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Abstract

Within the rich literature on generalized linear models, substantial efforts have been devoted to 

models for categorical responses that are either completely ordered or completely unordered. Few 

studies have focused on the analysis of partially ordered outcomes, which arise in practically every 

area of study, including medicine, the social sciences, and education. To fill this gap, we propose a 

new class of generalized linear models—the partitioned conditional model—that includes models 

for both ordinal and unordered categorical data as special cases. We discuss the specification of 

the partitioned conditional model and its estimation. We use an application of the method to a 

sample of the National Longitudinal Study of Youth to illustrate how the new method is able to 

extract from partially ordered data useful information about smoking youths that is not possible 

using traditional methods.
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1. Introduction

Partially ordered sets (posets) are perhaps one of the most commonly encountered yet under-

recognized and under-reported structures in the statistics literature. Few analytic tools have 

been made available for handling posets, and even when they have existed, they were built 

around a limited number of prototypical problems—for example, [1]. Indeed, the lack of 

appropriate statistical tools for posets may explain their relatively minor role in the 

literature. Historically, posets appeared as early as the classification of intelligence within 

Piagetian theory [2]. If binary variables Y1, Y2 respectively indicate whether or not each of 

the componential developmental intelligences—sensorimotor and conceptual—is above a 

specific threshold value, then general developmental intelligence contains the following 

poset categories: 11, 10, 01, 00, in which 10 and 01 cannot be strictly ordered. Another 

example is the classification of drinking behavior in studies of alcoholism: nondrinker, 

former drinker, current social drinker, and current heavy drinker. Sampson and Singh [3] 

described a poset in a psychiatric application: no anxiety, mild anxiety, anxiety with 
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depression, and severe anxiety. The poset structure of all three examples can be represented 

by the Hasse diagram in Figure 1, in which the four categories are indicated respectively by 

nodes 0, 1, 2, and 3.

Posets could have far more complex structure than the four-category configuration shown in 

Figure 1. For example, in an application of posets to cognitive diagnosis, Tatsuoka [4] 

identified seven skills, coded A, B, … , G, necessary for a student to correctly compute 

subtraction of fractions in a mathematics test. Among the total 27 = 128 states to master or 

not each one of the seven skills, 37 were identified from the test results data, and they are 

shown in Figure 2. Each node in the figure represents a state of mastery of a subset of the 

seven skills. State 1, for example, masters all seven skills; state 2 masters every skill except 

A; and state 5 masters every skill except E and C. The primary purpose of cognitive 

diagnosis is to classify each student into one of the 37 states so that remediation relating to 

specific deficit skills can be customized for each individual student.

1.1. Existing methods and their limitations

Because a poset arises naturally in response formats that contain multidimensional binary 

attributes, there is a substantial literature for treating a poset as multivariate binary data. 

Figure 3 shows the poset formed by the collection of three-dimensional binary responses. A 

common treatment of posets of this form is to create sum scores across the three binary 

responses so that a poset partitions itself into equivalent classes, each of which contains the 

nodes that have the same sum score—for example, [1]. Using this approach, the poset 

structure in Figure 3 is reduced to an ordinal response of four categories: 0,1,2,3. The 

ordinal data method can then be used to treat the sum score variable. An alternative 

approach, sometimes used in psychological testing, is to place constraints on posets. Using 

Figure 3 as an illustration, the Guttman scale [5] only considers the linearly ordered 

response patterns {000, 001, 011, 111}; the remaining patterns are considered either as not 

plausible or as simply a noisy version of the Guttman scale. An example of a Guttman scale 

is the scale for permissiveness of a state’s abortion regulation [6]. The scale contains 

questions about abortion under the following condition: a threat to the pregnant woman’s 

life, rape, or incest, a defective fetus or a risk to the woman’s physical health, a threat to the 

woman’s mental health, and free choice by the woman. Under the Guttman assumption, it is 

not possible for a respondent to endorse state regulation that allows abortion under a given 

criterion but to not endorse regulation that allows abortion under a higher level criterion.

Nonparametric statistical theories have also been developed to handle poset responses. 

Rosenbaum [7] studied properties of statistics such as rank sum of products for two-sample 

testing of poset data. Sampson and Singh [3] extended the rank-sum scoring method from 

ordinal data [8] to poset data. The authors also considered extreme-value statistics over all 

possible assignments of nondegenerate increasing scores for testing group differences. 

Except for very simple settings, both the sum score method and the Guttman scale approach 

have their own shortcomings. For example, it is unusual to find data that exhibit properties 

of the Guttman scale. For sum score, nuanced information contained in specific response 

patterns is lost through the summation process. Furthermore, there often exist posets that do 

not follow the multi-attribute response pattern. In Figure 2, these include state 6 master 
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skills B, D, F, G, but not C and A, whereas skill E is undetermined. Using the sum score 

would put state 6 into the same score category as states that master four skills and do not 

master the remaining three skills (e.g., state 8). Both the sum score and the Guttman 

approach could not directly handle this kind of general posets.

Yet, another type of posets presents a challenge to the sum score and Guttman scale 

approaches— posets that contain disjoint substructures. An example of a disjoint poset in 

the literature is when a survey item contains not only ordinal categories (e.g., strongly agree 

to strongly disagree) but also a separate ‘Don’t know’ category. A sum score approach may 

have to adopt an ad hoc approach by either treating the response of ‘Don’t know’ as a 

missing value or collapsing it with one of the other response categories (e.g., neutral).

The approaches of [3] and [7] are rank-based methods and share many of the strengths and 

limitations of general nonparametric methods. The treatment of ties, for example, could be 

challenging. More importantly, both methods do not contain mechanisms of controlling for 

covariates. The methods also cannot directly handle poset responses with disjoint 

substructures. These limitations hinder their broader applications to clinical data.

In this paper, we propose a general class of partitioned conditional models (PCMs) for poset 

responses. The treatment of POS-PCM is rather general and includes generalized linear 

models (GLM) for nominal and ordinal responses as special cases. The extension of the 

GLM to posets significantly expands the power of GLM to include a rich class of responses 

that are common in neuorpsychological testing, clincial assessment, and other health 

surveys. The key idea of POS-PCM is to treat poset response as a new type of data, just like 

ordinal and categorical data types, and still be able to use well-developed models for the 

latter data types for statistical inference. Therefore, for a poset outcome such as that depicted 

in Figure 1, one can test the effectiveness of an intervention program for treating anxiety 

after controlling for baseline anxiety. In the following sections, we first describe some basic 

poset theory and then the development of POS-PCM through an example. We present a 

small simulation study that aims to validate the proposed estimation procedure and an 

application of POS-PCM to the National Longitudinal Study of Youth (NLSY).

2. Partially ordered set theory

A poset (P, ≤) is reflexive (a ≤ a), antisymmetric (if a ≤ b and b ≤ a, then a = b), and 

transitive (if a ≤ b and b ≤ c, then a ≤ c). When a ≤ b, we say that b dominates a. Two 

distinct elements, a and b in P, are comparable if a ≤ b or b ≤ a. Otherwise, they are 

incomparable. A poset with only a finite number of elements is called a finite poset. 

Henceforth, we only consider finite posets for their apparent connection with real 

applications.

An element a ∈ P is maximal (minimal) if there is no element b ∈ P such that a ≤ b (b ≤ a). 

In a finite poset, there is always at least one maximal element and one minimal element. The 

greatest lower bound (infimum) of a and b, if it exists, is denoted by a ∧ b and called their 

meet. Similarly, the supremum of a and b, if it exists, is their join, a ∨ b. A chain in a poset 

(P, ≤) is a totally ordered subset C of P, whereas an antichain is a set A of pairwise 

incomparable elements. A chain is a maximal chain if no other chain contains (covers) it. 
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The Guttman scale mentioned in Figure 3 is a maximal chain. Similarly, we can define a 

maximal antichain. In Figure 3, the set {110, 101, 011} would be a maximal antichain. 

Figure 4(a) shows the poset structure of a four-category nominal response, where all four 

elements are incomparable, and hence the maximal chains are {0}, {1}, {2}, and {3}, and 

the maximal antichain is the entire set. Figure 4(b) shows a completely ordered four-

category ordinal response, and hence the only maximal chain is C = {0, 1, 2, 3}, while there 

is no antichain.

A lattice is a poset in which any two elements have their meet and join. A finite lattice must 

have a unique maximal and a unique minimal [9]. Figures 1–3 are lattices that have a unique 

maximal on top and a unique minimal at the bottom. The height h(P) of a poset is the largest 

cardinality of a chain, and its width w(P) is the largest cardinality of an antichain. Thus, for a 

totally ordered finite set S, h(P) = ∣S∣ and w(P) = 1, whereas for an unordered set S, h(P) = 1 

and w(P) = ∣S∣. In a finite poset, a chain C and an antichain A can have at most one element 

in common, and hence the least number of antichains to cover P is no less than h(P). The 

dual statement, Dilworth’s theorem [10], states that the cardinality of the largest antichain 

equals the least number of chains to cover P. Indeed, we can partition a poset P into 

antichains by recursively removing the set of maximal elements, which by definition is an 

antichain. Such a partitioning procedure, the specifics of which are to be described 

subsequently, is essential to the setting up of the POS-PCM.

To fix notation, define a weak order between subsets S1 and S2 in P if at least one element in 

S2 is dominated by elements in S1 and no element in S2 dominates any element in S1. We 

call it S1 weakly dominates S2. A set of subsets is called totally weakly ordered if pairwise 

subsets are weakly ordered. In Figure 3, the set of subsets {111}, {110, 101, 011}, {100, 

010, 001}, and {000} is totally weakly ordered. Similarly, we define a strong order between 

S1 and S2 if every element in S1 dominates all the elements in S2, and we say that S1 strongly 

dominates S2. In Figure 3, the set of subsets {111}, {110, 011}, {010}, and {000} is totally 

strongly ordered. A set of subsets {Ai, i = 1, … , n} is called a partition of a poset P if 

 and  for i ≠ j, and if a partition is at least totally weakly ordered, we 

call it an ordered partition.

To illustrate the aforementioned mathematical definitions, we use a real example of a poset 

represented in Figure 9(a), which we will discuss in detail in Section 4. The labeled 

categories concern smoker classification. Table I summarizes the illustration.

Proposition 1

(Ordered partition) A finite poset can always be partitioned into antichains that are totally 

weakly ordered.

Proof

Let A1 be the set of maximal elements of P; by definition, it forms an antichain. By the 

definition of maximal, no element in P \ A1 can dominate any element in A1, and if P \ A1 is 

nonempty, at least one element in P \ A1 is dominated by elements in A1, so we have P \ A1 
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< A1. The maximal elements A2 of P \ A1 are also weakly dominated by A1. Recursively 

removing the set of maximal elements results in a set of {Ai} that is totally weakly ordered.

The set of {Ai} is an ordered partition. For example, in Figure 1, the three antichains A1 = 

{0}, A2 = {1, 2}, and A3 = {3} form an ordered partition. In Figure 2, the partitions would be 

A1 = {1},A2 = {2, 3, 4, 11, 21}, … , A8 = {37}. Apparently, these partitions are totally 

weakly ordered. It is worth pointing out here that the partitioning does not require any form 

of sum score and can generally be applied to all forms of finite posets.

By pointing out that (i) a finite poset can always be partitioned into antichains; (ii) the 

partitions are totally weakly ordered; and (iii) there exists a procedure for identifying the 

partitions through the iterative removal of the maximal element, Proposition 1 forms the 

basis for the construction of the formal PCM for POS. As we shall see, the PCM states that 

the poset is specified by a hierarchy of both nominal and ordinal models applied to the 

ordered partitioning antichains derived from Proposition 1—elements within individual 

antichains follow a nominal model, whereas ordered antichains follow an ordinal model.

2.1. Partitioned conditional models for posets

Instead of formally deriving the hierarchical ordinal and nominal models, it is easier to 

describe the modeling procedure using an example. Consider the poset in Figure 5, which 

contains three disjoint substructures, and further assume that a vector of covariates x is 

present. Operationalizing the PCM includes the following steps:

1. Partition the Hasse diagram into three disjoint networks : {0}, {1, .., 6}, and {7, 8}. 

Define πij = Pr(yi = j∣xi), for i = 1, … , N and j = 1, … , 8. Use one of the partitions, 

say {0}, as a reference category, specify the nominal model:

(1)

2. For the network {7, 8}, specify the conditional binary logit model:

(2)

3. For the network {1, .., 6}, partition it into a set of totally weakly ordered antichains 

using Proposition 1: A1 = {1, 2}, A2 = {3, 4, 5}, and A3 = {6}. Specify the 

following conditional proportional odds model:

(3)

Note that the proportional odds model in Equation (3) can be easily generalized to 

any ordinal model.
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4. Specify two conditional nominal models for each antichain derived from the 

partitioned subset {1, 2}:

(4)

and the subset {3, 4, 5}:

(5)

We graphically illustrate the procedure in Figure 6. In general, the procedure would be to 

first use Proposition 1 to partition a poset into a collection of totally weakly ordered 

antichains, which are modeled using an ordinal GLM. Within each antichain, the categories 

are then modeled using a nominal GLM. An appealing feature of the conditional approach is 

that the modeling process is consistent with a clinician’s mental model. For example, when 

faced with multiple (poset) categorization of a psychiatric disorder, a clinician would sort 

disorder categories approximately by their overall severity and subsequently compare 

different disorder categories that have more or less the same level of severity. The clinician 

might then want to examine the effects of various risk factors that drive general severity 

level and differentially affect the different disorder categories within the same of severity, 

perhaps using the most prevalent type as a reference category. Tutz [11] argued that for 

using conditional models for sequential reasoning, this kind of multiple stage, conditional 

thought process is well captured by the POS-PCM.

Two immediate questions concerning the POS-PCM modeling procedure need to be 

addressed: (i) how does one derive the individual category probability πij given the model 

parameters? and (ii) are the models within the POS-PCM identifiable?

To answer the first question, we again use the partition tree in Figure 6 as an illustrative 

example. We call the first node {0, 1, 2, 3, 4, 5, 6, 7, 8} the root node and each node within 

a branch a leaf. Let  denote a set of subsets of the original poset P that defines the path 

from the root to the leaf j in the partition tree and h(j) is the height of leaf j or equivalently 

the size of . For example, consider leaf 1. The path from the root to leaf 1 is

Thus, h(1) = 4. By tracing from the leaf 1 up to the root in the partition tree, the term πi1 can 

be factorized as follows:

(6)

where model (4) corresponds to the leftmost term, model (3) to the middle term, and model 

(1) to the rightmost term.
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More generally, if we let  denote the kth subset in , then  is the parent set of 

and for all . We further define  and write out the individual 

probabilities πij in a factored form:

(7)

where each factor on the right hand side (RHS) is a conditional probability:

(8)

For the second question concerning model identifiability, we have the following lemma.

Lemma 1

There are exactly K − 1 independent equations for a model with K response categories.

Proof

In the first ordered partition, we divide P into k + 1 antichains, which are modeled with a k-

equation ordinal model. For elements within each antichain, we model them with a model 

having ∣Ai∣ equations. We know , and therefore there is a total of K − 

1 independently specified equations.

The POS-PCM created from the partition-tree procedure is therefore identifiable.

3. Maximum likelihood estimation

McCullagh and Nelder [12] presented the loglikelihood for the POS-PCM:

(9)

where yij = 1 if yi = j, and 0 otherwise, and y, π respectively represent the ensembles of yij 

and πij.

It can be shown that the loglikelihood can be decomposed into separate components such 

that each component can be maximized individually. Substituting πij in Equation (9) by the 

factored form in Equation (7), we have the following:

(10)

Now, instead of using the ‘path’ index, reorganize the rightmost summation using the model 

index m = 1, … , K − 1:
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(11)

where  is the jth conditional probability specified in model m, yimj = ∑j∈Pmj yij, Pmj is 

the jth corresponding subset, and Km is the number of categories in model m.

As an example, in Figure 6, the five models m = 1, … , 5, are respectively specified by 

Equations (1)–(5). Particularly, the conditional probabilities in model 3 are 

, and . The 

three corresponding subsets are P31 = {1, 2}, P32 = {3, 4, 5}, and P33 = {6}.

From Equation (11), the summation contains K − 1 individual model loglikelihoods derived 

through the order partition procedure. If these models do not share common regression 

coefficients, then the maximum likelihood procedure separately maximizes each individual 

model loglikelihood of the form:

(12)

Accordingly, existing software programs for estimation — nominal or cumulative logistic 

regression, respectively — can be directly applied to each individual model.

4. Data examples

4.1. Simulated data

We describe a small simulation experiment to demonstrate that the parameters of a POS-

PCM can be accurately recovered using the estimation procedure.

We generated a total of 1000 datasets, each of which had a sample size of n = 300, 400, 500, 

… , 2000, under the poset model represented by Figure 5. A single covariate x was randomly 

generated using a uniform distribution in [0, 1] and used across the simulated datasets. We 

used the MATLAB (The MathWorks Inc., Natick, MA, USA) function, ‘glmfit’, to fit 

binomial logit models in models (2) and (4), and the function, ‘mnrfit’, to fit multinomial 

ordinal and categorical models in models (1), (3)–(5). Figure 7 shows the comparisons of 

true βs and γs with the estimated means. Each vertical line indicates the 95%CI of an 

empirical mean estimate—that is, the range of ±1.96 times the empirical standard deviation, 

centered at the mean of the 1000 estimates. The estimated means (in circles) of the 

parameters are consistently close to the true values (as horizontal lines). The ranges, which 

approximately decrease as the square root of sample size, appear to indicate that the 

procedure is rather robust across the various models. Figure 8(a) and (b) shows the 

percentages of times when the true βs and γs are bracketed by the estimated 95%CI. The 

graphs show that the inference procedure produces a consistent type I error rate (0.05) across 

the parameters, suggesting that the confidence limits have correct coverage. All in all, the 
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small simulation experiment demonstrates that parameters in POS-PCM can be accurately 

recovered when the model is correctly specified.

4.2. National Longitudinal Study of Youth

We applied the POS-PCM to a data set that contains a sample of cohorts aged 12 to 16 years 

from the NLSY, a national survey of youths in the USA. We extracted three smoking-related 

variables: ever smoked (binary), the number of days smoked in the last 30 days, and the 

number of cigarettes smoked per day in the last 30 days. We used the variables to define a 

smoker classification variable that contains the following categories: nonsmoker, former 

smoker, light/nonfrequent smoker, light/frequent smoker, heavy/nonfrequent smoker, and 

heavy/frequent smoker. Figure 9(a) shows the poset lattice structure of the categories.

We identified the following variables as predictors in the POS-PCM: age, gender, race [13, 

14], whether or not the child lives with both parents [15], mother’s support, mother’s 

permissiveness [16], whether or not the child is attending school [17], child’s attitude to 

discipline [18], and the number of smoking peers [14,19]. After removing subjects from the 

original sample of size 8984, with any missing data in either the outcome variables or the 

predictor variables, we obtained a subsample of size 8781 or 2% subjects with any missing 

data, and the top left corner of each node in Figure 9(a) shows the number of subjects in 

each category.

Following the order partitioning of Figure 9(b), we estimated the following three models:

• Model I. Proportional odds ordinal model for the four partitioned antichains—that 

is, nonsmokers coded as 0, former smokers and light/nonfrequent smokers together 

as 1, light/frequent smokers and heavy/nonfrequent smokers together as 2, and 

heavy/frequent smokers as 3.

• Model II. Nominal model for elements in the second antichain—that is, former 

smokers and light/nonfrequent smokers, with the latter as the reference category.

• Model III. Nominal model for elements in the third antichain—that is, heavy/

nonfrequent smokers and light/frequent smokers, with the latter as the reference 

category.

Table II shows the estimated parameters and the associated standard errors.

In the NLSY application, it is interesting to note that for model I, almost all of the predictors 

are significant. The finding is consistent with the literature for smoking. In the conditional 

model II, however, the only significant predictors are race (being Hispanic), age, and 

smoking peer. The last two variables both have negative impact on the odds ratio between 

former smoker and light and nonfrequent smoker, suggesting that having a smoking peer is a 

risk factor for a child to relapse into smoking if the child belongs to either one of the two 

smoking categories. These predictors are not significant any more under model III, which 

suggests that if a child is either a heavy/nonfrequent or a light/frequent smoker, none of the 

risk factors would lead to higher likelihood of being in one category or another. The result 

from analyzing the data using the POS-PCM can inform treatment and prevention strategies 

for children at various conditions and stages of smoking.

Zhang and Haksing Page 9

Stat Med. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Discussion and conclusion

One limitation of the POS-PCM is that multiple poset structures could lead to the same 

models. Consider the example in Figure 9(a). If dominance links from ‘Former smoker’ to 

both ‘Light and frequent smoker’ and ‘Heavy and less frequent smoker’ were removed, the 

antichain would remain unaltered and so would the models.

The POS-PCM is perhaps most useful when the poset does not resemble a completely 

ordered or a completely segregated structure. Under such a situation, the POS-PCM could 

provide information about both the weakly ordered ‘between’ antichain effect and the 

unordered ‘within’ antichain effect. Using the smoking example, the first effect is useful for 

delineating general direction. For instance, a statistically significant coefficient for an 

intervention program would mean either significant improvement or deterioration in 

reducing smoking behavior. The second effect, on the other hand, can be used to examine 

differences in the influence of risk factors across outcome categories that are not necessarily 

ordered—for example, light and frequent versus heavy and nonfrequent smokers.

Like other conditional models, one should be careful about the interpretation of parameters 

of the POS-PCM. The parameter for a category within the nominal model only allows 

conditional interpretations—namely that the effect is conditional on the partition to which 

the category belongs. For example, in the NLSY example model II, a young person who has 

smoking peers is more likely to be a former smoker than a light/nonfrequent smoker given 

that the person belongs to either one of the two categories. Such ‘sequential’ interpretation 

might be appropriate in some but not in other situations [11].

It is worth pointing out here that the partial order structure of the outcome needs to be 

determined prior to applying POS-PCM to the data. As much as the ordering property of an 

ordinal outcome needs to be determined before applying an ordinal model—say the ordinal 

logistic regression—to the data, the POS-PCM approach does not select the poset structure. 

If response data do not have a predetermined structure, then it is still possible to select a 

structure using methods such as clustering. However, the topic will be beyond the scope of 

this paper.

In summary, we propose PCMs for partially ordered responses; this new class of models 

extends extant nominal and ordered categorical models and also inherits many of the 

properties of these existing models. The attractiveness of the proposed POS-PCM includes 

its flexibility and its leverage of the power of the GLM. This implies that methods 

developed for GLM, such as outlier detection, goodness of fit, and variable selection, can 

also be applied to the POS-PCM. The POS-PCM can also be brought to bear on rather 

complex poset structures that arise from a broad range of data. Although caution is required 

for the conditional interpretation of the regression coefficients, the POS-PCM can offer 

novel insight into poset response patterns when the models are properly interpreted.
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Figure 1. 
Four response categories form a poset structure.
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Figure 2. 
The Hasse diagram of a poset of 37 nodes, a replica of Figure 2 in [4].
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Figure 3. 
Eight response categories from a three-problem test.
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Figure 4. 
(a) Categorical responses from 0 to 3, (b) ordinal responses from 0 to 4.
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Figure 5. 
A poset dominance structure including three disjoint networks.

Zhang and Haksing Page 16

Stat Med. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
A hierarchical binary tree representation of the ordered partition process. The ‘Cat.’ and 

‘Cum.’ labels are respectively used to indicate a categorical or cumulative model related to a 

split.
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Figure 7. 
(a) Plots of estimated means of βs in circles (true values in horizontal red lines), against 

sample size; (b) plots of estimated means of γs in circles (true values in horizontal red lines), 

against sample size.
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Figure 8. 
(a) Percentages of true β values covered by the estimated 95% confidence intervals; (b) 

percentages of true γ values covered by the estimated 95% confidence intervals. Horizontal 

axis indicates sample size.
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Figure 9. 
(a) A poset dominance structure for the National Longitudinal Study of Youth tobacco use 

variable. (b) The hierarchical model tree.
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Table I

Example (Figure 9(a)) for illustration of mathematical definitions.

Term Example

Maximal element Nonsmoker (0)

Minimal element Heavy and frequent smoker (5)

Meet of (3) and (4) Heavy and frequent smoker (5)

Join of (3) and (4) Former smoker (1) and light and nonfrequent smoker (2)

Chain example Nonsmoker (0) → former smoker (1) → light and frequent smoker (3)

Antichain example {Former smoker (1), light and nonfrequent smoker(2)}

Maximal chain example (0) → (1) → (3) → (5)

Maximal antichain example {Former smoker (1), light and nonfrequent smoker(2)}

Height h(P) 4

Width w(P) 2

Weak dominance {(1), (2)} Weakly dominates {(3), (4)}

Totally weakly ordered set {{(0)}, {(1), (2)}, {(3), (4)}}

Strong dominance {(1), (2)} Strongly dominates {(5)}

Partition of entire set {{(0)}, {(1), (2)}, {(3), (4)}, {(5)}}
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