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Abstract
The present study was conducted during the years 2006 to 2012 and provides information

on prevalence of malaria and its regulation with effect to various climatic factors in East

Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Anal-

ysis and Hotelling’s T2 statistics models are adopted to understand the effect of weather var-

iables on malaria transmission. The epidemiological study shows that the prevalence of

malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falcip-
arum. It is noted that, the intensity of malaria cases declined gradually from the year 2006 to

2012. The transmission of malaria observed was more during the rainy season, as com-

pared to summer and winter seasons. Further, the data analysis study with Principal Com-

ponent Analysis and Hotelling’s T2 statistic has revealed that the climatic variables such as

temperature and rainfall are the most influencing factors for the high rate of malaria trans-

mission in East Siang district of Arunachal Pradesh.

Introduction
Malaria is a major health problem predominantly in tropical and subtropical countries [1]. Ac-
cording to World Health Organisation (WHO), there are about 219 million cases of malaria of
which 660,000 deaths were recorded worldwide in 2010. In South East Asian region, 76% of
the total malaria cases reported were mainly contributed by India (24 million cases per year),
followed by Indonesia, and Myanmar [2]. North-eastern states of India are known for malarial
endemicity that accounts for 10% of total malaria cases reported. Plasmodium falciparum in
particular contributes 11% of the disease burden due to malaria. Also reports state that 46% of
mortality in these states is due to malaria in the year 2007 [3–5]. Especially, the state of Aruna-
chal Pradesh is considered to be highly endemic for malaria [6]. Transmission of malaria is
known to be influenced by various climatic factors and its prevalence significantly changes due
to human-pathogen relationships [7–9].

Climate change has a large impact on human health. It affects the geographic distribution of
vectors and vector borne diseases and also increases the morbidity and mortality [10,11]. The
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influence of climatic variables on the transmission of malaria is very significant due to several
factors like temperature, rainfall, wind speed and relative humidity which contribute consider-
ably to alter the life cycle of the mosquitoes and the parasite development [12–14]. Parham &
Michael reported that malaria transmission and its epidemicity are regulated mainly by the
changing environmental conditions [10]. This type of studies has been carried out in most
parts of the world to derive the impact of climatic variables on transmission of malaria
[15–17]. However, very few studies have been conducted in India, particularly in North-eastern
states such as Arunachal Pradesh [9]. High altitude areas become vulnerable to vector borne
diseases like malaria as temperature increases. The state of Arunachal Pradesh experiences fre-
quent climate variability which influences the ecology of malaria [18]. Hence, it is very difficult
to predict the malarial incidence. In this context the present study is focused mainly towards
investigating the relationship between meteorological factors and malaria incidence in East
Siang district of Arunachal Pradesh, India. The data on climatic factors and malaria case epide-
miology was collected for the years 2006–2012 and subjected for analysis. Preliminary correla-
tion analysis was performed followed by principal component analysis (PCA). In this
investigation, the contribution charts based on Hotelling’s T2 statistics have been proposed for
proper identification of important climatic variables that maximally influence the occurrence
of malaria cases. A better understanding of the relationship between climatic factors and dis-
ease occurrence aids to improve forecasting of alterations in malaria incidence, this would shed
light to concerned public health authorities to effectively distribute resources and plan the lo-
gistics for malaria control programmes.

Materials and Methods

Study area
East Siang district (Fig. 1) of Arunachal Pradesh is spread over an area of 4005 sq. km and it is
situated between latitude 27 43' N & 29 20 ' N and longitude 94 42' E & 95 35' E. This district
was chosen as the study area because of high incidence of malaria cases (average malaria cases
was 2817 in 2006 to 279 in 2012). This district comprises of 17 Primary Health Centres (PHC)/
Community Health Centres (CHC) that are equipped with diagnostic and treatment facilities
for malaria and serves as reporting centre for malaria incidence under the aegis of National
Vector Borne Disease Control Program (NVBDCP). The total population of East Siang district
is found to be increased remarkably from 87,397 as reported by 2001 census to 99,214 as given
by 2011 census over a period of 10 years. The district is bound by Upper Siang in the north,

Fig 1. Map showing the East Siang district of Arunachal Pradesh, India.

doi:10.1371/journal.pone.0119514.g001
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Dhemaji district of Assam in south, West Siang in the west and Dibang valley in the east. The
district is mostly covered by swampy dense forest; forested terrain and perennial streams
which are congenial for rapid multiplication and longevity of malaria vectors. Agriculture is
the primary source of economy and most of the population in the district is engaged in
agricultural activity.

Data collection
Epidemiological data. Epidemiological data sets of malarial cases of East Siang District, for the
years 2006 to 2012 were obtained from the Directorate of Health Services, Govt. of Arunachal
Pradesh. The data was collected by using both active and passive surveillance methods which
comprised of number of blood samples collected (BSC), and tested positive either for P. vivax
or P. falciparum infection or mixed infection. To understand the seasonal pattern of malaria
transmission, the data of malaria cases has been classified into three seasons and each season
representing four months duration (March to June: summer/dry season, July to October:
rainy/wet and November to February: winter/cold seasons) (Table 1).

Weather data.Meteorological data recorded month wise on mean maximum temperature,
mean minimum temperature, highest maximum temperature, lowest minimum temperature,
total rainfall in the month, heavy rainfall within 24 hours, number of rainy days, mean wind
speed and mean relative humidity (8.30 & 17.30 hrs) was obtained from Indian meteorological
department, Government of India, Pune. These meteorological details were used to understand
the effect of climatic factors on malaria.

Weather patterns in East Siang district, Arunachal Pradesh. The district is dominated by
mountains with different altitudinal variations from 120 meters to 470 meters, above the mean
sea level. The climatic conditions of East Siang district shows that the mean maximum temper-
ature was 31°C (in the month of May) and mean minimum temperature was 12°C (January) re-
ported during the year 2012. In this district the rainfall generally starts during the month of
May and reports of high rainfall were recorded in the months from June to September. In the
month of July 2012, it was observed that 1628 mm rainfall was recorded and the number of

Table 1. Summary of epidemiological data (number of malaria positive cases) (*PV: Plasmodium vivax, *PF: Plasmodium falciparum).

*PV 2006 2007 2008 2009 2010 2011 2012 avg/season

summer 1857 1485 1244 1205 1049 302 207 1049.85

rainy 2934 2134 1729 746 746 595 202 1298

winter 836 980 610 544 663 192 62 555.28

avg/year 1875.6 1533 1194.3 831.6 819.33 363 157

*PF 2006 2007 2008 2009 2010 2011 2012 avg/season

summer 732 795 14 52 20 270 178 294.42

rainy 1654 1031 26 30 30 686 119 510.85

winter 438 346 25 11 1 231 70 160.28

avg/year 941.33 724 21.66 31 17 395.66 122.3

*PV+PF 2006 2007 2008 2009 2010 2011 2012 avg/season

summer 2589 2280 1258 1257 1069 572 385 1344.28

rainy 4588 3165 1755 776 776 1281 321 1808.85

winter 1274 1326 635 555 664 423 132 715.57

avg/year 2817 2257 1216 862.66 836.33 758.66 279.3

doi:10.1371/journal.pone.0119514.t001
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rainy days in this particular month was 23 days. During the same month it was also observed
that 261 mm rainfall was recorded in 24 hours which was the heaviest rainfall reported during
that period. The highest relative humidity (08.30 hrs & 17.30 hrs) was observed in the month
of July (94% & 86% respectively) for the year 2012. The climatic data such as temperature, rain-
fall, and relative humidity of East Siang district from 2006 to 2012 is depicted in the form of
graphs as supporting information (S1–S3 Figs.).

Ethics Statement
The study received ethical approval from CSIR-Indian Institute of Chemical Technology ethi-
cal committee affiliated with the Ministry of Science and Technology, Government of India.
We declare that the data on epidemiology was collected from Directorate of Health Services,
Govt. of Arunachal Pradesh based on records at the PHC/CHC in Arunachal Pradesh and was
analyzed anonymously; here no particular patient by name was involved.

Data analysis
Correlation Analysis. Correlation analysis was performed on the data to check the statistical
dependence of the climatic factors on each other as well as with the monthly incidence of ma-
laria disease. Spearman’s correlation analysis was performed on the climatic variable data and
the results of correlation coefficient (ρ) values are listed in Tables 2, 3 and 4.

Principal Component Analysis (PCA). Principal component analysis (PCA) is the most
widely used multivariate statistical technique for the data analysis in various applications such
as pattern recognition, finance and economic trend analysis, fault detection and diagnosis etc
[19, 20]. In the present study, PCA has been used for the multivariate analysis of climatic vari-
ables as well as for identification of important climatic variables that are responsible for the
prevalence of malaria. The basic principle of PCA is to transform the high dimensional corre-
lated input data linearly into a new subspace with lower dimensions in which the data is uncor-
related. It is equivalent to solving the optimization problem for finding the new orthogonal
vectors which maximise the data variance in a lower dimensional subspace.

PCA methodology. For better illustration, the methodology of PCA is described as
follows. For a typical data analysis problem being considered, the climatic variable data collect-
ed over a period of time can be stacked together into a matrix X 2 RNxm, with N being the total
number of samples, andm is the total number of measurements. xi denotes i

th sample vector as
[xi1,xi1,. . .. . .xim]

T

a) Data Scaling. Before applying PCA, the samples must be normalized such that all the vari-
ables are mean centred and vary with unit variance. The normalized variable is given by,

xscaledij ¼ ðxij � �xjÞ=sj; i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;m ð1Þ

with �xj be the mean and σj be the standard deviation of variable j.

b) Eigenvalue Decomposition. Applying PCA is equivalent to subjecting the data covariance
matrix C to eigenvalue decomposition or solving the following eigenvalue problem,

lP ¼ CP ð2Þ
The solution results in a diagonal matrix of eigenvalues, λ and a matrix P containingm

eigenvectors. The eigenvalues λ1 > λ2. . .. . .. . .> λm are arranged in the decreasing order of
their magnitude such that the corresponding eigenvectors are also arranged in the respec-
tive order. Each eigenvalue signifies the amount of variance expressed by the respective
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Table 2. Spearman’s Correlation Matrix.

Climate
variables

Mean
maximum
temperature

Mean
minimum
temperature

Highest
maximum
temperature

Lowest
minimum
temperature

Total
mean
rain fall

Heaviest
rainfall in
24 hours

Number
of rainy
days

Mean
wind
speed

Mean
relative
humidity
at 8.30 am

Mean
relative
humidity
at 5.30 pm

mean
maximum
temperature

1 0.8940 0.9011 0.8766 0.5208 0.5470 0.4039 -0.6815 0.5128 0.4708

mean
minimum
temperature

0.8940 1 0.9179 0.9735 0.7738 0.7289 0.6802 -0.8365 0.7730 0.6382

highest
maximum
temperature

0.9011 0.9179 1 0.8918 0.7052 0.6774 0.6189 -0.7435 0.6570 0.5216

lowest
minimum
temperature

0.8766 0.9735 0.8918 1 0.7660 0.7317 0.6602 -0.8425 0.7591 0.6655

total mean
rain fall

0.5208 0.7738 0.7052 0.7660 1 0.9155 0.9216 -0.7983 0.9021 0.6327

heaviest
rainfall in 24
hours

0.5470 0.7289 0.6774 0.7317 0.9155 1 0.8301 -0.7517 0.7970 0.6187

number of
rainy days

0.4039 0.6802 0.6189 0.6602 0.9216 0.8301 1 -0.7292 0.8745 0.5700

mean wind
speed

-0.6815 -0.8365 -0.7435 -0.8425 -0.7983 -0.7517 -0.7292 1 -0.8421 -0.7948

mean
relative
humidity at
8.30 am

0.5128 0.7730 0.6570 0.7591 0.9021 0.7970 0.8745 -0.8421 1 0.7266

mean
relative
humidity at
5.30 pm

0.4708 0.6382 0.5216 0.6655 0.6327 0.6187 0.5700 -0.7948 0.7266 1

doi:10.1371/journal.pone.0119514.t002

Table 3. Correlation analysis of climatic factors vrs. total number of malaria cases by year wise (*p<0.001).

Variable Years

2006 2007 2008 2009 2010 2011 2012

Mean maximum temperature 0.87413* 0.78809* 0.81119* 0.44133 0.20526 0.72727* 0.49387

Mean minimum temperature 0.91608* 0.97368* 0.70403* 0.46853 0.23818 0.74126* 0.69244*

Highest maximum temperature 0.92308* 0.88617* 0.74386* 0.56392* 0.18246 0.73427* 0.59051*

Lowest minimum temperature 0.88617* 0.94571* 0.74606* 0.38246 0.23818 0.76224* 0.63047*

Total mean rain fall 0.70629* 0.72154* 0.41958 0.34266 0.3923 0.4965 0.86515*

Heaviest rainfall in 24 hours 0.74126* 0.61646 0.47552 0.29371 0.43433 0.38462 0.71103*

Number of rainy days 0.71088* 0.68134 0.19615 0.38871 0.4374 0.35275 0.83158*

Mean wind speed -0.8601* -0.8632* -0.6084* -0.3357 -0.6186* -0.9091* -0.7153*

Mean relative humidity at 8.30 am 0.58741 0.8193* 0.51839 0.38879 0.47368 0.56943* 0.78208*

Mean relative humidity at 5.30 pm 0.40631 0.7191 0.47369 0.19965 0.64551* 0.64906* 0.52548

doi:10.1371/journal.pone.0119514.t003
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eigenvector. These eigenvectors can also be called as loadings, latent vectors or
principal components.

c) Selection of eigenvectors. Selection of appropriate number of principal components is one of
the major issue in the development of PCA model. There are several approaches available in
literature to select the optimal number of principal components (PCs) [21]. In the present
work the method of cumulative percentage variance (CPV) has been used for eigenvalue se-
lection. It is required to select the number of PCs that contribute a desired level (l�) of cu-
mulative percentage of variance of the total variance. Then the criteria for selection of
number of PCs becomes equivalent to choosingm΄ number of components such that
m΄<<m is given by,

Xm0

i¼1

li

Xm
i¼1

li

0
BBBB@

1
CCCCA

� 100 � l� ð3Þ

The value of l� can be chosen based on the nature of data under consideration.

d) Evaluating the scores and loadings. The matrix of selectedm΄ eigenvectors is termed as P�

and can also be called as loadings matrix or principal vector matrix. Projecting the data ma-
trix X on to P�gives rise to the scores matrix T, a matrix of new transformed variables,
which are uncorrelated in nature in the reduced dimensional space.

T ¼ XP� ð4Þ

The scores vector is given by t = [t1 t2 . . . ti . . . tm΄]
T, each of its dimension ti can be ex-

pressed as the linear combination of the original sample variables x = [x1 x2 . . . xm]
T weight-

ed by the corresponding loading vector pi as,

ti ¼ x1pi1 þ x2pi2 þ . . . ::xmpim for i ¼ 1; 2:::m΄

Feature selection through Contributions to Hotelling’s Statistics.Hotelling’s T2 index
signifies the data variance in principal component sub space. Evaluating the contributions
of individual variables to Hotelling’s T2 index provides the means to identify important fea-
tures or attributes of the data. The methodology involves mainly two steps, the first step is

Table 4. Correlation analysis between the climatic factors and malaria cases by season wise (*p<0.001).

Variable Summer Rainy Winter

PF PV Total(PF+PV) PF PV Total (PF+PV) PF PV Total (PF+PV)

Mean maximum temperature 0.437* 0.254 0.454* 0.186 0.068 0.132 0.093 0.323 0.142

Mean minimum temperature 0.541* 0.2 0.547* 0.277 0.114 0.217 0.235 0.287 0.239

Highest maximum temperature 0.407* 0.3 0.415* 0.217 -0.021 0.135 0.024 0.224 0.041

Lowest minimum temperature 0.514* 0.198 0.514* 0.280 0.146 0.267 -0.032 0.183 -0.023

Total mean rain fall 0.413* 0.133 0.386* 0.099 -0.021 0.052 -0.021 0.118 -0.006

Heaviest rainfall in 24 hours 0.376* 0.176 0.365* -0.146 -0.162 -0.195 -0.018 0.194 0.004

Number of rainy days 0.119 -0.062 0.083 -0.161 -0.177 -0.225 0.058 0.09 0.068

Mean wind speed -0.307 0.083 -0.262 -0.281 -0.029 -0.351 0.138 0.087 0.143

Mean relative humidity at 8.30 am 0.211 -0.106 0.156 -0.07 -0.099 -0.077 -0.015 0.018 -0.015

Mean relative humidity at 5.30 pm 0.13 -0.037 0.092 0.451* -0.091 0.354 -0.085 -0.288 -0.142

doi:10.1371/journal.pone.0119514.t004
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to evaluate the T2 index and the next step is to compute the contributions of each variable
to the value of T2.

Hotelling’s statistic. Data analysis by PCA facilitates the study of deviations and processes
the variable data by evaluating multivariate statistical indices. The data variation in the form of
scores or transformed subspace is expressed in terms of a Hotelling’s statistic or T2 statistic.
This Hotelling’s T2 method has been applied to various studies such as genome association
studies, microarray process control and data control charts [22–24]. The Hotelling’s T2 statis-
tics can be expressed as

T2 ¼ tTS�1t ð5Þ
where, t is the score vector representing the location of original observation x in the PC sub-
space [20].

Contribution charts. The basic idea of contribution charts is to quantify the role of each in-
dividual variable in representing a specific multivariate population data. Hotelling’s or T2 sta-
tistic enables the representation of data variance in original measurement space as well as in
the latent variable space. However, analysing T2 statistic in scores space resulted by the meth-
ods such as PCA and evaluating its contribution with respect to individual variable provides
the effective means to identify the important attributes of given data. Several versions of these
Hotelling’s or T2 statistic contribution charts are mainly used in statistical process control ap-
plications [20,25]. More recently, an improved version of the Hotelling’s or T2 statistic contri-
bution charts have been presented for fault diagnosis [26]. In the present work, the application
of such Hotelling’s or T2 statistic contribution charts has been extended for identifying the key
climatic variables of malaria disease. The basic principle of the present contribution to Hotell-
ing’s statistic method is to find the nearest in-control neighbour (NICN) of the observation
point. The distance between these two points is used to evaluate the relative influence of each
variable on the T2 statistic, and further signify the contribution of individual variable in repre-
senting the data. Those variables, whose contributions are higher, can be treated as important
or key features of the given data. More details about the algorithm can be referred from Viteri
et al. [26].

Results

Annual trend of malaria cases (2006–2012)
A total number of 27,081 malaria cases were reported during the study period (2006 to 2012).
Highest number of malaria cases 8451 was recorded in the year 2006 and the prevalence rate
gradually decreased with each year and reached a minimum of 838 cases in 2012, which is one
tenth of the total number of cases reported in 2006 (Fig. 2). It is noted from the collected data
that, the total number of malaria cases recorded per month ranged from 0 to 1899 with highest
number of cases occurring in July 2006 and lowest number of cases in December 2012. The
monthly epidemiological data reveals that most of the malaria cases occurred in the rainy sea-
son (Figs. 3 and 4). Based on the data, most of the malaria cases were caused by the P. vivax
(20,322 cases) followed by P. falciparum parasite species (6759 cases).

Seasonal distribution of malaria
This study shows that malarial cases occurred in almost every month of the year however, the
number of cases varied among different months. It is observed from the analysis that the aver-
age number of P. vivax cases was found to be 967.71 per year which is nearly three times higher
than the number of P. falciparum cases recorded as 321.83 per year. From the seasonal
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distribution it is also noted that, rainy season was found to be more prone to the occurrence of
malaria cases followed by summer season (Fig. 5).

Correlation analysis of malaria with climate factors
In the present work, data analysis is performed to study the correlations existing among the cli-
matic variables as well as the correlations between climatic variables and malaria cases. Table 2
shows that the correlation matrix of climatic variables, such as, mean maximum temperature,
means minimum temperature, highest maximum temperature and lowest minimum tempera-
ture are highly correlated with each other (p< 0.001). In Table 3, the Spearman’s correlation
analyses of different climatic variables with respect to the total number of monthly instances of
malaria disease are listed. It is clear from the results that, all the climatic variables are positively
correlated with the total number of malaria instances recorded monthly in all the years. The
wind speed parameter is an exception as it is negatively correlated with the data. Similarly, the
analysis is performed separately to study the relation between the climatic factors and number
of malaria instances concerned to individual P.falciparm, P.vivax and total cases recorded sea-
son wise (Table 4). While analysing the season wise data it is observed that the P.falciparm
cases show significant association with temperature and rainfall (Table 4).

Multivariate analysis using PCA
The monthly data of climatic factors collected during the 7 years from 2006 to 2012 is resulted
in a data matrix of 84 x 10 dimensions. The data covariance matrix when subjected to PCA has
resulted in a matrix of 10 eigenvectors and corresponding diagonal matrix of 10 eigenvalues
which are arranged in the descending order of their magnitude. In Fig. 6a the eigenvalues are
plotted across their eigenvectors signifying the extent of variance captured by individual eigen-
vector. It is clear from the figure that, the magnitudes of first few eigenvalues are significant
and that of last few eigenvalues are nearly tend to zero, thus, revealing the importance of corre-
sponding eigenvectors. Selection of adequate number of eigenvectors or PCs is essential for op-
timal data representation. Fig. 6b indicates the extent of cumulative percentage of variance

Fig 2. Year wise malaria cases (PF: Plasmodium falciparum, PV: Plasmodium vivax) in East Siang district of Arunachal Pradesh, India.

doi:10.1371/journal.pone.0119514.g002
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(CPV) captured by the selected eigenvectors. First five eigenvectors are selected which captures
a total of 97% of CPV of the total variance. Out of the five selected vectors, the first one alone is
able to capture about 74.76% of total variance, and the variance captured by the remaining 2nd,
3rd, 4th and 5th eigenvectors are 12.79%, 5.48%, 2.76% and 1.3% respectively (Table 5). These
selected eigenvectors/loadings/principal vectors are represented in Table 6. These vectors serve
as the PCA model, which can be used for testing or validation.

Selection of key climatic variables using T2 contribution charts
Further, Hotelling’s T2 statistic values are computed and the variable contributions to T2 statis-
tic are evaluated as per the procedure illustrated in the previous section. The result of variable
contributions is represented in the form of a bar chart, and is shown in Fig. 7. The chart reveals
that the most significant climatic variable which influences the malaria transmission is the tem-
perature variable, which is found to exhibit highest contribution when compared with other
climatic variables. The next important variable is the mean wind speed followed by number of
rainy days. Among the four temperature variables, mean minimum temperature has shown
highest contribution, followed by mean maximum, highest maximum and lowest minimum
temperatures. The least significant climatic variable recorded from the study for malarial trans-
mission happens to be total mean rainfall.

Fig 3. Month wise Plasmodium vivax (PV) malaria cases in East Siang district of Arunachal Pradesh, India.

doi:10.1371/journal.pone.0119514.g003
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Discussion
Malaria is a major public health problem in all North-eastern states of India and several deaths
are being reported every year [4]. Earlier it was reported that, in Northeast region, P. falcipa-
rum infection accounted more than 60% and 40% was due to P. vivax [27]. In contrast to this
report, we observed that higher number of malaria cases were due to P.vivax (75%) followed by
P. falciparum (25%) in East Siang district of Arunachal Pradesh. The dominance of P. vivax
cases over P. falciparum cases may be due to several factors like parasitic load, vector density,
vectorial capacity, host parasite interaction or fresh introduction of P. vivax from nearby areas
by means of migratory population to this area. It is also observed that, though the number of P.
vivax cases was high throughout the study period, the transmission rates decreased gradually
for the period 2006 to 2012. This decreasing trend may be due to the effective control of P.
vivax cases during the study period. It is also presumed that, decrease in number of vivaxma-
laria during 2008 to 2010 may be due to the exposure of Chloroquine which is an effective drug
for vivaxmalaria but known for resistance to falciparummalaria [28]. It is interesting to note
that, during this period there was a decrease in number of P. falciparummalaria cases from
2008 to 2010 but their number was found to be increased in the subsequent years, 2011 and
2012. The trend of reappearance of P. falciparum cases with high numbers clearly indicates
that, there is a possibility of shift of parasitic infection in the community. Such types of trend
shift of parasites was also reported with an increase in P. falciparum cases and associated with
the decrease in P. vivax cases [29].

Fig 4. Month wise Plasmodium falciparum (PF) malaria cases in East Siang district of Arunachal Pradesh, India.

doi:10.1371/journal.pone.0119514.g004
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Fluctuation of malaria incidences are highly influenced with the climatic factors [30]. The cli-
mate variability impact on the incubation rate of Plasmodium parasites and breeding activities
of Anopheles is considered as an important environmental contribution to malaria transmission
dynamics [31,32]. There is no such report available on the transmission dynamics of malaria in
East Siang district of Arunachal Pradesh, where high incidence of malaria have been observed
throughout the study period. The influence of various climatic factors like temperature, relative
humidity, wind speed and rainfall were analysed to understand the malaria transmission dy-
namics. It is observed from the study, that the disease transmission occurred throughout the
year (Fig. 5), but, average to higher number of cases were recorded in rainy/wet season
(1808.85) followed by summer/dry (1344.28) and winter/cold (715.42) (Table 1). The seasonal
trends observed in malaria cases caused by Plasmodium species is illustrated in the Table 1. Dur-
ing the rainy season, P. falciparum cases constituted 52.9% of the patient load (n = 3576) and P.
vivax cases 44.7% of the total number of cases reported in this season (n = 9086). Similarly stud-
ies from Tanzania showed that the majority of malaria cases occur during the rainy season [33].
The correlation analysis between climatic variables and malaria cases shows the significant asso-
ciation of P.falciparum cases with summer season (Table 4). The summer season contributed
enough number of cases of P. falciparum (30.49%) and P. vivax (36.16%). This is due to the
availability of vector habitation, existence of permanent water bodies, such as slow-flowing riv-
ers, lakes and swamps which provide suitable breeding sites for malaria vectors. The mature
mosquito survival is considerably reduced by low humidity [34], hence, malaria incidence dur-
ing summer seasons is quite possible [35]. In contrast to our results, studies from North India
have reported that the P. falciparummalaria cases were reported very high during the post-
monsoon season [36].

While observing the monthly trend of malaria cases, high malaria transmission occurred in
June/July to September/October. During the study period it was also observed that the first

Fig 5. Season wise malaria cases (PF: Plasmodium falciparum, PV: Plasmodium vivax) in East Siang
District of Arunachal Pradesh, India.

doi:10.1371/journal.pone.0119514.g005
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phase of malaria transmission started along with rainy season and reached its peak in July/
August (i.e. South West monsoon June to September). The second phase of transmission
started between October to December which also coincided with the North East monsoon. As
Arunachal Pradesh receives less rainfall during the North East monsoon, the malarial cases
were also scaled down. The third phase started from January to April where the disease trans-
mission might have occurred due to the breeding of vectors in permanent breeding sites.

Fig 6. Eigenvalue analysis of climatic factor data (a) eigenvalues (b) CPV.

doi:10.1371/journal.pone.0119514.g006
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From the Spearman correlation analysis among monthly incidence of malaria with various
meteorological variables, it is observed that, among all the climatic factors, the temperatures
(maximum, minimum, highest maximum and lowest minimum) were found to be highly cor-
related with each other (Table 2). In addition to these temperature variables, the climatic fac-
tors such as rainfall and number of rainy days also showed strong positive correlation
(P<0.001) with the number of malaria incidence (Table 3). The temperature and rainfall
played a determined role in the transmission of malaria. Favorable temperature has an expo-
nential effect on malaria parasite development as well as on the development of mosquito lar-
vae [37]. Water temperature of the mosquito breeding site also influences the growth and
development of mosquito larvae [38]. The factor of rainfall influences the transmission of ma-
laria by creating the breeding sites and also increases the relative humidity, which is favorable
for mosquito, parasite development and disease transmission [39]. On the other hand, abun-
dant rainfall wash out the breeding sources which may lead to decrease in the mosquito popu-
lation and reflects on decrease in number of malaria incidences. In earlier studies we have
reported that temperature has high influence on the malaria transmission in Arunachal Pra-
desh [9]. In East Siang district, the maximum temperature (31°C) is relatively high, and creates
ambient condition for mosquito breeding. It is also reported that the incidence of malaria in-
creases in these areas during the rainy season with high temperatures [40,41]. Similar type of

Table 5. Percentage of variance captured by each eigenvector.

Eigenvector No. Percentage of variance captured

1 74.76

2 12.79

3 5.48

4 2.76

5 1.38

6 1.11

7 0.73

8 0.55

9 0.25

10 0.18

doi:10.1371/journal.pone.0119514.t005

Table 6. Selected Loading vector’s Matrix.

Selected eigenvectors

Factors p1 p2 p3 p4 p5

1 0.2865 0.5349 0.0210 -0.1218 -0.0983

2 0.3406 0.2967 0.0436 0.0884 0.0099

3 0.3206 0.3575 0.1608 0.1002 0.4034

4 0.3420 0.2695 -0.005 0.0217 -0.0935

5 0.3128 -0.3466 0.2646 -0.1324 -0.1885

6 0.3040 -0.2543 0.3417 -0.7172 0.0549

7 0.3052 -0.3411 0.3009 0.4625 0.3765

8 -0.3381 0.0713 0.2950 -0.0508 0.6321

9 0.3266 -0.2854 -0.1060 0.4037 -0.1780

10 0.2784 -0.19381 -0.7720 -0.2350 0.4550

doi:10.1371/journal.pone.0119514.t006
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observation is also noted in this study where high number of cases was reported in rainy season
with high temperature.

Though, Spearman correlation analysis signifies the nature and extent of correlations exist-
ing between any two variables, it may not be directly useful for multivariate analysis as well as
for identifying the important factors that contribute for malaria propagation. Therefore to un-
derstand the influence of each climatic variable on malaria transmission principal component
analysis followed by Hottelings T2 based contribution charts were developed. The Fig. 6 gives
the results of the eigenvalues and the variances explained by PCA using the related malaria var-
iables. All the variances in the data is represented by 10 principal components. However 97%
of the variance in the data is represented by the first five principal components. The individual
contributions of the remaining 5 PCs are small and their total contribution is only 3% of the
total variance. The eigenvectors with the highest eigenvalues represented the strongest correla-
tion in the data set (Table 5). From Fig. 6a it is observed that the first eigenvector has the stron-
gest correlation with malaria followed by 2nd to 5th PC. Thus, the first five PCs are selected for
the PCs loading vector matrix. The loadings indicate the influence of variables in these five
PC's and are presented in Table 6. A loading close to 1 indicates a very strong correlation. The
Table 6 shows that the first rotated PCs are related to temperature. The highest loading is ob-
served for lowest minimum temperature (0.3420), mean minimum temperature (0.3406) and
highest maximum temperature (0.3206). The second related rotated PCs is related to mean
maximum temperature (0.5349). The third, fourth and fifth rotated PCs are related to heaviest
rainfall in 24 hours (0.3417), number of rainy days (0.4625) and mean wind speed (0.6321).

Apart from the correlation and principal component analysis, the data was further analyzed
with Hotelling’s T2 statistic contribution chart. The Hotelling’s T2 statistic presented in this

Fig 7. Contribution chart of climate variables.

doi:10.1371/journal.pone.0119514.g007
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paper is a novel tool for analyzing climate data. The proposed T2 statistic is corollary to its orig-
inal counterpart developed for multivariate analyses [42]. The Hotelling's T2 contributions are
developed with specific and significant role of climatic factors on malaria transmission [43].
The Hotelling's T2 statistic data clearly represents that the temperature variables show higher
contribution in the represented data chart (Fig. 7), emphasizing that the temperature is an im-
portant determinant of malaria transmission. This result is in agreement with our earlier re-
ported studies in Arunachal Pradesh state which states that temperature is the key factor for
mosquito biology, parasite development and disease transmission [9]. Present study also clearly
confirms that, the mean maximum and minimum temperatures are one of the important as-
pects for malaria transmission. In conclusion, temperature was identified as the key climatic
variable influencing the transmission and propagation of malaria in this region. Furthermore,
understanding the influence of daily temperature dynamics could provide new insights into
malaria ecology in response to future climate change. Hence by considering this factor, suitable
prediction model should be used to predict malaria cases for effective control.

Supporting Information
S1 Fig. Mean maximum temperature, mean minimum temperature, highest maximum
temperature, lowest minimum temperature of East Siang district of Aruanchal Pradesh,
India.
(TIF)

S2 Fig. Mean relative humidity of East Siang district of Aruanchal Pradesh, India during
the year 2006 to 2012.
(TIF)

S3 Fig. Total rainfall in the month, heaviest rainfall in 24 hours and number of rainy days
reported in East Siang district of Aruanchal Pradesh, India during the year 2006 to 2012.
(TIF)
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