM (FROM) and normal ROM (NROM). PROM
and NROM take the maximum and minimum angles in static po-
sitions, whereas AROM and FROM explain dynamic or functional

Table 3
Range of motion of finger flexion

Table 4

Joint flexion angles for various hand functions (Chao et al., 1989)
Hand function MCP PIP DIP
Tip pinch 48 50 25
Key pinch 20 35 20
Pulp pinch 48 50 0
Power grasp 62 48 23
Abduction 0 0 0
Adduction 0 0 0
Flexion 0 0 0
Extension 45 0 0
Briefcase grip 23 72 55
Holding glass 5 48 20
Opening big jar 50 55 35

Flexion angles are presented in degrees.

DIP, distal interphalangeal joint; MCP, metacarpophalangeal joint; PIP, proximal
interphalangeal joint.

Note. From “Biomechanics of the hand,” by E.Y. Chao, K.N. An, W.P. Cooney, R.L.
Linscheid, 1989. Hackensack (N]): World Scientific; 1989. Reprinted with
permission.

movements such as gripping or pinching. Chao et al [25] examined
the FROM for the fingertips during pinching and grasping, and
Hume et al [65] examined the FROM for various activities of daily
life. Table 3 presents the ROM for hand flexion [66].

Table 3 also provides the flexion ROM of each finger joint for the
previous studies summarized in this literature review. The angle
difference in each study differed according to the AROM and PROM.
The angle of the MCP joint showed the largest variation in the
previous studies.

Chao et al [25] presented joint flexion angles for the index finger
in a variety of hand functions, which include the basic pinch and
grasp, flexion/extension, radial/ulnar deviation, abduction/adduc-
tion with the middle finger, and several common activities of daily
living (Table 4). Detailed angle data on various hand functions are
needed for biomechanical analysis. The joint force, tendon force,
moment, and torque can be calculated from the detailed angle data
through inverse dynamic methods.

5. Hand kinetics
5.1. Technology for kinetics evaluation
Studies on hand kinetics have analyzed the force, moment, and

torque of the fingers and tendons. These studies have used a
tendon-force-measurement system [66], force transducers [71],

Finger Swanson [67]  Becker and Chao et al [25] Hume Degeorges Yoshida et al [36]  Zheng and Li [70]  Mean
Thakor [68] etal [65] and Oberlin [69] (standard deviation)
Thumb CMC — — 529 — — — 45 49 (6)
MCP — — — 56 — 77 50 61 (14)
P — — — — — 81 80 81 (1)
Index MCP 62 71 83 — 97 — 85 80 (13)
PIP — 104 101 — 110 — 100 104 (5)
DIP — 61 73 — 57 — 80 68 (11)
Middle MCP 64 85 90 — 100 — — 85 (15)
PIP — 104 103 — 114 — — 107 (6)
DIP — 74 80 — 57 — — 70 (12)
Ring MCP 67 85 88 — 107 — — 87 (16)
PIP — 107 105 — 110 — — 107 (3)
DIP — 67 75 — 57 — — 66 (9)
Little MCP 64 86 90 — 105 — — 86 (17)
PIP — 99 103 — 111 — — 104 (6)
DIP — 71 78 — 58 — — 69 (10)

Range of motion are presented in degrees.
CMC, carpometacarpal joint; DIP, distal interphalangeal joint; IP, interphalangeal joint; MCP, metacarpophalangeal joint; PIP, proximal interphalangeal joint.
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Table 5
Tendon and joint forces during various hand functions
Hand function Finger Tendon force Joint force Authors
FDP FDS MCP PIP DIP
Power grasp — 4.0—-20.0 1.25-15.0 — — — Bright and Urbaniak [89]
— 4.0 0.60 — — — Schuind et al [88]
Index 2.77 2.53 12.7 4.35 0.09 Chao et al [60]
Middle 3.05 4.23 3.90 7.11 0.17
Little 3.37 3.40 4.50 6.02 3.31
Middle 3.37 3.75 5.18 6.80 3.89 Chao et al [25]
Index 3.17-3.47 1.51-2.14 3.20-3.70 4.50-5.30 2.80—-3.40 An et al [78]
Pinch grip Index = = 5.50 4.60 = Berme et al [90]
Tip pinch — 2.50-12.5 1.00-7.50 — — — Bright and Urbaniak [89]
— 8.30 1.90 — — — Schuind et al [88]
Index — — 3.50—-3.90 4.40—4.90 2.40-2.70 An et al [78]
Key pinch Index 14.70—-27.10 4.90—19.40 2.90—-12.50 An et al [78]
Pulp pinch — — — 4.00—4.60 4.80—5.80 3.00—4.60 An et al [78]

The forces are presented in Newton.

DIP, distal interphalangeal joint; FDP, flexor digitorum profundus; FDS, flexor digitorum superficialis; MCP: metacarpophalangeal joint; PIP, proximal interphalangeal joint.

dynamometers [72], force gloves [ 73], and pinch gauges [ 74] to take
measurements. The tendon forces from the extrinsic muscles of the
hand have been measured directly by instrumenting the tendon
[75-77].

Excluding direct measurements, models have been developed to
predict finger muscle or tendon forces during isometric hand
functions [25,60,78—81], identify the characteristics of hand
movements during grasping motions [82], and estimate the
fingertip location and muscle excursion from measured finger
poses [83]. In ergonomics, most kinetic models of the hand are
based on Landsmeer’s [84] tendon pulley model to identify finger
movements in various hand postures and predict finger muscle and
tendon forces under 2D static conditions.

Table 6

5.2. Kinetic hand model

There are two common methods for analyzing tendon forces,
namely, (1) analytical models and (2) experimental direct tendon-
force-measurement models. Analytical models are based on the
equation of static equilibrium at each joint of the finger to evaluate
the tendon forces based on an externally applied force. Analytical
models have a problem when the system being analyzed is
redundant (i.e., there are more muscles than strictly necessary to
obtain equilibrium across a joint). To solve this problem, two
methods have been used, namely, reduction [60,85] and optimi-
zation [86]. The reduction method is used to reduce the number of
excessive variables until the number of unknown forces is equal to

Hand muscles and the action, origin, insertion, and location of common extrinsic muscles of hand functions

Muscle Action Origin

Insertion Location

FDS Flexion of PIP and MCP joints Common tendon from the medial
epicondyle of the humerus, coronoid
process of the ulna, and oblique line
of the radius

FDP Flexion of DIP joints Upper three-fourths of volar and medial
surfaces of the ulna and interosseous
membrane

FPL Flexion of IP and MCP joints of  Medial epicondyle of the humerus

the thumb

EPL Extension of IP and MCP joints  Ulna adjacent to the interosseous
membrane

EPB Extension of MCP joint of Radius adjacent to the interosseous

the thumb membrane

ED Extension of MCP joints Common extensor tendon from the
lateral epicondyle of the humerus

APL Abduction of the thumb From dorsal surface of the body of the

ulna, interosseous
membrane, and middle third of the
body of the radius

All of these tendons are inserted in the
volar surface of the 2" phalanx

Point index finger to biceps tendon and
insert needle electrode from the ulna
to the tip of the index finger. The
electrode travels through the
palmaris longus

Place the tip of the little finger on the
olecranon and the ring, middle, and
index fingers along the shaft of the
ulna

Volar surfaces of bases of distal
phalanges of the 4 fingers

Palmar aponeurosis and flexor
retinaculum

At the junction of the upper and middle
third of a line joining the medial
epicondyle and middle of the volar
surface of the wrist

Dorsal base of the thumb Distal phalanx On the dorsal side of the forearm
through the thumb extensor

mechanism

Over tendons of radial extensors and On the dorsal side of the forearm
brachioradialis to the base of the
proximal phalanx of the thumb

On the dorsal surface of the base of the

second to 5™ phalanges of the fingers

Grasp the forearm at the junction of the
upper and middle third with the
thumb and middle finger on the
radius and ulna. With the index
finger, bisect these 2 points and
insert a needle electrode at the tip of
the index finger to a depth of 1.27 cm

Over the shaft of the radius at the mid
forearm. The electrode travels
through the ED

Lateral aspect of the base of the 1%
metacarpal

DIP, distal interphalangeal joint; ED, extensor digitorum communis; EPB, extensor pollicis brevis; EPL, extensor pollicis longus; FDP, flexor digitorum profundus; FDS, flexor
digitorum superficialis; FPL, flexor pollicis longus; IP, interphalangeal joint; MCP, metacarpophalangeal joint; PIP, proximal interphalangeal joint.
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the number of required equilibrium equations, thus eliminating
static indeterminacy. In contrast to eliminating unknown muscle
forces in the redundant equation system, the optimization method
involves obtaining a unique solution from a mathematical formu-
lation and optimization algorithm.

Experimental direct tendon-force-measurement models pro-
vide a more comprehensive understanding of the mechanism of the
tendons inside the fingers. There are three common methods for
experimental analysis, namely, (1) EMG, (2) in vivo, and (3)
cadaveric. The EMG method is a readily available technique that can
be applied to force and muscle-function analyses. For in vivo
methods, many researchers have developed force transducers to
directly measure the tendon force during various hand functions
[75,76,87,88]. In case of cadaver study, the mass, volume, and
muscle fiber length are measured to estimate the tendon force
during hand function from cadaver [78,87]. Table 5 lists the tendon
and joint forces in the flexor digitorum profundus (FDP), flexor
digitorum superficialis (FDS), MCP, PIP, and DIP for various hand
functions. Many researchers have attempted to gather accurate
data on internal loads during various hand functions because they
can be used to evaluate physical loads. The forces of the tendons
and joints differ according to the hand functions and fingers. In
general, the MCP joint of the index finger exhibits the largest joint
force for various hand functions. However, previous studies have
provided insufficiently accurate data for all finger joints.

6. Hand EMG
6.1. Hand muscles and technology of surface EMG

Surface EMG (sEMG) can be used to evaluate various biome-
chanical characteristics, including localized muscle activity, fatigue,
and conduction velocity [91]. The musculoskeletal system conducts
the motor unit active potential, which can be expressed as the firing
rate in sarcolemma. The firing rate is the standard used for evalu-
ating muscle activity based on the signal amplitude. EMG provides
a physiological method for assessing muscle usage and the
magnitude of muscular loading and is directly related to muscular
effort [92]. Muscle activity during different occupational activities
is often evaluated by EMG and presented in terms of the percentage
of maximal activity [93]. Christensen [94] defined muscle fatigue as
any reduction in the force-producing capacity of a muscle.

The muscles associated with hand functions can be divided into
extrinsic and intrinsic muscle groups. Extrinsic muscles originate in
the forearm and are generally larger; they generate most of the
force of the hand. Intrinsic muscles are entirely contained in the
hand and are smaller; they are associated with fine finger move-
ment. The extrinsic muscles of the hand can be divided into the
following two groups based on location: anterior and posterior.
Each muscle group can be further classified as superficial and deep.
The anterior muscles serve as flexors, and the posterior muscles
serve as extensors.

In ergonomics studies, two types of electrodes are used to re-
cord EMG signals. The sEMG techniques are much more common
unless there is a specific justification for using the fine-wire
method. sEMG represents the activity of individual muscles or
muscle groups over which the electrodes are placed. Because small
and deep muscles are more difficult to record with sEMG, there is
an increasing interest in recording the activity of larger muscles or
muscle groups. SEMG for noninvasive assessment of muscles has
recommendations for (1) SEMG sensors and sensor placement, (2)
SEMG signal processing, and (3) SEMG modeling. Table 6 lists the
hand muscles and the origins, insertions, and locations of common
extrinsic muscles for hand functions [95—97]. These muscles are
most commonly used to analyze and record various hand functions.

The FDS, FDP, and flexor pollicis longus are the major muscles for
the flexion and extension of four fingers. The extensor pollicis
longus, extensor pollicis brevis, extensor digitorum communis, and
abductor pollicis longus are the major muscles for the flexion,
extension, and abduction of the thumb. These muscles are located
in the forearm and are among the largest hand muscles; thus, sSEMG
is suitable for use.

6.2. Signal-processing technology for EMG evaluation

To evaluate the amplitude of an EMG signal, many signal-pro-
cessing methods have been suggested, such as the mean absolute
value, root mean square (RMS), envelope detection, and ensemble
averaging [98]. During maximal voluntary contraction (MVC),
several changes are observed. The integrated EMG or RMS shows a
gradual decrease. The mean power frequency (MPF) shows a rapid
shift to a lower frequency during sustained MVC [99].

Previous researchers have used EMG to study the mechanism of
intrinsic and extrinsic finger muscles during specific hand positions
and power grips. Armstrong et al [3] used rectified SEMG signals
from the forearm flexor muscles to predict finger forces produced
during tasks involving pinching, grasping, and pressing. Re-
searchers have continued to examine the feasibility of predicting
the grip force from EMG data with reasonably good results
[100,101].

7. Discussion

This paper presents a literature review of some technologies and
methodologies used for hand-function analysis based on a biome-
chanical approach. Four approaches to hand-function analysis are
presented, namely, (1) anthropometry, (2) kinematics, (3) kinetics,
and (4) EMG. Anthropometry includes technology to evaluate
hand-measurement variables. Kinematics includes technology to
evaluate the ROM of each finger joint. Kinetics includes technology
and various kinetic hand models for the analysis of tendon and joint
forces. EMG includes hand muscles associated with hand functions,
SEMG technology, and signal-processing technology.

In general, anatomical measurement variables are classified for
use in general or application surveys based on the purpose of the
study. A general survey measures a large number of hand di-
mensions of numerous individuals; its main purpose is to describe
a population. By contrast, an application survey measures fewer
hand dimensions because only variables that are closely related to
the product of concern are selected and measured. Thus, the
measured dimensions and number of individuals vary depending
on the purpose. However, no sufficient studies were performed to
standardize the optimal number of individuals and related di-
mensions. Therefore, a general survey of hand anthropometry is
required to determine the optimal number of individuals that
provides reliable statistic data. Application surveys of hand
anthropometry should be used to develop standards for di-
mensions closely related to the product of concern.

In kinematics, hand-function analysis uses various marker sets
and models to evaluate the angle, velocity, trajectory, and acceler-
ation of the hand. Techniques for measuring various hand functions
include X-rays, MRI, manual goniometers, electrogoniometry, video
techniques, and marker-based motion analysis systems. To analyze
the angle, velocity, trajectory, and acceleration of a hand based on
the measured marker, the Eulerian angle model and Cheng and
Pearcy’s [62] model are commonly used. Finger motion measure-
ments are roughly classified into AROM, PROM, NROM, and FROM.
PROM and NROM measure the maximum and minimum angles in
static positions, whereas AROM and FROM explain dynamic or
functional movements such as gripping or pinching.
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Studies on kinetics have analyzed the force, moment, and torque of
fingers and tendons. These parameters can be measured either
directly or indirectly. Equipment used for measurement includes
tendon-force-measurement systems, novel force transducers, dyna-
mometers, force gloves, and pinch gauges. Tendon forces from the
extrinsic muscles of the hand are measured directly by instrumenting
the tendon. Kinetic hand models can be divided into analytical and
experimental direct tendon-force-measurement models. Analytical
models are based on the equation of static equilibrium at each joint of
the finger and such models evaluate the tendon force based on an
externally applied force. Experimental direct tendon-force-mea-
surement models provide a more comprehensive understanding of
the mechanism of the tendons inside the fingers.

The muscles associated with hand functions can be divided into
extrinsic and intrinsic muscle groups. Six extrinsic muscles are
commonly monitored in hand-function analysis using SEMG. Ta-
ble 6 lists the action, origin, insertion, and location of these mus-
cles. Most studies have used signal-processing techniques such as
zero crossing, RMS, average EMG amplitude, mean %EMG, MPF, and
maximal voluntary electrical activity. Previous studies on muscle
fatigue and characteristics based on the EMG signals have only
considered static postures, not dynamic postures, and simply
considered the relative muscle activity from the MVC. However, in
the case of dynamic gripping tasks, the muscle fiber depth and
length change with time, and the distance between the SEMG
electrode and muscle fiber also changes. A muscle—tendon
moment difference is generated with changes in the muscle
contraction velocity, and rapid motor unit recruitment by
contraction shows flexible signal characteristics [102]. Therefore,
using EMG on dynamic contractions requires a different interpre-
tation from static contractions.

The biomechanical analysis of the hand is an interdisciplinary
study of the mechanical movement and force of the hand’s
musculoskeletal system; it includes hand anthropometry, kine-
matics, kinetics, and EMG. Biomechanical analysis aims to provide
design guidelines for hand tools and devices or for a safe working
environment. This review paper provides fundamental knowledge
on the hand biomechanics in terms of anthropometry, kinematics,
kinetics, and EMG.

8. Summary and conclusion
8.1. Hand anthropometry

Hand anthropometry data can be used to design hand-guard
products (e.g., gloves), hand-controlled products (e.g., remote
control, mouse), and hand-operated tools (e.g., screwdriver,
hammer). Hand anthropometry can be directly measured using
various equipment and devices. In recent times, 3D scans are
commonly used for this purpose because they can measure diverse
hand areas precisely and easily. Hand anthropometry dimensions
are largely divided into length, breadth, and circumference under
the static condition. In general, the length and breadth have 50 and
10 variables, respectively. The circumference has 10 variables (Ta-
ble 1). When using hand anthropometry data, choosing the
appropriate dimensions and number of populations and in-
dividuals for the purpose of the study is very important [103].
Previous studies have failed to consider the breadth and circum-
ference of the thumb as measurement dimensions. Thus, future
research is required to measure the thumb dimensions.

8.2. Hand kinematics

For accurate evaluation of kinematic variables, various fields
commonly use a 3D motion analysis system. This system can obtain

3D data more reliably compared with other methods [41]. The ki-
nematic hand model and marker attachment methods require 3D
motion analysis to evaluate the kinematic variables (Table 2). Many
researchers have difficulties with selecting a marker attachment
method to accurately measure hand functions. Based on this re-
view, the “one marker per joint” method is recommended for
greater patient comfort and easy marker placement, although any
marker attachment method can be used under static conditions.
The “three markers per segment” and “cluster marker” methods
evaluate hand movements more accurately because of their
robustness to skin movement. Thus, they are recommended for
experiments conducted under dynamic conditions [104].

Table 3 lists the ROMs for finger flexion according to previous
studies. The PIP joint (mean: 105°) has the largest flexion ROM
followed by the MCP (mean: 84°) and DIP joints (mean: 69°). Ta-
ble 4 lists the joint flexion angles for various hand functions. These
previous studies focused mainly on the flexion angle of the four
fingers excluding the thumb. However, the thumb is the most
important part of the hand and has a wide range of activities during
hand functions [105]. Thus, future research will involve examining
the ROM and hand functions of the thumb, and the various hand
functions will be measured in 3D.

8.3. Hand kinetics

The technologies for kinetics evaluation can be roughly divided
into direct and indirect measurements. In general, the external load
is measured directly with instruments, and the internal load is
predicted analytically through kinetic models. Many previous
studies have focused on measuring the force, moment, and torque
during hand functions. Evaluating the joint force, moment, and
torque requires accurate anthropometry data such as the segment
mass, center of mass, center of gravity, and radius of gyration. Thus,
accurate anthropometry data of the hand will be considered to
develop a hand kinetics model in future research.

84. Hand EMG

In EMG, the most important factors are choosing suitable mus-
cles, accurate attachment of the electrodes, and choosing a suitable
signal-processing method for the research purpose. Table 6 lists the
most commonly used hand muscles in hand functions when re-
searchers use EMG. Most studies have used signal-processing
methods such as RMS and MPE. Previous studies on muscle fatigue
and characteristics based on the EMG signals have only considered
static postures, not dynamic hand functions. They simply considered
the relative muscle activity from the MVC. However, in the case of
dynamic hand functions, the muscle fiber depth and length change
with time and distance, and therefore, changes occur between the
SEMG electrode and muscle fiber. Moreover, a muscle—tendon
moment difference is generated when the muscle contraction ve-
locity changes, and rapid motor unit recruitment by contraction
shows flexible signal characteristics [ 102]. Therefore, the EMG signal
of dynamic hand functions should be interpreted differently
compared with that of static hand functions.
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