
Link removal for the control of stochastically evolving epidemics 
over networks: A comparison of approaches

Eva A. Ennsa and Margaret L. Brandeaub

Eva A. Enns: eenns@umn.edu; Margaret L. Brandeau: brandeau@stanford.edu
aDivision of Health Policy and Management, University of Minnesota School of Public Health, 420 
Delaware St. SE, MMC 729, Minneapolis, MN 55455, USA, Tel: (612) 626-4581

bDepartment of Management Science and Engineering, Stanford University, 475 Via Ortega, 
Stanford, CA 94305, USA

Abstract

For many communicable diseases, knowledge of the underlying contact network through which 

the disease spreads is essential to determining appropriate control measures. When behavior 

change is the primary intervention for disease prevention, it is important to understand how to best 

modify network connectivity using the limited resources available to control disease spread. We 

describe and compare four algorithms for selecting a limited number of links to remove from a 

network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of 

which links to remove is made prior to any disease outbreak and depends only on the network 

structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where 

information about the initial disease states of the nodes is incorporated into the decision of which 

links to remove. We evaluate the performance of these algorithms in minimizing the total number 

of infections that occur over the course of an acute outbreak of disease. We consider different 

network structures, including both static and dynamic Erdős-Rényi random networks with varying 

levels of connectivity, a real-world network of residential hotels connected through injection drug 

use, and a network exhibiting community structure. We show that reactive approaches outperform 

preventive approaches in averting infections. Among reactive approaches, removing links in order 

of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining 

performs best when the link removal budget is sufficiently large. The budget threshold above 

which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both 

network structure (higher for unstructured Erdős-Rényi random networks compared to networks 

with community structure or the real-world network) and disease infectiousness (lower for highly 

infectious diseases). We conduct a value-of-information analysis of knowing which nodes are 

initially infected by comparing the performance improvement achieved by reactive over 

preventive strategies. We find that such information is most valuable for moderate budget levels, 
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with increasing value as disease spread becomes more likely (due to either increased 

connectedness of the network or increased infectiousness of the disease).

Keywords

Infectious disease control; optimal quarantining; edge centrality; R0 minimization; value of 
information

1. Introduction

Despite remarkable progress in the past century, infectious diseases continue to cause 

millions of deaths worldwide every year (Fauci, 2001; Morens et al., 2004; Arias and 

Murray, 2009). A variety of approaches can be used to prevent such diseases and control 

their spread, including vaccination, treatment, changing risk behaviors, and quarantining. 

However, implementation of these measures is often constrained by limited budgets, time, 

and/or personnel, necessitating difficult decisions about how to best allocate these scarce 

resources to prevent disease spread.

The way in which individuals and populations come into contact with each other influences 

how a disease spreads as well as which control measures are most effective. These contact 

patterns can be represented as a contact network, with nodes representing individuals (or 

groups of individuals) and links representing contacts that have the potential for disease 

transmission from one node to another. Different aspects of network structure have been 

demonstrated to influence the severity of an epidemic and the speed and extent of its spread 

(Ganesh et al., 2005; Chakrabarti et al., 2008; Youssef and Scoglio, 2011; Watts and 

Strogatz, 1998; Newman and Watts, 1999; Moore and Newman, 2000; Jackson and Rogers, 

2007; May and Lloyd, 2001; Pastor-Satorras and Vespignani, 2001, 2002a; Eames, 2008; 

Miller, 2009; Newman, 2003; House and Keeling, 2011). For example, for the same average 

number of contacts, an epidemic is more likely to occur in networks with highly 

heterogeneous contact distributions (Jackson and Rogers, 2007; May and Lloyd, 2001; 

Pastor-Satorras and Vespignani, 2001, 2002a). This is illustrated in the extreme in so-called 

“scale-free” networks, where a small number of highly-connected nodes act as hubs that 

facilitate rapid, near-unstoppable disease spread (Pastor-Satorras and Vespignani, 2001, 

2002a). In contrast, diseases spread more slowly and less diffusely in highly clustered 

networks (Eames, 2008; Miller, 2009; Newman, 2003; House and Keeling, 2011); though a 

disease may quickly spread locally within a densely connected cluster, it is less likely to 

escape the cluster and cause a global outbreak in the network.

Given the importance of network structure to disease spread, it is natural to consider whether 

and how network information can be used to design more effective disease control 

interventions. A variety of analyses have shown that interventions that make use of network 

information outperform those that do not (Pastor-Satorras and Vespignani, 2002b; Eubank et 

al., 2004; Miller and Hyman, 2007; Hartvigsen et al., 2007; Salathé and Jones, 2010; 

Marcelino and Kaiser, 2009). For example, Miller and Hyman (2007) compared different 

vaccination strategies in a simulation model of person-to-person contact in Portland, 

Oregon. They found that vaccinating individuals with the greatest number of unvaccinated 
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contacts was more effective than random vaccination or vaccinating nodes with the highest 

number of contacts. Marcelino and Kaiser (2009) investigated flight cancellation as a means 

of preventing disease spread between cities over the global air travel network. They showed 

that canceling individual flight routes with the greatest edge centrality (a measure of a link's 

importance in maintaining the connectivity of the network) was more effective than simply 

shutting down airports with the greatest number of flights.

Prior work on how to use network information to target interventions in a population has 

primarily focused on vaccinating critical nodes in the network to prevent disease spread 

(Pastor-Satorras and Vespignani, 2002b; Eubank et al., 2004; Miller and Hyman, 2007; 

Hartvigsen et al., 2007). However, for many diseases, including hepatitis C, HIV, many 

sexually transmitted infections, and emerging influenza strains, a vaccine does not currently 

exist and behavior change remains the primary intervention. In such cases, a network-based 

intervention might instead focus on the interactions between nodes that are particularly 

critical to disease spread.

A number of link removal approaches have been proposed. These can be broadly classified 

along two dimensions. The first is whether an approach is preventive or reactive. A 

preventive strategy seeks to modify the network prior to an outbreak to make the network 

less conducive to disease spread (Marcelino and Kaiser, 2009; Bishop and Shames, 2011), 

while a reactive strategy assumes that the disease is detected prior to intervention and 

information about which nodes are initially infected is used to guide how links should be 

removed to prevent further disease spread (Enns et al., 2012). In general, one would expect 

reactive strategies to outperform preventive strategies because of the availability of 

additional information. However, it is unclear under what conditions this additional 

information is most valuable and when it is unnecessary. The second dimension is whether a 

strategy is rank-based or optimization-based. Rank-based strategies remove links in order of 

a link's “importance” to the network, which may be measured in terms of a link's 

betweenness centrality (Girvan and Newman, 2002; Marcelino and Kaiser, 2009), 

bridgeness (Cheng et al., 2010), or a variety of other metrics (Borgatti and Everett, 2006; De 

Meo et al., 2012). In contrast, optimization-based strategies consider link removal more 

holistically and identify a specific set of links to remove, which will change depending on 

the link removal budget (Bishop and Shames, 2011; Enns et al., 2012). Because there is no 

closed-form expression for the expected number of infections over the course of a disease 

outbreak in a contact network, optimization-based strategies must instead be formulated in 

terms of surrogate objective functions relating to network structure. The characterization of 

optimization-based strategies has therefore focused on establishing the algorithm's 

performance in inducing the desired change in network structure. A systematic evaluation of 

the impact of optimization-based link removal strategies on the expected number of 

infections during an outbreak has not yet been done.

In this paper, we compare four approaches to link removal, spanning the four possible 

combinations of the preventive/reactive and rank-based/optimization-based dimensions. In 

previous work, we described an optimization-based approach to quarantining infected nodes 

through link removal under resource constraints and evaluated its performance in separating 

initially infected and susceptible nodes in a static scenario (Enns et al., 2012). In this paper, 
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we evaluate this optimal quarantining approach and other link removal algorithms as 

interventions to minimize the expected number of infections over the course of a 

stochastically evolving epidemic. In contrast to our prior work, where we only considered 

whether a susceptible node could become infected, not the likelihood of infection, this 

analysis incorporates the differential risks of infection faced by susceptible nodes based on 

their position in the network relative to those initially infected as well as the possibility of an 

outbreak dying out due to random chance.

In Section 2, we outline the link removal problem and describe the four link removal 

algorithms with their underlying rationale. In Section 3, we simulate acute outbreaks of 

disease for a variety of disease characteristics and contact network structures (including 

stochastically evolving networks) and compare the performance of the link removal 

approaches in terms of the expected final outbreak size as a function of the number of links 

that can be removed. We evaluate the value of (perfect) surveillance information – that is, 

the value of knowing which nodes are initially infected – by comparing the relative 

performance of reactive vs. preventive strategies. We also consider algorithm performance 

in the case of imperfect surveillance information. Based on the results of these experiments, 

in Section 4, we conclude with a summary of the network, disease, and budgetary conditions 

under which different link removal approaches perform best and surveillance information is 

most valuable.

2. Link removal algorithms

We consider a population of size N interacting through a contact network, represented by an 

undirected N × N adjacency matrix, A, where Aij = 1 if node i and node j are connected 

(meaning that individual i can transmit disease to individual j); otherwise, Aij = 0. Because 

we consider the case of an undirected network and symmetric disease transmission, if Aij = 1 

then Aji = 1. We assume that a disease is introduced at time t = 0, with a small number of 

nodes initially infected. We model outbreaks of an acute, immunity-conferring disease using 

a susceptible-infected-recovered (SIR) model, where susceptible nodes become infected at a 

rate β per infected contact and infected nodes recover at a rate δ. Nodes in the recovered 

health state are no longer infectious nor can they be re-infected with the disease. We 

represent the health states of the population at time t with an N × 1 vector, st, where

(1)

We assume that A is fully known and that the objective is to minimize the expected number 

of infections by removing up to K links, with K being the link removal budget, from the 

contact network. We consider reactive and preventive link removal approaches. For 

preventive approaches, the decision of how to remove links is made prior to any disease 

outbreak and depends only on the network structure, while reactive approaches incorporate 

information about the initial disease states of the nodes (s0) into the decision of which links 

to remove. Note that the link removal problem is trivial for reactive algorithms if the link 

removal budget is sufficient to completely disconnect all infected nodes from the network. 
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Thus, we restrict our analysis to scenarios of relatively constrained budgets. We also 

characterize link removal algorithms as either rank- or optimization-based. Rank-based 

approaches remove links in order of some measure of “importance”, while optimization-

based approaches holistically identify a set of K links to remove to optimize a given 

objective function. We consider four link removal algorithms, one for each combination of 

characteristics: removing links in order of edge centrality (preventive, rank-based), 

removing links in order of susceptible-infected (S-I) edge centrality (reactive, rank-based), 

R0 minimization (preventive, optimization-based), and optimal quarantining (reactive, 

optimization-based).

2.1. Rank-based approaches to link removal

Edge centrality—Edge betweenness centrality is the most commonly used measure of a 

link's importance in a network, given by

(2)

where σ(i, j|e)/σ(i, j) is the fraction of shortest paths between nodes i and j passing over link 

e (Girvan and Newman, 2002). It essentially reflects the total number of shortest paths 

between nodes in the network that rely on a given link. Thus, links with higher edge 

betweenness centrality are generally more important to maintaining the connectivity of the 

network than edges with low centrality. We consider a preventive, rank-based link removal 

algorithm that removes the K links with the greatest edge betweeness centrality from the 

network.

S-I edge centrality—Instead of measuring the importance of links in maintaining all 

shortest paths in the network, a reactive approach is to measure the importance of links to 

only those shortest paths between susceptible and initially infected nodes. This yields a 

modified centrality measure, susceptible-infected (S-I) edge betweenness centrality, given 

by

(3)

where again σ(i, j|e)/σ(i, j) is the fraction of shortest paths between nodes i and j passing 

over link e, but we sum only over the shortest paths between infected and susceptible nodes 

(Enns et al., 2012). This reactive, rank-based algorithm thus involves removing the K links 

with the greatest S-I edge betweenness centrality.

2.2. Optimization-based approaches to link removal

While rank-based approaches to link removal are intuitive and relatively efficient to 

compute, they are ultimately greedy algorithms that may miss interdependencies captured by 

more global approaches. Therefore, we also evaluate the efficacy of optimization-based 

approaches that holistically consider the removal of links. Because there is no closed-form 
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expression for the expected number of infections over the course of a disease outbreak in a 

contact network, optimization problems must be formulated in terms of surrogate objective 

functions. We consider two approaches: a preventive link removal algorithm proposed by 

Bishop and Shames (2011) that minimizes the basic reproductive number of the contact 

network, R0, and a reactive, optimal quarantining algorithm proposed by Enns et al. (2012) 

that seeks to completely disconnect as many susceptible nodes as possible from initially 

infected nodes.

R0 minimization—The basic reproductive number, R0, is a commonly used 

epidemiological quantity and represents the average number of secondary infections that 

would occur if a single infected individual were introduced into a fully susceptible 

population. For a given disease and population, if R0 < 1, then the pathogen cannot sustain 

itself and we expect that it will die out before infecting many individuals. However, if R0 > 

1, it is expected that the number of infections will grow rapidly, resulting in a widespread 

epidemic (Anderson and May, 1991). For an SIR disease model and a given contact 

network, it has been shown that

(4)

where β is the transmission rate, δ is the recovery rate, and λ1(A) is the maximum eigenvalue 

of the contact adjacency matrix, A (Ganesh et al., 2005; Chakrabarti et al., 2008; Youssef 

and Scoglio, 2011).

Exploiting the relationship between R0 and a network's structure, Bishop and Shames (2011) 

formulated a convex optimization problem to identify which links to remove in order to 

minimize the maximum eigenvalue of the adjacency matrix (and thus the R0 of the 

population). They construct the following optimization problem, P1a:

(5)

(6)

(7)

(8)

where A is the original adjacency matrix, K is the maximum number of links to be removed, 

and Ã is the modified adjacency matrix resulting from link removal. The semi-definite 

constraint (6) requires the maximum eigenvalue of Ã to be less than γ (the quantity being 

minimized). Constraints (7) and (8) ensure that Ã can only be formed through the removal of 

at most K links from A (assuming that A is undirected, so the removal of the link Aij also 
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includes the removal of Aji). Because of the Boolean constraint (8), the above optimization 

problem cannot be easily solved. Therefore, Bishop and Shames (2011) relaxed the last 

constraint, resulting in the following convex optimization problem, P1b:

(9)

(10)

(11)

(12)

The solution to P1b is the optimal attenuation of edges that minimizes the maximum 

eigenvalue of Ã. As an approximate solution to the original problem P1a, they identify the 

edges corresponding to the K largest attenuations, |Aij − Ãij|, as the set of edges to be 

removed. For any given link removal budget K, they demonstrated that this algorithm 

reduces the maximum eigenvalue of A more than if links are removed randomly; however, 

they did not directly investigate the effects of R0 minimization on disease spread or the 

expected number of infections as we do here.

Optimal quarantining—An alternative, reactive optimization-based approach is the 

quarantining algorithm proposed by Enns et al. (2012). They formulated an optimization 

problem to identify links to remove from a network such that as many susceptible nodes as 

possible are completely disconnected from infected nodes (and thus no longer at risk for 

infection) given a link removal budget, K. They do so by defining a two-way partitioning 

problem, where nodes are assigned to one of two sets such that the “cost” of the partition is 

minimized and at most K links cross the partition. The two sets can be disconnected by 

removing all links crossing the partition. They define the partition cost such that all infected 

nodes are assigned to the same set with as few susceptible nodes as is feasible given the link 

removal constraint. They define the cost matrix, W, as:

(13)

where s0 is the vector describing the initial health states of nodes in the network at t = 0, α > 

0 is the cost of assigning a susceptible node and an infected node to the same set, and β > 0 

is the cost savings of assigning two infected nodes to the same set (β ≫ α to ensure that 

assigning all infected nodes to the same set is prioritized). The minimization problem can be 

written as a quadratically-constrained quadratic program (QCQP), P2a:
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(14)

(15)

(16)

where A is the adjacency matrix and x is the set assignment vector. Constraint (15) ensures 

that at most K links cross the partition. The binary constraint (16) ensures that each node is 

assigned to exactly one set (xi ∈ {1, −1}), but also results in P2a being non-convex.

Rewriting the problem as

(17)

(18)

(19)

(20)

and relaxing the final constraint, they defined the semi-definite program (SDP), P2b:

(21)

(22)

(23)

(24)

which is convex and can be solved using standard SDP solvers. The solution to P2b, 

provides both a lower bound on the optimal partition cost of the original QCQP, P2a, and 

can also be used to identify a feasible, near-optimal set assignment vector, x*, through a 

randomized sampling heuristic (Enns et al., 2012; Aspremont and Boyd, 2003). The links to 

be removed are those connecting nodes in opposite sets. Enns et al. evaluated the optimality 

of their algorithm on small networks compared to the optimal partition found through 

exhaustive search as well as the extent of quarantining achieved on larger networks 

compared to removing links in order of different edge centrality measures. However, they 
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did not evaluate the impact of their optimal quarantining algorithm on the expected final 

outbreak size in the context of stochastic disease spread.

3. Performance of link removal algorithms

We estimated the expected number of infections over the course of an outbreak in a given 

network A for each link removal algorithm as a function of the number of links removed as 

follows (also see Algorithm 1): We simulated outbreaks starting with a random 10% of 

nodes initially infected. For each network, A, we pre-generated and stored 300 sets of 

initially infected nodes. We used the same initial infection set for all link removal algorithms 

and budget levels. For each set, we determined the set of links to be removed from the 

network A for different link removal budgets, K = 0 to Kmax, using the specified link 

removal algorithm. We generated a modified network, Ã, with these links removed. We 

simulated a disease spreading over Ã using a Susceptible-Infected-Recovered (SIR) model 

with infection rate β per contact per unit time and recovery rate δ per unit time (see 

Algorithm 2). We simulated disease spread until no infected nodes remained, either because 

all nodes became infected (and then recovered) or because the disease died out. We repeated 

this process 100 times to capture stochastic effects and calculated the average number of 

nodes that became infected over the course of the outbreak. We then averaged this result 

over all 300 infection patterns to estimate the overall expected proportion of the population 

to become infected in that network A for each link removal budget, K = 0 to Kmax. All 

simulations were implemented in Matlab R2012b (Mathworks, Natick, MA) and 

optimization problems were solved using CVX (Grant and Boyd, 2011). Code is available 

from the authors upon request.

We evaluated the performance of the four link removal algorithms in preventing infections 

for a variety of network structures: Erdős-Rényi random networks with varying levels of 

connectivity; a real-world network of residential hotels connected through injection drug 

use; a meta-community network (four highly connected communities with a small number 

of links between them); and dynamic Erdős-Rény random networks with varying link 

turnover rates. We also considered the value of surveillance information (knowing which 

nodes are initially infected) and the performance of the link removal algorithms in the face 

of imperfect surveillance information, modeled as errors in the detection of initially infected 

nodes. Our findings are summarized in Table 1 and described in detail in Sections 3.1-3.6.

Algorithm 1 Evaluating performance of link removal algorithms for a given network A and 300 sets of initially infected 
nodes, ℐ.

 for each link removal algorithm do

  for K = 0 to Kmax do

   for m = 1 to 300 do

    s0(i) = 1 ∀ i ∈ ℐm

    s0(i) = 0 ∀ i ∉ ℐm

    % Identify set of links to remove, ℒ, according to link removal algorithm, f(·). %

    ℒ = f(A, s0, K)

    Ã = A
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    Ãij = Ãji = 0 ∀ (i, j) ∈ ℒ

    for n = 1 to 100 do

     Simulate disease spread with network Ã and initial heath state vector, s0 (see Algorithm 2). Returns final 
outbreak size, ninf.

     Ninf (n) = ninf

    end for

     

   end for

   return 

  end for

  Plot P̄
inf (K) as function of link removal budget K to generate result plots.

 end for

Algorithm 2 Simulating disease spread for a given network, A, and initial infection status of the population, s0.

 t=0

 while st(i) = 1 for some i ∈ {1, …, N} do

  t =t + 1

  % Infection of susceptible nodes %

  for all i ∈ {i|st−1(i) = 0} do

     {Count number of infected contacts}

   Set st(i) = 1 with probability p(i) = 1 − e−Cinf(i) β

  end for

  % Recovery of infected nodes %

  for all j ∈ {j|st−1(j)1} do

   Set st(j) = −1 with probability q = 1 − e−δ

  end for

 end while

  

 return ninf {Final outbreak size}

3.1. Erdős-Rényi random networks

We first considered the performance of the algorithms on Erdős-Rényi random networks of 

50 nodes. We generated these networks by randomly connecting any pair of nodes with 

probability p. We generated networks with p = 0.2 (20% of all possible links in the network 

exist), 0.4 and 0.8 to explore how changes in network connectivity affect the performance of 

the link removal algorithms. We simulated a disease with β/δ = 0.125. Without link removal, 

the basic reproductive number, R0, of such a disease was 1.3, 2.5, and 5.0 for networks with 

p equal to 0.2, 0.4, and 0.8, respectively. For each network, we randomly infected 5 nodes 
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(10% initial prevalence) and simulated disease spread until the disease died out. For each 

network, we averaged results over 300 random sets of initially infected nodes.

Figure 1 shows how R0 changes as links are removed under the different link removal 

algorithms. As expected, the R0 minimization approach achieved the greatest reduction in R0 

for any given link removal budget. However, minimizing R0 had little impact on the final 

outbreak size, even with a link removal budget of up to 30% of links in the network (Figure 

2A). Removing links in order of edge centrality performed slightly better in reducing the 

expected number of infections in the highly connected network (p = 0.8); however, as 

network connectivity decreased, both preventive algorithms had similar effects on the final 

outbreak size.

Reactive approaches, which make use of initial node health state information, significantly 

outperformed preventive link removal approaches (Figure 2B). The greatest gains resulted 

when the link removal budget exceeded 20% of the links in the network and nearly all 

susceptible nodes could be disconnected from infected nodes under the optimal quarantining 

approach. Below this budget threshold, however, optimal quarantining had little impact on 

the expected number of infections. This is likely because the quarantining algorithm relies 

on completely disconnecting susceptible nodes to prevent infections. When the network is 

unstructured and budgets are small, there is no efficient way to disconnect a substantial 

number of nodes from the network. Instead, removing links in order of S-I edge centrality 

resulted in the fewest number of infections for networks with low to moderate connectivity 

(p = 0.2 and p = 0.4) by increasing infected-susceptible path lengths in the network and 

making it more likely for an infection to die out before a substantial number of infections 

occur. This strategy had little impact for networks with high connectivity (p = 0.8), where 

disease spread was much more efficient. In such cases, only when the budget was sufficient 

to allow infected nodes to be completely quarantined could a substantial number of 

infections be averted.

3.2. Residential hotel network

To extend our analysis beyond stylized network models and provide an example of a real-

world application, we next considered the performance of link removal algorithms in a 

network of residential hotels in Winnipeg, Canada connected through injection drug use 

(Wylie et al., 2007). This analysis allowed us to evaluate the efficacy of link removal 

strategies in a realistic setting. We note that this network represents only a single instance of 

an empirical network structure and our findings for this network may have limited 

generalizability to other real-world contexts.

The network consisted of 49 residential hotels identified in a survey of users of injection 

drugs as locations of drug use. Two residential hotels were considered to be connected if at 

least one person reported injecting drugs at both locations. Of the 49 residential hotels 

identified in the survey, 38 formed the largest connected component. We simulated the 

spread of a disease over the connected component with β/δ = 0.5 (yielding R0 ≈ 5). We 

simulated outbreaks for 300 different sets of 4 initially infected nodes (∼ 10% of nodes). In 

this network, an infected node (hotel) represents the prevalence of disease among the hotel's 

residents exceeding some threshold.
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Among preventive strategies, removing links in order of edge centrality outperformed R0 

minimization for all link removal budget levels (Figure 3). However, as for the case of 

Erdős-Rényi random networks, preventive link removal strategies resulted in much larger 

outbreaks than did reactive strategies. Among reactive strategies, for small link removal 

budgets, removing links in order of S-I edge centrality resulted in fewer infections than the 

optimal quarantining approach. This is because when budgets are small, few susceptible 

nodes can be completely separated from the network and quarantining has little effect. In 

contrast, removing links with high S-I edge centrality increases path lengths between 

infected and susceptible nodes, making it more likely that the disease will die out before a 

large fraction of the network becomes infected. However, once the link removal budget was 

sufficiently large (greater than 12% of links in the network), a substantial number of 

susceptible nodes could be disconnected from the network. By reducing the risk of infection 

of these nodes to zero, optimal quarantining resulted in the fewest number of infections.

Further insight into link removal performance can be gained by examining how the 

distribution of final outbreak sizes over the 300 sets of initially infected nodes changes with 

the link removal budget under each link removal algorithm. The distributions of final 

outbreak sizes in the residential hotel network for link removal budgets of 10%, 20%, and 

30% of links in the network are shown in Figure 4. For both reactive strategies, we find that 

reductions in the average outbreak size with an increasing link removal budget are achieved 

by completely eliminated disease spread (beyond the initial set of infected nodes) for an 

increasing number of scenarios. For scenarios where disease spread is not eliminated, the 

final outbreak size remains largely unchanged, resulting in bi-modal distributions and wide 

variability. However, as budgets increase, we find that this variability is reduced, especially 

for the optimal quarantining algorithm, as the shift to small outbreak sizes increases. We 

also note that the R0 minimization algorithm has little impact on the distribution of outbreak 

sizes, and results in only small shifts towards smaller final outbreak sizes as the link removal 

budget increases.

We also compared the performance of the link removal algorithms for varying levels of 

disease infectiousness, β. When β was double the base case value (β/δ = 1), optimal 

quarantining (reducing the risk of infection to zero for as many nodes as possible) was the 

most effective strategy for all budget levels (Figure 5A), as the disease was sufficiently 

infectious that increasing path lengths had little effect on its probability of spread. However, 

when β was half the base case value (β/δ = 0.25), the disease was less infectious and more 

likely to die out. Increasing path lengths between nodes had a greater impact on final 

outbreak size, and the budget threshold at which optimal quarantining outperforms removing 

high S-I edge centrality links increased to 20% of links in the network (Figure 5B).

3.3. Networks with Community Structure

Community structure, where nodes interact within tightly knit groups with only sparse 

connections between groups, arises in a variety of contexts. For example, community 

structure is observed in the interactions within human and social animal communities, where 

individuals self-organize into cliques, core groups, or modular sub-populations (Aral, 2000; 

Jolly and Wylie, 2002; Griffin and Nunn, 2012); in the interactions between distinct social 
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or territorial groups in a shared environment (Pitt et al., 2008; Craft et al., 2011); and in 

population interactions over a heterogeneous landscape (or patches) (Hanski, 1998; Smith, 

2007). The existence of loosely connected sub- or meta-populations within a network has 

been shown to influence disease dynamics, with “bridging” individuals or populations 

playing a particularly crucial role in facilitating disease spread from one sub-population to 

another (Grenfell and Harwood, 1997; Girvan and Newman, 2002; Salathé and Jones, 2010; 

Kitchovitch and Liò, 2011; Griffin and Nunn, 2012).

To construct a network exhibiting community structure, we first generated four equally-

sized sub-populations of 25 nodes. Each sub-population formed its own Erdős-Rényi 

random network, with two of the sub-populations exhibiting low connectivity (p = 0.2) and 

the other two exhibiting high connectivity (p = 0.6). In each sub-population, four “bridging” 

nodes were each randomly connected to a node in one of the other sub-populations. We 

considered scenarios where outbreaks began in one of the highly connected sub-populations. 

We simulated a disease with β/δ = 0.34 (resulting in R0 ≈ 5) with 10% of nodes initially 

infected.

Removing links to minimize R0 had the least impact on the expected number of infections, 

whereas removing links in order of edge centrality or S-I edge centrality achieved a steady 

decrease in infections until reaching a plateau when more than 2% of links could be 

removed (Figure 6). This was also the smallest link removal budget for which the optimal 

quarantining algorithm was first able to achieve a substantial reduction in the expected 

number of infections. At this budget level, the majority of bridging links between the sub-

populations could be removed, completely disconnecting fully susceptible communities 

from the infected sub-population. Only when the budget became much larger (10% of links) 

could a sufficient number of links within the infected sub-population be disconnected, 

resulting in further decreases in the number of infections under the optimal quarantining and 

S-I edge centrality strategies.

The structural relationship of this network to its maximum eigenvalue illustrates why 

minimizing R0 has little effect on the number of infections. The maximum eigenvalue of the 

overall adjacency matrix is approximately equal to the largest of the maximum eigenvalues 

of the four sub-populations, meaning it will be driven by the maximum eigenvalue of the 

more connected communities. To minimize this maximum eigenvalue, links within the most 

connected communities will be removed, while the particular significance of links between 

communities to disease transmission is ignored. Thus, the R0 minimization algorithm does 

not take advantage of the efficiency of disconnecting loosely linked communities to prevent 

widespread infection, but instead focuses on reducing the local infection rates within the 

most connected communities.

3.4. Dynamic networks

In the previous examples, we considered outbreaks in static networks; that is, networks that 

do not change over the course of the outbreak. However, depending on the timescale of the 

disease's dynamics and the type of contact(s) relevant for its transmission, this may be an 

unrealistic assumption. Network dynamics can have an important and complex influence on 

epidemic outcomes, in some cases facilitating and in other cases hindering disease spread 
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depending on a complex interplay of contact turnover rates, transmission and recovery rates, 

and structural features of the network (Fefferman and Ng, 2007; Vernon and Keeling, 2009; 

Volz and Meyers, 2009; Taylor et al., 2012; Sloot et al., 2013; Gulyás and Kampis, 2013).

We evaluated the performance of the link removal algorithms in dynamic Erdő-Rényi 

random networks. Using the dynamic network framework described by Gulyás et al. (2013) 

and Gulyás and Kampis (2013), we simulated outbreaks in networks with different rates of 

link turnover, determined by the rate of link acquisition. We set the rate of link termination 

such that it balanced the process of link formation to maintain the same number of links in 

the network, on average, over time. We assumed that the link termination and formation 

rates were constant over time and that new links formed randomly between nodes. In 

applying link removal algorithms to these now dynamic networks, we assumed that links 

selected for removal by the algorithm would be both removed and prevented from re-

forming.

We varied the rate of link acquisition in multiples of the recovery rate, δ, to explore the 

performance of link removal in cases where network dynamics were similar to and faster 

than disease dynamics (and, in particular, the infectious period). The performance of link 

removal algorithms for a dynamic Erős-Rényi random network with p = 0.40 and β/δ = 

0.125 (as in Section 3.1) is presented in Figure 7 for turnover rates equal to δ, 5δ, and 10δ. 

Without link removal (K = 0%), we observed that in the Erős-Rényi random network, link 

turnover resulted in interrupted disease spread compared to the static case, with decreasing 

final outbreak sizes as the turnover rate increased. These results are consistent with other 

studies of epidemic outcomes as a function of network dynamics (Fefferman and Ng, 2007; 

Gulyás et al., 2013). The relative performance of the four link removal algorithms is similar 

to the static case: reactive algorithms vastly outperform preventive ones and removing links 

in order of S-I edge centrality achieved the smallest outbreak sizes for small link removal 

budgets, while optimal quarantining averts a substantial number of infections once the link 

removal budget exceeds a threshold (K = 20% in this case). Beyond this threshold, the final 

outbreak size under S-I edge centrality and optimal quarantining algorithms reaches a 

plateau. Compared to the static case, we find that this plateau level increases with the link 

turnover rate. Though reactive link removal algorithms initially disconnect infected nodes 

from susceptible ones for large budget levels, the likelihood that these infected nodes form 

new links to susceptible nodes before they recover increases with the link turnover rate, 

allowing the disease to spread beyond those initially infected.

3.5. Value of surveillance information

Reactive strategies outperform preventive strategies because they use additional information 

about the network, namely which nodes are initially infected, to identify which links to 

remove. This additional information might be available if, for example, a surveillance 

program was in place prior to an outbreak. However, surveillance requires an investment of 

resources. Using our link removal analysis, we can estimate the value of surveillance 

information, which could be used to evaluate whether the value of a surveillance system 

justifies its cost. For a given network, disease, and link removal budget, we computed the 

value of surveillance information as the difference in expected number of infections under 
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the best preventive strategy and the best reactive strategy. We considered the cases of 

perfect surveillance information where the infection status of all nodes is known before link 

removal begins (this section) and imperfect surveillance information (next section).

In general, we found that the value of (perfect) surveillance information was higher when 

the disease was more likely to spread, either because the network was more densely 

connected or because the disease was more infectious (Figures 8A and 8B). For Erdős-Rényi 

random networks, the value of surveillance information was low when the link removal 

budget was small; in this case, none of the link removal algorithms had much effect on 

disease spread. The value of information in random networks increased substantially once 

the budget was large enough to disconnect infected nodes from the majority of the 

susceptible population. In contrast, in networks exhibiting community structure, the value of 

surveillance information was relatively high for small budgets (Figure 8C): even though 

only a small number of links could be removed, knowing which community was 

experiencing the initial outbreak meant that reactive link removal algorithms could prioritize 

breaking the few links connecting the infected community to the rest of the network. The 

decrease in value of surveillance information came when the budget was sufficiently large to 

disconnect all communities (infected or not) from each other. Since all the “bridging” links 

between communities have high edge centrality, the preventive edge centrality algorithm 

was breaking more and more of these links as the budget increased, eventually converging to 

the solution of the two reactive strategies when all such bridging links could be removed.

3.6. Imperfect surveillance information

We also evaluated the performance of the link removal algorithms for the case of imperfect 

surveillance information; that is, when there is error in the detection of infected nodes. We 

modeled this by introducing an “observed” initial health state vector, ŝ0, which we 

constructed by applying a false negative rate, pFN, and a false positive rate, pFP to the true 

initial health state vector, s0. For an initial prevalence of 10%, this yielded pFN(0.1)(N) 

infected nodes that were wrongly thought to be uninfected (false negatives) and pFP(0.9)(N) 

uninfected nodes that were mistakenly observed to be infected in ŝ0 (false positives). We 

applied the link removal algorithms using the observed health states, ŝ0, to identify links to 

remove. We then simulated the spread of disease over the modified network using the true 

initial health states, s0.

We varied pFN to explore how the level of false negatives affects algorithm performance. 

We selected pFP to balance the false negative rate so that the total number of “observed” 

infected nodes was equal to the total number of truly infected nodes (pFN(0.1)(N) = pFP(0.9)

(N)). Results are presented in Figure 9 for the residential hotel network, with false negative 

rates of 0% (perfect information), 25%, and 50%. We observed that imperfect surveillance 

information drastically reduces the effectiveness of the reactive strategies. For a false 

negative rate of 25% or greater, the edge centrality, S-I edge centrality and optimal 

quarantining approaches led to similar outbreak sizes. At a false negative rate of 50%, 

removing links in order of betweenness centrality, without using initial node health state 

information, was the optimal strategy for all budget levels, indicating that at this error level 
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the imperfect surveillance information is more misleading than it is helpful in targeting link 

removal efforts.

4. Discussion

We compared four approaches to removing links from a contact network to prevent disease 

spread. We evaluated the expected number of infections using these link removal algorithms 

as a function of the number of links to be removed in different network structures (random, 

real-world, community-structured, and dynamic) and for different levels of disease 

infectiousness. Though the performance of the different algorithms will always depend on 

the complex interplay between network structure, disease characteristics, and budget size, 

our findings suggest several general themes.

We consistently found that reactive algorithms, which make use of the knowledge of which 

nodes are initially infected, resulted in fewer infections than preventive approaches, though 

the magnitude of the difference was dependent on the specific network, disease, and budget 

level. In our value-of-information analysis, we found that knowing which nodes were 

initially infected was most valuable when infected nodes, or the community/cluster 

containing the infected nodes, could be disconnected from the network. For Erdős-Rényi 

random networks and the residential hotel network, we observed that the value of this 

information was low for very small or very large budgets, with a peak value at some 

moderately sized budget. For small budgets, few links can be removed and no strategy will 

have much impact on disease spread; for large budgets, so much of the network can be 

disconnected that disease spread will be hindered no matter which specific links are 

removed. However, at moderate budget levels, disease spread can be prevented, but only if 

specific, critical links are removed. Networks exhibiting community structure were an 

exception: knowing which community contained initially infected nodes was valuable at 

small budget levels because only a small number of links needed to be removed to 

disconnect the infected community from the others. The value of this information declined 

once the budget was sufficiently large to disconnect all communities from each other, as 

even the preventive edge centrality algorithm identified inter-community links as critical to 

remove.

We also noted that surveillance information, if erroneous, can be harmful. In the residential 

hotel network, we found that the effectiveness of reactive link removal algorithms was 

reduced as error rates in the detection of initially infected nodes increased. For high rates of 

misidentification (a 50% false negative rate), both reactive algorithms in fact performed 

worse that removing links in order of edge betweenness centrality. Reactive algorithms 

prioritize connections to infected nodes; however, in the presence of imperfect information 

about a node's initial health status, resources aimed at nodes observed to be infected may be 

misplaced, and more general approaches to reducing the conductivity of the network may be 

more effective at preventing disease spread.

Interestingly, optimization-based link removal algorithms did not always outperform greedy, 

rank-based algorithms. This is perhaps not surprising, as the objective functions of these 

optimization problems are formulated in terms of specific structural modifications to the 
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network and not directly related to the expected number of infections. Thus, in our context, 

the performance of an optimization-based link removal algorithm depends on the 

appropriateness of the hypothesized structural modification for impeding disease spread. 

This point was aptly illustrated by the R0 minimization algorithm. Though the R0 

minimization algorithm achieved the greatest reduction in the maximum eigenvalue of the 

contact network for a given budget (Figure 1), this structural modification did not translate 

into a substantial reduction in the expected number of infections of the course of the 

outbreak. For all the cases we considered, R0 minimization was dominated by removing 

links in order of edge centrality. Though R0 has a strong theoretical relationship to the initial 

trajectory of an outbreak, it did not prove to be a good surrogate for the final outbreak size in 

stochastically evolving outbreaks. Other related measures may prove to be better predictors 

of outbreak size, such as the eigenvector corresponding to the maximum eigenvalue of the 

adjacency matrix, as proposed by Youssef and Scoglio (2011). However, an appropriate 

formulation of a convex objective function for the minimization of an eigenvector is not 

immediately apparent.

Among reactive approaches, whether removing links in order of S-I edge centrality (rank-

based) or optimal quarantining (optimization-based) resulted in the smallest outbreak 

depended on the network, disease, and budget. For all the cases considered, we observed the 

same pattern: the S-I edge centrality algorithm performed best for small budgets; however, 

once the budget exceeded some threshold, optimal quarantining resulted in the fewest 

number of infections. We can explain this pattern in terms of the differences in underlying 

approaches of these algorithms to preventing disease spread. The S-I edge centrality 

algorithm increases path lengths between infected and susceptible nodes, increasing the 

probability that a disease will die out before spreading throughout the network; in contrast, 

the optimal quarantining algorithm fully disconnects susceptible nodes from those initially 

infected, completely eliminating the risk of infection in disconnected nodes. When budgets 

are small, few nodes can be fully disconnected from the network, and a quarantining 

strategy will have little effect; thus, increasing path lengths and increasing the probability of 

the disease dying out is the best strategy. As the budget increases, however, more and more 

nodes can be disconnected through quarantining and eventually eliminating the risk of 

infection will outperform merely reducing it. Disease infectiousness also played an 

important role in determining the optimal strategy, as we saw that the more infectious the 

disease, the lower the budget threshold at which quarantining outperformed the S-I edge 

centrality algorithm. For highly infectious diseases, the probability of disease spread is still 

high, even with increased path lengths in the network (consider the extreme case when β = 

∞ and the probability that a node will infect its contacts is 1). In such cases, fully separating 

susceptible nodes from the network is the only effective way to prevent infection, making 

optimal quarantining the most effective strategy.

The two rank-based algorithms considered in this analysis are based on betweenness 

centrality (and variations thereof) as a measure of a link's importance to the network. 

Though less studied than node centrality, a number of other edge centrality metrics have 

been proposed, such as bridgeness (Cheng et al., 2010), k-path centrality (De Meo et al., 

2012) and others. Moderate correlation between centrality metrics has been noted (Valente 
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et al., 2009); however, it is possible that other centrality metrics may better reflect a link's 

importance to disease transmission than betweenness centrality. Which edge centrality 

metric best reflects a link's role in disease transmission will likely depend on the type of 

network structure and level of disease infectiousness. The association between different 

edge centrality metrics and disease spread warrants further investigation.

In our analysis, we did not consider issues of disease persistence or conditions for 

establishing endemicity. Our analysis focused on link removal as a strategy to contain an 

acute outbreak of an immunity-conferring disease (following an SIR model) in a closed, 

finite population. Under these conditions, indefinite disease persistence cannot be 

maintained: either all nodes in the network will become infected, exhausting the susceptible 

population, or infected nodes will at some point fail to transmit the disease before 

recovering, eliminating the source of further infection. Thus, questions of disease 

persistence are beyond the scope of this analysis.

The contact networks to which we apply the link removal algorithms are relatively small, on 

the order of 50 to 100 nodes. At these dimensions, finite network effects may have 

influenced the simulated disease dynamics, potentially leading to different conclusions than 

if the algorithms had been applied to larger networks (Noël et al., 2009). However, the 

applicability of link removal as a disease control strategy becomes questionable as networks 

become large, as individual links may no longer be the relevant unit of intervention. Instead, 

we might expect that link removal strategies would be applied hierarchically to large 

networks, first considering the connections between meta-communities, followed by the 

sub-structure within communities, and so on. The optimization-based algorithms, as 

implemented, can be applied to networks on the order of hundreds of nodes, though 

computational demands increase as networks become larger and/or denser. However, 

because these algorithms rely only on standard convex optimization solvers, they could be 

extended to larger problems using more sophisticated implementations that leverage large-

scale convex optimization techniques (Fujisawa et al., 2007; Zheng et al., 2012).

We assumed perfect knowledge of the contact network. Developing robust link removal 

algorithms for situations when network information is incomplete or uncertain is an 

important next step. Complete information about a contact network is rarely available and 

collecting such information is resource-intensive. Understanding which aspects of network 

structure are most influential in determining the optimal disease control response could 

make it more feasible to include network considerations into ongoing surveillance programs. 

For example, risk behavior surveillance surveys could elicit certain features of a population's 

contact structure from individual respondents (e.g., average number of contacts or perceived 

clustering among contacts), without needing to map out an entire network. These issues are 

topics of future research.
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Figure 1. 
The basic reproductive number, R0, in an Erdős-Rényi random network with p = 0.80 as a 

function of the number of links removed.
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Figure 2. 
Percent of the population infected over the course of an outbreak under (A) preventive and 

(B) reactive link removal strategies in Erdős-Rényi random networks with varying levels of 

connectivity: p = 0.8 (solid line), p = 0.4 (dashed line), p = 0.2 (dotted line). Disease spread 

was simulated with β/δ = 0.125 and 10% of nodes initially infected. Results are the average 

of 300 random sets of initially infected nodes.
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Figure 3. 
Percent of the population infected over the course of an outbreak in the residential hotel 

network. Simulated with β/δ = 0.5 (R0 ≈ 5) and 10% of nodes initially infected. Results are 

the average of 300 random sets of initially infected nodes.
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Figure 4. 
Distribution of the final outbreak sizes over 300 random sets of initially infected nodes in 

the residential hotel network with link removal budgets of (A) K = 10%, (B) K = 20%, and 

(C) K = 30%. Disease spread was simulated with β/δ = 0.5 (R0 ≈ 5). Average values are 

indicated by ‘+’ and box plots show interquartile ranges and 95% intervals.
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Figure 5. 
Percent of the population infected over the course of an outbreak in the residential hotel 

network for a disease with (A) increased infectiousness (β/δ = 1) and (B) decreased 

infectiousness (β/δ = 0.25). Simulated with 10% of nodes initially infected. Results are the 

average of 300 random sets of initially infected nodes.
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Figure 6. 
Percent of the population infected over the course of an outbreak in a network exhibiting 

community structure with four sub-populations. Simulated with β/δ = 0.34 (R0 ≈ 5) and 

10% of nodes initially infected. Results are the average of 300 random sets of initially 

infected nodes in one of the highly connected sub-populations.
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Figure 7. 
Percent of the population infected over the course of an outbreak in a dynamic Erdős-Rényi 

random network (with p = 0.40) with varying rates of link turnover. Shown for link 

formation rates of (A) δ; (B) 5δ; and (C) 10δ, where δ = 0.1 is recovery rate of infected 

nodes. Simulated with β/δ = 0.125 and 10% of nodes initially infected. Results are the 

average of 300 random sets of initially infected nodes.
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Figure 8. 
Expected value-of-information (in terms of potential infections averted) of knowing which 

nodes are initially infected, measured as the difference in expected number of infections 

under the best preventive strategy and the best reactive strategy. Shown for (A) Erdős-Rényi 

random networks with varying levels of connectivity: p = 0.8 (solid line), p = 0.4 (dashed 

line), p = 0.2 (dotted line); (B) the residential hotel network with varying levels of 

infectiousness: base (solid), high (dashed), and low (dotted); and (C) a network exhibiting 

community structure. Results are based on the average of 300 simulations with 10% of 

nodes initially infected.
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Figure 9. 
Percent of the population infected over the course of an outbreak in the residential hotel 

network with varying levels of error in the identification of initially infected nodes. Shown 

for (A) perfect information; (B) a 25% false negative rate; and (C) a 50% false negative rate. 

Simulated with β/δ = 0.5 (R0 ≈ 5) and 10% of nodes initially infected. Results are the 

average of 300 random sets of initially infected nodes.
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Table 1

Summary of key findings.

Network type Budget level Variable Optimal strategy Value of information

Connectivity

Erdős-Rényi random networks

Low Any S-I centrality Low

High Low Quarantine High

High Moderate to High S-I centrality or Quarantine High

Infectivity

Hotel network

Low Low to Moderate S-I centrality Low

Low High Quarantine High

High Any Quarantine High

Meta-community network

Low S-I centrality High

Moderate N/A Quarantine Low

High Quarantine High
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