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Abstract
We show that the history of play in a population game contains exploitable information that

can be successfully used by sophisticated strategies to defeat memory-one opponents, in-

cluding zero determinant strategies. The history allows a player to label opponents by their

strategies, enabling a player to determine the population distribution and to act differentially

based on the opponent’s strategy in each pairwise interaction. For the Prisoner’s Dilemma,

these advantages lead to the natural formation of cooperative coalitions among similarly be-

having players and eventually to unilateral defection against opposing player types. We

show analytically and empirically that optimal play in population games depends strongly on

the population distribution. For example, the optimal strategy for a minority player type

against a resident TFT population is ALLC, while for a majority player type the optimal strat-

egy versus TFT players is ALLD. Such behaviors are not accessible to memory-one strate-

gies. Drawing inspiration from Sun Tzu’s the Art of War, we implemented a non-memory-

one strategy for population games based on techniques from machine learning and statisti-

cal inference that can exploit the history of play in this manner. Via simulation we find that

this strategy is essentially uninvadable and can successfully invade (significantly more like-

ly than a neutral mutant) essentially all known memory-one strategies for the Prisoner’s Di-

lemma, including ALLC (always cooperate), ALLD (always defect), tit-for-tat (TFT), win-

stay-lose-shift (WSLS), and zero determinant (ZD) strategies, including extortionate and

generous strategies.

Introduction
The Prisoner’s Dilemma (PD) [1] is a two player game with a long history of study in evolu-
tionary game theory [2] and finite populations [3]. Work on time-averaged fitness [4] and in-
teraction neighborhood size on regular lattices [5], is of particular interest. Payoffs for the

Prisoner’s Dilemma are usually defined via a game matrix R S
T P

� �
with T> R> P> S and

often 2R> T + S. A special case known as the donation game is given by T = b, R = b − c, P = 0,
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S = −c, with 0< c< b. There are many well-known strategies for the Prisoner’s Dilemma, such
as ALLC (always cooperate), ALLD (always defect), tit-for-tat (TFT) [6] and win-stay-lose-
shift (WSLS) [7]. The discovery of zero determinant strategies by Press and Dyson [8] has in-
vigorated the study of the Prisoner’s Dilemma, including the evolutionary stability of these
strategies in population games and their relationship to and impact on the evolution of cooper-
ation [2] [9] [10] [11] [12] [13] [14]. In a tournament emulating the influential contest con-
ducted by Axelrod [15], Stewart and Plotkin show that some zero determinant (ZD) strategies
are very successful; Adami and Hintze [13] have shown that ZD strategies are evolutionarily
unstable in general, but can be effective if opponents can be identified and play can depend on
the opponent’s type (including versus itself). In particular, how a strategy fares against itself be-
comes crucial in population games.

Many strategies for the Prisoner’s Dilemma have been studied in a huge array of contexts,
and it is often found that simpler strategies can beat more complex strategies (e.g. TFT won
early repeated Prisoner’s Dilemma tournaments [15]). Commonly PD strategies are formulated
as first-order Markov processes known as memory-one strategies, i.e. strategies in which the
next move depends only on the last game outcome. Such a process is described by a strategy
vector of four probabilities denoting the probability that the player will select to cooperate (C)
based on the previous round of play: (Pr(CjCC), Pr(CjCD), Pr(CjDC), Pr(CjDD)). Press and
Dyson suggested that some memory-one strategies can dominate more complex strategies; spe-
cifically, that using higher-order history does not help versus a ZD strategy [8] in head-to-head
interactions. Stewart and Plotkin have also argued that a generous ZD strategy can be robust
against any invading strategy (i.e. no invader can achieve better than neutral fixation probabili-
ty) [9] under a set of assumptions including weak selection. (We will refer to these robust strat-
egies as ZDR, and extortionate ZD strategies as ZDχ; see Methods for details). In population
games, Adami and Hintze indicated that tag information identifying which players are of the
opposing type can significantly increase evolutionary success [13]. They also suggested that it
is possible to recognize an opponent’s strategy from the history of play. Can information from
past history, ignored by memory-one strategies, improve evolutionary success?

A player capable of utilizing the history of play has the following potential advantages:

• self-recognition: as Adami and Hintze pointed out, a player type that is capable of recognizing
other players using instances of its strategy can gain an advantage by always cooperating with
other instances but playing a quite different strategy versus other types.

• frequency-dependent strategy optimization: a player can use its history of play against all its
opponents to estimate what fraction of the population is composed of its own type. We will
show that the best strategy against a given opponent type can change dramatically depending
on the population proportion of its type (which we will denote as f). For example, when in
the minority (f� 0) it is optimal to cooperate vs. a resident TFT population, but when in the
majority (f� 1) it becomes optimal to defect vs. TFT players (see Fig. 1).

In this paper we assess the value of these two approaches both analytically and via simula-
tions versus a variety of traditionally successful strategies and ZD strategies; but our results are
not limited to such opponents, nor for that matter to the Prisoner’s Dilemma game. We first
present analytic results on the average fitness benefit of frequency dependent strategy optimi-
zation versus a range of well-known memory-one Prisoner’s Dilemma strategies. We then use
simulations to assess the practicality of implementing these two approaches purely from the
observed history of play. In other words, for a player to perform self-recognition and estimate
its population fraction f solely from its game outcomes versus its opponents, with no tag infor-
mation provided, and even with significant levels of noise (i.e. players’moves are flipped with
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Fig 1. Mean fitness difference SI � SG as a function of the invader’s population fraction. Plotted for several different invading strategies (I = ALLC,
ALLD, ZDR, ConDef, ZDt) vs. several different resident strategies: TFT (A, B); ALLC (C, D); ALLD (E, F).

doi:10.1371/journal.pone.0120625.g001
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error probability �). We refer to our implementation of frequency-dependent strategy optimi-
zation as an information player IP0. We empirically test IP0’s self-recognition accuracy under
noise and measure empirical fixation probabilities for IP0 invading well-known memory-one
strategies and for a resident IP0 population being invaded by these memory-one strategies. In
general we find that IP0 is more robust than memory-one strategies, in that it is uninvadable by
memory-one strategies, while achieving near-maximum invasion success (among fixation
probabilities of the other opponent strategies) against each memory-one opponent.

Results
We begin by analyzing whether there is any theoretical advantage to switching strategies at dif-
ferent values of the population fraction f against a given memory-one opponent type. We start
with the “best case scenario” provided by the tag assumption, in which a player knows which
players are of the same type (instances of the same strategy), and hence can both play different-
ly based on opponent type in each pairwise interaction as well as determine the population
fraction f of its type accurately.

Stationary Score Analysis of Frequency-dependent Strategy
Optimization
The long run evolutionary fitness of a player of invading type I is determined by its mean sta-
tionary score relative to that of players of the opposing group G. Let the population consist of

m players of type I in the population and N −m of type G. Let SII ; SIG ; SGI ; SGG be the average
stationary scores of players in pairwise interactions of the two types. Then the difference in
mean stationary payout is given by

SI� SG¼
m� 1

N � 1
SIIþ

N �m
N � 1

SIG �
m

N � 1
SGI�

N �m� 1

N � 1
SGG ð1Þ

For large populations, this simplifies to

SI� SG! f ðSII� SGIÞ þ ð1� f ÞðSIG� SGGÞ as N ! 1

An optimal strategy for player I is simply one that maximizes SI � SG . Note that this is

strongly dependent on the population fraction f =m/N; for small f (m� N), SI � SG is domi-

nated by the SIG ; SGG terms; whereas for large f it is dominated by the SII ; SGI terms. The two-
player game considered by Press & Dyson is a special case of this spectrum; specifically, N = 2
is the only case where there is only one possible mixture value ofm (hence no possibility of fre-
quency-dependent strategy optimization), and the difference in mean stationary payout re-

duces to SI � SG ¼ SIG � SGI .

Fig. 1 and Fig. 2 show SI � SG as a function of population fraction f, for a variety of estab-
lished strategies, computed from their long-term (stationary) scores [8]. Several basic conclu-
sions emerge from these plots. First, no strategy is universally optimal against all opponents.
For example, at low population fractions, ZDR is optimal against WSLS, whereas ALLC is opti-
mal against ZDχ. Second, even against a single opponent, typically no strategy is optimal at all
population fractions. For example, against WSLS, ZDR scores better than ALLD at low popula-
tion fractions, but worse than ALLD at high population fractions.

Even at a single given point on such a score plot, it is commonly not optimal for players of
type I to play the same strategy vector with each other as with the opposing players of type G.

For example, at high population fractions, playing ALLD vs. the opponent (ensuring SGI � P)

while playing ALLC with each other (yielding SII ¼ R) maximizes SI � SG ! R� P. Hintze
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Fig 2. Mean fitness difference SI � SG as a function of the invader’s population fraction. Plotted for several different invading strategies (I = ALLC,
ALLD,ZDR, ConDef, ZDt) vs. several different resident strategies: WSLS (A, B); ZDR (C, D); ZDχ (E, F).

doi:10.1371/journal.pone.0120625.g002
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and Adami have posited a theoretical strategy, Conditional Defector (ConDef), able to play dif-
ferent strategies depending on the opponent type. Assuming that ConDef is given the correct
tag for the type of each player, ConDef cooperates with other ConDef players and defects ver-
sus players of the opposing type [13]. (They also defined a tag-based ZD player ZDt that coop-
erates with other ZDt players and plays a ZD strategy against the opposing type). Lastly, it is
striking that even traditionally successful strategies such as WSLS and ZDR are vulnerable to
invasion, because at low population fractions an invader can achieve parity (neutral selection)
vs. these strategies, while at high population fraction IP0 can gain a crushing advantage over
them (by switching to what is essentially ConDef).

Taken together, these results suggest that information gleaned from the history of previous
game outcomes can yield several basic advantages for choosing moves in the subsequent

rounds, all of which are crucial for maximizing SI � SG :

• Player I can generate type tags from the history of play, i.e. infer which individual players are
instances of its own strategy and which are of different strategies (i.e. of type G; we refer to
this as identification)

• Player I can estimate player G’s strategy vector, enabling it to choose the optimal counter-
strategy;

• Player I can estimate what fraction of the population consists of players of type G.

Test Implementation of an Information Player
These calculations suggest that information from a player’s complete history of game outcomes
could in theory improve its evolutionary fitness in a poulation game (for example by enabling
it to choose the optimal strategy for its current population fraction). However, they do not tell
us whether this would actually be feasible or useful in practice. To assess this, we sought to im-
plement a basic player algorithm that infers type identification, population fraction, and opti-
mal strategy from a player’s observed game outcomes. We refer to a player that uses such
information (history or type tags) as an information player (IP).

It may be helpful to understand our approach as a recapitulation of long-standing principles
of competitive strategy, as summarized in Sun Tzu’s The Art of War:

The general who wins the battle makes many calculations in his temple before the battle is
fought. The general who loses makes but few calculations beforehand.
Know your enemy and know yourself, find naught in fear for 100 battles.
. . .what is of supreme importance in war is to attack the enemy’s strategy.
One defends when his strength is inadequate, he attacks when it is abundant.
– Sun Tzu, The Art of War

Our information player implementation IP0 embodies these principles as follows:

• Know your enemy. Rather than seeking to maximize its score, IP0 initially seeks to maximize
its information about another player’s strategy vector. For the first 10 rounds vs. a specific
player, IP0 selects its plays, either cooperate (C) or defect (D), solely to maximize its informa-
tion yield about the other player’s strategy vector probabilities. We refer to this as the infor-
mation gain phase. The four probabilities of the opponent’s strategy vector are estimated
from these rounds of play and are continually refined in subsequent rounds.

• Know yourself. Each IP0 individual attempts to identify whether each other player is also IP0,
based purely on whether it appears to “play like me” (choose the same moves an IP0 would
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have chosen). In particular, the information gain phase produces a unique pattern of play,
that can be quickly recognized (within 3—10 moves), even in the presence of random noise
(randomly flipped moves). In this sense, the information gain phase may be considered anal-
ogous to the handshake phase that has been observed in evolution of finite state automata
[16].

• Attack the enemy’s strategy. In subsequent rounds, each IP0 seeks to maximize its own aver-
age score (and by extension that of all IPs in the population) vs. that of the opposing player
type. Specifically, it always seeks to cooperate with other IP0 individuals; versus the opposing
type, it chooses the optimal strategy vector based on its estimate of the opposing type’s strate-
gy vector. As rounds proceed, each IP0 continues to update its estimate of opponents proba-
bilities, and adjusts its play as needed to maximize its average score difference.

• One defends. . . one attacks. . . IP0 naturally switches effective strategy depending on the pro-
portion of IP0 in the population, and the opponent strategy. Commonly, IP0 initially cooper-
ates with the opposing type, when IP0 is in the minority, and later defects against the
opposing type, when IP0 is in the majority. Note that an IP0 player uses all of its information
(all of its histories in the current population game) to make this decision, and when it
switches strategy, it does so simultaneously against all players it considers not IP0.

Our example implementation (designated IP0) uses machine learning techniques to perform
frequency-dependent strategy optimization from a player’s observed game outcomes (see
Methods for details). It should be emphasized that each IP0 player in a population acts
completely independently; different IP0 in a population share no information and do not com-
municate. Note also that when a new IP0 player is born, it starts with zero information about
other players (no history data), and inherits no information from its parent.

Accuracy of Identification and Robustness to Noise
That identification of opponent strategies is useful as shown in Fig. 1 and Fig. 2 highlights a
crucial question: in the absence of strategy-indicating labels, can an information player deter-
mine the identity of other players (I vs. G) rapidly and accurately from the history of play?

When encountering a new opponent (of unknown strategy), IP0 begins with an information
gain phase (infogain, see Methods). This phase seeks to collect maximal information about the
opponent’s strategy vector, and at the same time estimates the likelihood that the opponent is
also an IP0 player; specifically whether the opponent is also playing by the infogain rule. Thus
the infogain phase achieves self-recognition by a most basic principle, “does the opponent play
the way I would?” (i.e. chooses the same moves as IP0).

This approach can rapidly discriminate non-IP0 players. In the absence of random noise
(move errors), it is simple: the very first move that does not match the expected infogain move
exposes the opponent as non-IP0, and this typically occurs within the first 3 moves. To make
identification more challenging, we assessed the effect of random noise, by randomly flipping
each player’s move with probability �. Now IP0 must assess observed mismatches probabilisti-
cally, e.g. by computing the probability that the observed mismatches could have arisen from
another IP0 player due solely to random noise (see Methods). This can achieve good discrimi-
nation, at the cost of a few extra rounds. Fig. 3A shows Receiver-Operator Characteristic
(ROC) curves for discrimination of non-IP0 players (vertical axis, True Positives) vs. IP0 play-
ers (horizontal axis, False Positives) after 10 rounds of play under 5% noise. Corner strategies
such as ALLC and ALLD were identified perfectly (i.e. 100% TP at 0% FP), while the most diffi-
cult case (ZDR) was identified with 98% accuracy at a false positive rate of only 10%. Concrete-
ly, for N = 100 players, a single IP0 player invading a resident ZDR population could
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confidently identify 97 of the 99 ZDR players, while having a 90% probability of recognizing
any new IP0 player within just 10 rounds of play.

To summarize the speed of this process and its sensitivity to noise, we computed a standard
measure of discrimination accuracy (AUC, Area Under the Curve, the integral of the ROC
curve) for the hardest case (ZDR), and plotted it as a function of number of infogain rounds
and for different levels of noise (Fig. 3B). At zero noise, perfect discrimination (AUC = 1) was
achieved after just 3 rounds; with up to 10% noise, AUC accuracies of 87–98% were attained
after just 3 rounds. Even at 10% noise, AUC accuracy of greater than 97% was attained after
10 rounds.

Empirical Fixation Probabilities for IP0 vs. Memory-one Strategies in
Evolutionary Simulations
To assess whether IP0 can invade other strategies and resist invasion, we conducted a large
number of simulations of IP0 versus other strategies for the Prisoner’s Dilemma (Table 1).
Such simulation studies are necessary because the performance of IP0 will depend on details of

Fig 3. Accuracy of information gain phase. A: ROC for ε = 0.05 and 10 infogain rounds. Vertical axis: true positives, Horizontal axis: false positives. ZDR is
the hardest strategy to recognize among those tested. B: AUC for IP against ZDR for ε = 0, 0.01, 0.05, 0.1.

doi:10.1371/journal.pone.0120625.g003

Table 1. Fixation odds ratios ρ/ρneutral of a single row player invading a population ofN − 1 = 99 column players.

IP0 ALLC ALLD TFT WSLS ZDR ZDχ

IP0 58.10 5.50 43.60 1.96 16.30 51.01

ALLC 0 0 49.48 0 21.14 54.78

ALLD 0 59.38 0 0.05 0 0

TFT 0 0 3.68 0 0 9.74

WSLS 0 34.72 0 7.11 0.32 21.16

ZDR 0 0 0.86 24.07 0 27.55

ZDχ 0 0 1.61 0 0 0

At least 10,000 simulations were performed for each pair of types, with an ambient error rate of ε = 0.05. For IP0, p-values for the null hypothesis of neutral

fixation is p = 5 × 10−10 for ALLD and p < 10−26 otherwise.

doi:10.1371/journal.pone.0120625.t001
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its specific implementation in actual play, which are not accessible to closed-form analytic solu-
tions [17]. Our simulations follow a combination of the previous protocols of Adami and
Hintze [13] and Stewart and Plotkin [9] (see Methods for details):

• We simulate a well-mixed population of N = 100, typically beginning with a single player of
the invading type (m = 1) within a resident population of the opposing type, and continuing
until one type goes extinct.

• No tag (type) information about any player is supplied.

• Every generation, each player plays one move versus each other player. In the case of memo-
ry-one strategies, this move is conditioned on its last game outcome versus that player (i.e. in
the previous generation).

• Moves are randomly flipped with probability � (typically � = 0.05).

• Payoffs for each game outcome are drawn from the donation game matrix, and the fitness of
each player is simply the average of all its payoffs in that generation.

• Each generation, one player dies / is born according to the exponential imitation dynamic
(with selection strength σ = 1).

• Games involving a new player (born in the previous generation) have no last game outcome,
so in this case players apply their standard first move mechanism.

Table 1 lists the fixation odds ratio of each strategy versus each other strategy, determined
empirically via simulation (specifically, it gives the ratio ρ/ρneutral, where ρ is the observed fixa-
tion probability, and ρneutral = 1/N is the fixation probability expected under neutral selection,
so a table value of 1.0 indicates neutral selection). In no case was IP0 successfully invaded by
any other strategy. By contrast, IP0 is able to invade all other strategies, with a fixation probabil-
ity greater than a neutral mutant (ρ> ρneutral), and in all cases is either the best or second best
invader (i.e. largest or second largest value in each column). In the language of the Moran pro-
cess, IP0 has higher relative fitness versus all other strategies, and as a resident strategy is evolu-
tionarily robust (defined as ρ� ρneutral for all invaders [18]) tested. Qualitatively similar results
hold for other population sizes N� 30 or greater. We also simulated with a Moran selection
rule, where each round one player is selected to reproduce proportionally to fitness and one
player is selected to be replaced uniformly at random [19] [3]. Results were similar, as are re-
sults for simulations using the standard Prisoner’s Dilemma score matrix (as in [8], instead of
the donation game matrix). In principle, IP0 should excel in any asymmetric game with similar
updating rules (it is not designed specifically for a particular game or updating rule).

These values reveal much about how IP0 competes against other players. IP0 is nearly as ef-
fective against ALLC as ALLD is, and quickly learns to exploit ALLC, but has a slightly smaller
fixation probability because of the info gain phase. IP0 also fares well against ALLD, behaving
much like TFT in that it cooperates with other (identified) IP0 individuals and defects against
ALLD. Outcomes versus ALLD are sensitive to initial population proportion. An invading sub-
population of 10 IP0 has an empirically computed fixation probability of ρ� 0.5 (versus a neu-
tral fixation probability of ρ = 0.10).

Versus TFT, IP0 does not fall prey to the mismatches due to errors that TFT is prone to [3],
but may suffer versus TFT in the infogain phase, and so does not fare quite as well as ALLC,
but has a higher chance to invade than all other players. Among all strategies in our simula-
tions, IP0 is the only strategy to have a fixation probability greater than a neutral mutant
(ρneutral = 1/N) versus all other strategies, and the only strategy resistant to invasion by all
other strategies.
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In general, the ability of IP0 to invade other strategies appears to correlate with its fitness dif-
ference vs. those strategies at low population fractions (i.e.m� 1, see Figs. 1–2). For those
where IP0 can immediately achieve a strongly positive stationary score difference (e.g. vs.
ALLC, TFT, ZDR, ZDχ), it can invade with high fixation probabilities. For those where IP0 is
confined to neutral score for low values ofm (e.g. vs. ALLD, WSLS), its fixation probabilities
are lower.

Regarding the effect of ambient noise, smaller values of �make TFT more challenging to in-
filtrate, however at � = 0.01 the fixation probability of an IP0 mutant is still 8 times the neutral
probability. This dependence is due to the relatively large number of rounds needed for TFT to
reach its stationary distribution versus some other strategies, and this prolongs the time needed
to invade an ambient population of TFT players. IP0 is apparently uninvadable by TFT at
� = 0.01 and N = 100, but was invaded once in 10017 simulations for N = 40.

Robust Zero Determinant Strategies
Stewart and Plotkin have outlined a series of assumptions under which ZDR strategies are ro-
bust to all other IPD strategies [9]. One implicit assumption in this argument is that player
types cannot be identified, either by a tag as described by Adami and Hintze [13] or by statisti-
cal inference from the history of play as performed by IP0. As shown in Fig. 2C, ZDR strategies
are vulnerable to invasion by such information players, because the ZDR can at best guarantee

neutral selection i.e. (SI � SG ¼ 0) vs. the IP invader at low population fractions (m� 1),
whereas when the IP invader is in the majority it can gain a strong selective advantage

(SI � SG ⪢ 0). In simulations, we found that a tag-based IP (ConSwitch) invades ZDR at much
higher than neutral fixation probability (ρ/ρneutral � 1.6, see Fig. 4), and that IP0 achieved better
than neutral invasion success against ZDR for χ� 0.8 even at zero noise (� = 0). We wish to
emphasize that our IP0 implementation clearly falls far short of the theoretical IP performance

Fig 4. Performance analysis of IP0 vs. ZD strategies. A: Stationary self-score SGG of ZDR and ZDχ (κ = 0) at different levels of noise ε. B: Invasion success
of IP versus ZD strategies (log-scale, fixation probability of an IP0 invader, normalized so 1.0 = neutral selection) for different levels of noise ε. The top plot is
extortionate (κ = 0) while the lower three plots have κ = B − C so the ZD strategies are cooperative [20]. As the value of χ increases, the fixation probability of
IP increases. As the amount of noise decreases, the fixation of our implementation of IP approaches the neutral fixation. With no noise, an optimal IP player
(ConSwitch, see text) can empirically invade ZDR at twice the neutral probability (20 out of 1000 simulations with the information phase replaced with tags).

doi:10.1371/journal.pone.0120625.g004

Beyond Memory-one Strategies in Population Games

PLOSONE | DOI:10.1371/journal.pone.0120625 March 24, 2015 10 / 16



limit as indicated by ConSwitch. This mirrors what we saw at low population fractions in
Fig. 2B, where IP0 falls short of the perfect (neutral) score that ConSwitch attains vs ZDR. This
shortfall is due to the cost of the infogain phase in the current IP implementation, which indi-
cates a clear direction for improvement of our IP implementation.

A second factor that renders ZDR easily prone to invasion by IP0 is the effect of noise. Even
low levels of noise (e.g. � = 0.01) enabled IP0 to invade ZDR at better than neutral fixation prob-
ability at all values of χ (Fig. 4). In general, noise appears to degrade the performance of Mar-
kov players such as ZDR even more than it degrades the performance of IP0. Specifically, noise
reduces ZDR’s ability to cooperate with itself (i.e. the fraction of ZDR-ZDR game outcomes
that are CC), and hence its stationary score (see Fig. 4), more than it reduces IP0’s ability to
cooperate with itself (because its self-recognition algorithm is robust to noise, and its self-
strategy—ALLC—is less affected by noise than ZDR is).

Discussion
Fixation probabilities for zero-determinant strategies were studied by Stewart and Plotkin [20]
in the case of weak selection. For weak selection, no history, zero noise, and stationary payouts,
the robustness results of Stewart and Plotkin are not contradicted by our empirical results (like-
wise for the strong selection results in [21]). Our results, however, indicated that with tagging
of player strategies, either given or inferred from the history of play, robust zero determinant
strategies can be invaded for non-weak selection and noise. This should not be surprising from
Fig. 1 and Fig. 2. ZDR is not generally able to invade IP0 nor the variety of strategies that IP0 is
able to invade. For instance, ZDR is neutral versus e.g. ALLC (with � = 0), whereas IP0 can in-
vade ALLC easily at the same level of noise. Note that whereas IP0 is always able to invade ZDR
strategies, even at zero noise, neither ZDR strategies nor any of the other strategies tested is
ever able to invade IP0.

Our results indicate IP0 is robust to invasion against all the opponents in Table 1. That this
generally holds is simply a consequence of the fact that IP0 maximizes the mean score differ-
ence with its opponents while obtaining the cooperative payout when playing itself. Therefore,
once the information gain phase is over, IP0 will fixate at least as well as a neutral mutant strat-
egy, and typically much more often. For IP0 to be invaded or resisted better than a neutral mu-
tant, the opponent strategy must somehow exploit the manner in which IP attempts to gain
information (perhaps by mimicking IP0 to be misidentified as another IP0 player), or the infor-
mation gain phase must be too costly (for instance in a very small population). We conjecture
that for sufficiently large populations IP0 is robust to invasion against all memory-one strate-
gies, and also that IP0 is neutral or better as an invader of memory-one strategies (with excep-
tions occurring mainly for small ambient noise and/or weak selection).

While we have discussed our results in the context of the Prisoner’s Dilemma, IP0 is effective
in principle in all population games without significant modification. For any game matrix, IP0
will still identify other players’ strategies and maximize the difference in stationary payout. In-
formation players should fare well in a variety of other contexts, including asymmetric games
and population games on graphs, time-averaged fitness [4], and increased interaction neigh-
borhood size on regular lattices [5].

We have not attempted to optimize the relative length of the IP0 information gain phase,
and it is clear in some contexts that finer-tuned play is possible, particularly against generous
ZD strategies for the donation game. In particular, very small populations may require a
more refined information gain phase. We have also not attempted to optimize against non-
memory-one strategies.
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History of Play
In [20], Stewart and Plotkin argue (under weak selection, in the absence of ambient noise, and
using stationary score as fitness) that one need only consider memory-one strategies in popula-
tion games to determine evolutionary robustness (extending a similar idea of Press and Dyson
for two-player games). However, this view appears incomplete both theoretically (c.f. Adami
and Hintze’s Conditional Defector [13], or our analysis of the advantages of frequency-depen-
dent strategy optimization), and empirically (e.g. our IP0 simulation data). Our results suggest
that in population games it is not generally sufficient to consider only memory-one players—
unless non-memory-one strategies are axiomatically forbidden, e.g. by asserting that no player
can track its history of game outcomes versus another player.

Another important distinction of IP0 is that the individual information players cannot be
aggregated as all having the same stationary score with each other. Indeed, the IP0 subpopula-
tion is more like a quasispecies with several closely related variants, with each information
player potentially identifying a different subpopulation of information players and having in-
ferred slightly different conditional probability vectors for non-IP0 strategies (the information
players share no information). Accordingly, we computed fixation probabilities empirically
from large numbers of simulations and cannot rely on the typical analytic formulas for two-
type population games (death-birth processes). For larger populations, the deviation from the
theoretical values (from the stationary payouts) should be small, since IP0 can quickly ap-
proach stationary payoffs.

We believe it will be interesting to explore the space of possible information player strate-
gies. For example, against higher-order Markov strategies, such as Tit-for-Two-Tats, several
considerations apply. First, IP0’s infogain phase can in general recognize such higher-order
strategies as being of opposing (non-IP0) type as easily as it can for memory-one strategy oppo-
nents. Second, an information player can deploy against such strategies a strategy such as ZD
or TFT with a long-term performance guarantee (that holds regardless of what Markov order
its opponent uses) [8]. Third, an information player could use potential informationmetrics to
detect violations of its default memory-one model [22]. As another example, Fischer et al.’s
MaRS (mimicry and relative similarity) strategy [23] appears to fit our basic definition of an in-
formation player. That is, MaRS uses a unique identifier for each opponent, and records the
history of that opponent’s play to formulate a counter-strategy. Otherwise MaRS is quite differ-
ent from IP0. Both MaRS and IP0 are likely to exhibit interesting behaviors for asymmetric and
higher-dimensional games as the space of strategies beyond memory-one strategies is explored.
These questions, and the issue of effective counter-strategies to IP0 and other information play-
ers, suggest directions for future work.

Materials and Methods

Simulations
Evolutionary simulations were performed using either the Moran process or the imitation dy-
namic with selection strength σ = 1 as in [9] [20]. (All reported results used the imitation pro-
cess, results for the Moran process were similar.) Unless otherwise stated, all simulations were
performed with a total population size of N = 100 starting with a single player of the invading
type and run until fixation of either the resident or invading type, and the donation game score
matrix (2, -1, 3, 0) as in [9].

In most cases, Nsim = 10,000 independent simulations were run for each (invader, resident)
pair, and p-values for the observed number of successful invasions k were computed under a
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null hypothesis H0 assuming a neutral rate of fixation θ = 1/N:

p> ¼ pðK � kjH0; y ¼ 1=NÞ ¼
XNsim

K¼k

Nsim

K

� �
yKð1� yÞNsim�K

Following [8] and [9], we focus on memory-one strategies with probability vector

p ¼ ðp1; p2; p3; p4Þ ¼ ðPrðCjCCÞ; PrðCjCDÞ; PrðCjDCÞ; PrðCjDDÞÞ:

Unless otherwise specified in the text, we used the standard probability vector specified in [9]
for ZDR (with k ¼ 2; w ¼ 1

2
; � ¼ 0:1), and ZDχ (with k ¼ 0; w ¼ 1

2
; � ¼ 0:1).

Information Player Implementation
We implemented a basic information player strategy, called IP0, with the following compo-
nents: (1) an infogain phase during which an IP0 player chooses its moves to maximize its in-
formation yield about a new player, both to assess whether it is another IP0 (self vs. non-self),
and in the latter case to estimate its strategy vector; (2) a groupmax phase during which IP0
seeks to maximize its score relative to the opponent group, by either cooperating (if the other
player is also IP0) or using its current optimal strategy versus the group (if the other player is
not an IP0). Note that when multiple IP0 players are present in a population, they operate
completely independently; they do not share information or communicate.

Basic definitions
IP0 records the outcomes of its games vs. a given player in terms of (nAB,mAB) pairs, where A is
a possible move (C or D) by itself, B is a possible move by the other player (C or D), nAB is the
total number of times game outcome AB has occurred with this player, andmAB is the number
of those cases where the other player’s next move was C. Treating each such case as a binomial
event with probability pAB = θ (probability of cooperating given game outcome AB), the poste-
rior distribution is p(θjnAB,mAB) = β(mAB + 1, nAB −mAB + 1) (i.e. the Beta distribution assum-
ing a uniform prior p(θ) = 1), the maximum likelihood estimator is θ̂ =mAB/nAB, and the

posterior expectation value is y ¼ EðyjnAB;mABÞ ¼ ðmAB þ 1Þ=ðnAB þ 2Þ. We use the symbol

p ¼ ðyCC ; yCD ; yDC ; yDDÞ to refer to such an infered probability vector.

Infogain phase
For the first 10 rounds of its play with another player, IP0 chooses its moves to seek game out-
comes AB about which it has the least information (smallest number of counts nAB). Specifical-
ly, if the current game outcome was ab, then it chooses the move A that minimizes the
expectation value of nAB:

Ainfogain ¼ arg min
A

EðnABjabÞ ¼ argmin
A

X
B

pðBjabÞnAB

where p(Bjab) = (mab + 1)/(nab + 2) for B = C. In the case of exact ties (equal expectation values
for A = C,D), the IP0 breaks the tie by computing the MD5 hash value of the game outcomes
history string (e.g. CCDC. . .), and choosing C if its least-significant bit is zero, otherwise
D. Note that since this rule depends only on information known to both players (their game
outcomes), IP0 can predict what moves the other player would choose if it too were an IP0.
(Of course, in the presence of noise �, the confidence of this prediction drops to 1 − �).
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Groupmax phase
During this phase, IP0 seeks to maximize its average relative score vs. the opposing group G
(Equation 1). Each IP0 seeks to maximize SII (average score versus other IP0 players by cooper-
ating with any player it believes to be an IP. With all other players, it applies its current group-
max probability vector pgroupmax chosen to maximize the difference between the second (SIG)
and third (SGI) terms above (see below for details).

Tag inference
After each game, IP0 computes the likelihood odds ratio for the observed move B of the other
player assuming either that it is also an IP0, or that is a member of the opponent group (GP).
This is used to update the total log-odds ratio for that player:

L0 ¼ Lþ log
pðBjIP0; �Þ
pðBjGPÞ

where L is the current log-odds ratio, L0 is the new log-odds ratio, and � is the error rate (fre-
quency at which a player’s moves are flipped).

During infogain phase, the move expected from an IP0 player is predicted by the infogain
model. During groupmax phase, it is predicted by a Hidden Markov Model (HMM) [24] con-
sisting of just two states: ALLC (“the other IP0 recognizes me as an IP0, and hence cooperates
with me”); and pgroupmax (“the other IP0 believes I am not IP0, and hence applies pgroupmax

against me”). The HMM permits a transition between either of these states with 1% probability
per round. At the beginning of groupmax phase, the prior probability of the ALLC state is sim-
ply set to the current posterior probability that the other player will classify me as an IP, specifi-
cally p(ALLC) = 1/(e−L+1), where L is the log-odds ratio the other player would compute from
my moves.

The conditional probability p(BjGP) is computed according to p, the current inferred
strategy of the opponent. If IP0 has not yet confidently identified any players as GP (see below
for details), then this p is derived solely from the IP player’s game outcomes with this specific
player. Otherwise, p is computed from game outcomes vs. all GP players that it has confidently
identified. This assumes that all non-IP0 opponents use the same strategy and could be relaxed
for games with more than two types.

During infogain phase, an IP0 player classifies another player as confidently GP, based on
the p-value of its history of moves under the null hypothesis that it is an IP0 playing infogain
moves:

pðE � ejn; �Þ ¼
Xn

E¼e

n

E

� �
�Eð1� �Þn�E � a

where n is the number of games it has played vs. that player, e is the number of observed mis-
matches vs. the expected infogain move (during those games), E is the associated random vari-
able, and � is the error rate. We used α = 0.01, for at most one expected false positive (in a
population of at most 100 IP0). During groupmax phase, an IP player classifies each player ac-
cording to its current log-odds ratio: as an IP0 if L> 0, otherwise as a GP. Finally, it estimates
the total number of IPs currently in the population from its posterior expectation value:

m¼ 1þP
i
pðIP0jLiÞ ¼ 1þ

X
i

1

e�Li þ 1

where Li is its log-odds ratio for the hypothesis that player i is IP0 vs. is a GP (the one additional
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count is for the IP0 player itself). When the IP detects birth of a new player, it initializes the

new player’s prior log-odds ratio to L ¼ log m
N
. When it detects the death of a player, if it was

confidently a GP (L< log α), that player’s outcome counts (nAB,mAB) are saved for inclusion
in future computations of the GP strategy vector p.

Groupmax strategy optimization
If an IP0 is in groupmax phase with at least one player, it computes an optimal strategy to use
against the opposing group, based on its estimate of the total number of IP0 (m) and its esti-
mate of the opponent group’s strategy vector (p). It does this based on seeking the strategy
pgroupmax that maximizes the interaction terms of the relative score:

pgroupmax ¼ arg max
q

N �m
N � 1

Sðq; pÞ � m
N � 1

Sðp; qÞ
� �

ð2Þ

where S(p, q) is the theoretical long-term score for strategy vector p when playing against strat-
egy vector q. We compute S(p, q) as previously described by [8]. Briefly, a game between any
two players is a Markov chain with states as pairs of plays in each round {CC, CD, DC, DD}.
The chain has a unique stationary distribution s, and the mean of any four-vector f = (f1, f2, f3,
f4) with the stationary distribution for two players p and q is given by the Press and Dyson
determinant [8]

Dðp; q; f Þ ¼ det

�1þ p1q1 �1þ p1 �1þ q1 f1
p2q3 �1þ p2 q3 f2
p3q2 p3 �1þ q2 f3
p4q4 p4 q4 f4

2
6664

3
7775 ð3Þ

when f gives the scores that player p would receive for outcomes (CC, CD, DC, DD) respective-
ly. Using this expression, IP0 simply searches the 4-dimensional strategy vector space by gradi-
ent descent for the p that maximizes the relative score vs. the opponent strategy p.

Our implementation of IP0 and the simulation code used for this manuscript is available at
https://github.com/cjlee112/latude.
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