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Abstract

Although meteorological stations provide accurate air temperature observations, their spatial 

coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand 

spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the 

derivation of Ta from surface temperature (Ts) measured by satellites is far from being 

straightforward. In this study, we present a novel approach that incorporates land use regression, 

meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily 

basis and then predict Ta for days when satellite Ts data were not available. We applied mixed 

regression models with daily random slopes to calibrate Moderate Resolution Imaging 

Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a 

generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. 

Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our 

model performance was excellent for both days with available Ts and days without Ts 

observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on 

the high quality predictions we investigated the spatial patterns of Ta within the study domain as 

they relate to urban vs. non-urban land uses.
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1. Introduction

Air temperature measurements are of great importance for epidemiological studies. 

Recently, it has been shown that variation in ambient minimum air temperature is correlated 

with human morbidity and mortality, especially for cardiovascular diseases (Basu et al., 

2008; Medina-Ramón et al., 2006; Zanobetti and Schwartz, 2008). Furthermore, minimum 

temperature is considered a better predictor of excess mortality compared to mean or 

maximum temperature (Saez et al., 1995; Zanobetti and Schwartz, 2008). In addition, near-
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surface air temperature (Ta) and relative humidity are the most relevant variables to disease 

vector monitoring and the prediction of disease incidences.

In the thermal infrared region of spectra, satellite sensors measure top of the atmosphere 

radiances, from which surface brightness temperatures are derived using Planck’s Law 

(Dash et al., 2002). In order to compute land surface temperature (Ts), these brightness 

temperatures are further corrected for: (1) atmospheric effects, including absorption, upward 

emission, and downward irradiance reflected from the surface (Franc and Cracknell, 1994); 

and (2) spectral emissivity, aiming to account for the roughness properties of the land 

surface, the amount and nature of vegetation cover, and the thermal properties and moisture 

content of the soil (Friedl, 2002).

Whereas Ta measurements provide spot data of a selected point or route, remotely sensed Ts 

data have been widely used to retrieve a spatially continuous view of the land Ts. In this 

regard, the ability to cover large areas simultaneously on a repeated basis is a significant 

advantage of satellite observations over conventional climatic methods. Although the 

genesis and temporal dynamics of surface and air temperatures have dissimilarities, they are 

nevertheless related (Oke, 1995; Voogt and Oke, 1997). Ts modulates the air temperature of 

the lower layer of urban atmosphere, and is a key factor in determining surface radiation and 

energy exchange and human comfort in the cities (Voogt and Oke, 1998). In addition, the 

physical properties of various types of urban surfaces, their albedo, thermal properties, street 

geometry, traffic loads, and anthropogenic activities are important factors that determine Ts 

in the urban environments (Chudnovsky et al., 2004). However, the derivation of near 

surface Ta from satellite information is not straightforward due to the dissimilarity in the 

genesis and temporal dynamics of both variables.

Several studies have shown correlations between Ta and Ts when thermal data were 

obtained from a distance of 3 m (Stoll and Brazel, 1992) or acquired by air-borne sensors at 

high spatial resolutions (Saaroni et al., 2000; Yang et al., 1994). Recently, several studies 

correlated between daytime Ts satellite observations and Ta at ground meteorological 

stations across non-urban areas. For example, Fu et al. (2011) applied linear regression to 

estimate air temperature of an alpine meadow on the Northern Tibetan Plateau. They 

estimated at heights of 1.5–2.1 m by using Moderate Resolution Imaging Spectroradiometer 

(MODIS) data, showing that Ts data were accurate enough to estimate daily minimum and 

nighttime mean Ta using linear regression (R2>0.55, p<0.01). Vancutsem et al. (2010) 

explored the possibility of retrieving high-resolution Ta data from the MODIS nighttime 

surface temperature over different ecosystems in Africa (with Ts–Ta) centered at 0 °C, a 

mean absolute error (MAE)=1.73 °C and a standard deviation=2.4 °C. Another approach to 

estimate air temperature is based on the correlation between Ts and spectral satellite-derived 

Normalized Difference Vegetation Index (NDVI), denoted in the literature often as the 

Temperature-Vegetation Index (TVX) (Goward et al., 1994; Prihodko and Goward, 1997). 

In contrast, in the urban environment, since 1989 most papers have reported a qualitative 

description of thermal patterns. This includes the spatial distribution and magnitude of 

Urban Heat Islands across the city as well as simple correlations between Ts and land-use 

and land-cover types (Voogt and Oke, 2003). Importantly, as highlighted in the recent 

review by Weng (2009), a precise transfer function between Ts and the near ground Ta is 
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not yet available although energy balance models try to provide this capability. For example, 

thermal remote sensing coupling with urban climate models of the atmosphere is applied to 

the study of urban surface energy models (Friedl, 2002; Voogt and Oke, 2003).

Generally, correlations of surface temperature with air temperature are superior at night 

(Dousset, 1989) when microscale advection is reduced. During day hours, due to the 

influence of the direct solar illumination, additional factors are apparent leading to a more 

complex interaction between Ta and Ts: satellite–sun geometry, surface geometry, sky view 

factor, thermal properties of the underlined surfaces and weather conditions.

In this paper we hypothesized that the Ts–Ta relationship varies daily; therefore, in order to 

use available cloud-free Ts data, it is necessary to calibrate on a daily basis using ground Ta 

measurements. The underlying assumption is that the effect of time-varying parameters 

(e.g., surface reflectance, soil moisture, land use and land cover characteristics, vapor 

pressure gradients, the vegetation–soil interaction and surface winds) that influence the Ts–

Ta relationship can be taken into account by using daily available calibrations. Furthermore, 

we present a novel approach that incorporates land use regression, meteorological variables 

and spatial smoothing to predict Ta for grid cells when satellite Ts measures are not 

available. We pursue the use of night time satellite data for estimating daily minimum 

temperatures. Finally, based on our model we examined the spatial pattern of Ta behavior 

for 2003 in the study domain.

2. Methods

2.1. Study domain

The spatial domain of our study included the state of Massachusetts (MA), USA (Fig. 1). 

The state of MA is located on the northeastern coast of US and has an area of 27,340 km2. 

MA has a population of 6,349,097 according to the 2000 census (USCB, 2000). 

Approximately two thirds of the state’s population lives in Greater Boston, most of which is 

either urban or suburban. MA had an average annual air temperature of 9.26 °C during 2003 

(NCDC, 2010). Importantly, there are significant climatic differences between its eastern 

and western sections. Specifically, MA has cold winters and moderately warm summers. 

The mountainous regions in the west (the Berkshires) have both the coldest winters and the 

coolest summers. MA has diverse land use and land types including many urban areas, rural 

hill towns, forests, small farms, rivers, lakes, mountainous regions and an eastern sea 

shoreline.

2.2. Surface temperature and emissivity data

The satellite data used in this study, are the land surface temperatures (Ts) at a 1 km spatial 

resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors on board the Terra satellite. We used Terra nighttime Land Surface Temperature and 

Emissivity (MOD11_L2) product (Wan, 2006, 2008; Wan et al., 2002). The MODIS Ts is 

derived from two thermal infrared band channels, i.e., 31 (10.78–11.28 μm) and 32 (11.77–

12.27 μm) using the split-window algorithm (Wan, 2008) which corrects for atmospheric 

effects and emissivity using a look-up table based on global land surface emissivity in the 

TIR region (Thermal Infra-Red, MODIS channels 31–32 or 10,000–12,500 nm) (Snyder et 
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al., 1998). Emissivity is an additional parameter that influences the Ts measurements. First, 

it causes a reduction of surface-emitted radiance. In addition, the anisotropy of reflectivity 

and emissivity may reduce or increase the total radiance from the surface (Prata, 1994). 

Emissivity is a function of wavelength, and is not only controlled by water content, chemical 

composition, structure, and roughness (Snyder et al., 1998), but it can vary significantly with 

plant species, areal density, and growth (Snyder et al., 1998). Surface emissivity values are 

available in MOD11_L2 product in MODIS bands 31 and 32 and they are assigned based on 

land cover types (Wan, 2006).

The MODIS derived radiometric temperature corrected for atmospheric transmission was 

further corrected with spectral emissivity to account for the kinetic temperature of the object 

based on the following (Eq. 1) (Jensen, 2009):

(1)

where Tkin is related to the true kinetic temperature (and further denoted here as Ts) and Trad 

is the radiant temperature of an object recorded by a remote sensor.

The nighttime Ts generally presents good correlations with ground measurements across 

most of the sites in the USA, with absolute biases less than 0.8 °C and RMSEs less than 1.7 

°C (Wan, 2008). Importantly, the errors in the MOD11_L2 product weakly depend on the 

sensor view zenith angle and are independent of surface air temperature, humidity, wind 

speed, and soil moisture (Wang et al., 2008). A serious limitation of the thermal satellite 

remote sensing techniques is the requirement for clear skies in order to derive accurate 

readings of Ts making cloud cover. To that end we identified clear sky observations using 

the current best available cloud mask algorithm flagged in the MODIS data (Ackerman et 

al., 1998). More details about MODIS Ts data can be found in previous papers by Wan 

(Wan, 2008; Wang et al., 2008).

To assure that ground Ta measurements represent the Ts at the time of satellite overpass 

(10:30 pm local time), we correlated between Ta minimal during a day, and Ts from Terra. 

We did not collect Ts from the Aqua platform.

2.3. Meteorological data

Daily data for Ta and wind speed across MA for 2003 were obtained from four different 

sources: The National Climatic Data Center (NCDC), US Environmental Protection Agency 

(EPA), WeatherBug Professional (WB), and Weather Underground Inc. (WU). NCDC and 

EPA are government agencies and have been collecting meteorological data close to a 

century now, while the latter two (WB and WU) have been established after 2000. WB is a 

commercial provider of weather information services, while WU is a network of personal 

weather stations. All of the above sources have been used in multiple studies in the past few 

years (Rosenzweig et al., 2006; Von Klot et al., 2008, 2009; Wellenius et al., 2006). To 

validate the WU and WB stations compared to the more traditional NCDC and EPA sources 

we have matched each of the WB and WU stations to the closest NCDC weather service 

station within 10 km, and computed the correlations. The average correlation (R2) was 
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0.960, suggesting that the use of WB and WU stations is unlikely to be imprecise (see Fig. 

2).

We obtained mean, minimum and maximum daily temperatures from the NCDC, EPA, WB 

and WU from January to December 2003 and removed outliers and extreme values 

suggestive of coding or measurement errors (extreme temperature values that do not 

naturally occur due to measurement error such as reported temperature values of over 50 °C 

or below −40 °C). There were 164 daily monitors operating across MA during the study 

period (see Fig. 1). Since there was no hourly temperature reading available for all stations, 

we choose minimum Ta as the closest indicator for nighttime temperature. We used wind 

speed data from only three available sources: NCDC, EPA and WU and thus used ordinary 

kriging to interpolate the missing data for each 1×1 km grid cell.

2.4. Spatial predictors of air temperature

Initially we tested the daily correlation between Ta and Ts. In addition, to improve the 

prediction ability of the final constructed model other potential predictors we expected, a 

priori, to have a physical influence on Ta were considered for inclusion in the model (traffic 

density etc.). All the potential predictors were initially included in the model. The only 

variable that was removed was traffic density, which was much less plausible than 

impervious surfaces, etc. in the first place, and this was because it was not significant in the 

model. The following variables were statistically significant and thus were used in our final 

models: emissivity, percent of impervious surfaces, elevation and NDVI.

2.4.1. Percent of impervious surfaces—These data were obtained through the 2001 

national land cover data (NLCD) Multi-Resolution Land Characteristics Consortium 

(MRLC) (Homer et al., 2004). Data were obtained as raster files with 30 m cell size. Percent 

of impervious surfaces included all sub categories for developed areas.

2.4.2. Elevation—These data were obtained through the National Elevation Dataset 

(NED) (Maune, 2007). NED is distributed by the U.S. Geological Survey (USGS) and 

provides seamless raster elevation data of the conterminous United States. NED is 

distributed in geographic coordinates at a resolution of 1 arc sec. MA has notable elevation 

differences between its eastern and western parts. Therefore, elevation was used as a spatial 

predictor since generally the higher the elevation the lower the air temperature.

2.4.3. NDVI—Satellite-derived Normalized Difference Vegetation Index (NDVI) data have 

been shown to be a temporal indicator of the vegetation growth rate, its onset, end, peak and 

duration of vegetation greenness, and also the periodicity of the photosynthetic activity 

(Reed et al., 1994; Yang et al., 1994). The rationale for using two wavelengths to calculate 

NDVI is the sensitivity of leaf pigments to red light (RED-wavelengths centered at 660 nm) 

and high reflectance of leaf structure at near-infrared (NIR-wavelengths ranging from 700 to 

1100 nm) (Jensen, 2007; Tucker, 1979) (Eq. 2):

(2)

Kloog et al. Page 5

Sci Total Environ. Author manuscript; available in PMC 2015 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used monthly vegetation index products (MOD13A3) at a 1 km spatial resolution 

because NDVI remains relatively constant during each month.

2.5. Statistical methods

To estimate Ta in each grid cell on each day we first calibrated the Ts measurements for 

each day using grid cells for which both Ta measurements and Ts values were available 

(stage 1). This stage 1 model was then used to predict Ta in grid cells without Ta 

measurements but with available Ts measurements (stage 2). Since Ts values are often 

missing due to cloud cover or retrieval errors, the stage 2 model failed to provide predictions 

for many grid cell–day combinations. To estimate Ta when no Ts data are available we fit a 

third model that takes advantage of the association of grid cell Ts values with Ta monitoring 

located elsewhere and the association with Ts values in neighboring grid cells (stage 3). 

Importantly, since daily Ta for the whole of MA varies considerably between different 

geographical regions, MA was divided into three regions: eastern MA, central MA and west 

MA. The daily mean Ta was calculated for each region.

First a mixed model regression with day-specific random intercepts and Ts slopes was 

performed (stage 1). At each day we estimate a separate slope in the relationship between Ta 

and Ts that captures its temporal variability. Specifically we fitted the model (Eq. 3):

(3)

where: Taij is the measured Ta at a spatial site i on a day j; α and uj are the fixed and random 

(site specific) intercepts, respectively, Tsij is the Ts value in the grid cell corresponding to 

site i on a day j; β1 and vj are the fixed and random slopes, respectively. Wind Speedij, and 

NDVIik are the values in the grid cells corresponding to site i on a day j (or month k for 

NDVI). Elevationi and Impervious surfacesi are the means in grid cells corresponding to site 

i. Finally, Σ is an unstructured variance–covariance matrix for the random effects and εij is 

the error term at site i on a day j.

To validate our model, the dataset was repeatedly randomly divided into 90% and 10% 

splits. Predictions for the held-out 10% of the data were made from the model fit of the 

remaining 90% of the data. The process was repeated ten times and cross-validated R2 

values were computed. To test for bias we regressed the measured Ta values against the 

predicted values in each site on each day. Temporal R2 was calculated by regressing delta 

Ta against delta predicted where: delta Ta is the difference between the actual Ta in place i 

at time t and the annual mean Ta at that location, and delta predicted is defined similarly for 

the predicted values generated from the model. Spatial R2 was calculated by regressing the 

annual mean Ta against the mean predicted Ta at place i. In the next stage (stage 2), we used 

the same stage 1 model to predict Ta in grid cells where Ts data is available but Ta 

monitoring data is not. Finally in stage 3, we estimated the daily Ta for all grid cells in the 

study domain for days when Ts data were unavailable using stage 2 data. To capture the 
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ability of neighboring cells to fill in the cells with missing Ts values, we regressed the 

predicted Ta in each cell on each day against the mean of the Ta measurements on that day 

in each region (the average Ta measured at all the available Ta measurements on each day) 

and a smooth function of latitude and longitude, with random cell-specific intercepts and 

slopes. To allow for temporal variations in the spatial correlation, a separate spatial surface 

(a thin plate spline) was fit for each two-month period. In contrast to the first stage, the third 

stage model includes a cell specific random slope and intercept that captures the spatial 

variability for each cell relative to the average in that region (Eq. 4):

(4)

where: PredTaij is the predicted Ta at a spatial site i on a day j from the first prediction 

model; mTajr is the mean Ta across the specific region on a day j; α and ui are the fixed and 

random intercepts, respectively; β1 and vi are the fixed and random slopes, respectively. The 

smoothing of X,Y is a thin plate spline fit of the latitude and longitude, which is similar to 

kriging, but it allows greater spatial anisotropy, k(j) denotes the two-month period in which 

day j falls (that is, a separate spatial smooth was fit for each two-month period), and Bimon 

(bi-monthly period) is an indicator for each two month period. Using this final model, we 

again performed cross-validation to estimate the goodness of fit.

We also tested how the performance of our models compared to using traditional spatial 

smoothing of monitored values (kriging). All modeling was done in R statistical software 

version 2.12.2.

3. Results

The upper panel of Fig. 3 presents a scatter plot of the Ta–Ts relationship before the stage 1 

calibration whereas the relationship between the predicted out of sample Ta vs the actual Ta 

is shown in the lower panel of Fig. 3. These results show how by using the daily calibration 

approach we can improve the fit from a R2 of 0.848 to a R2 of 0.949 (P<0.001).

Fig. 4 presents the daily distribution of random slopes of Ts in 2003. It also shows the 

difference of the day specific slopes from the average slope. As can be seen the relationship 

between Ta and Ts varies daily which is why the stage 1 calibration model is necessary.

The first stage models all revealed very high out-of-sample fits with a mean out of sample 

R2 of 0.949 (P<0.001), and as expected a highly significant association between Ta and the 

main explanatory variable—Ts (Table 1). The spatial and temporal out of sample results 

also presented very high fits (Table 1). For the spatial model the mean out-of-sample R2 was 

0.960 and for the temporal model the mean out-of-sample R2 was 0.800 (P<0.001). We 

found no bias in our cross validation results (slope of observed vs. predicted=1.00).

Stage 3 models also performed well with a mean out-of-sample R2 of 0.947 (P<0.001), 

which is extremely high considering that these were days with neither ground Ta data nor 

satellite Ts data in the grid cells being predicted.
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Fig. 5 shows the spatial pattern of predicted Ta values from the Ts models, averaged over 

the entire study period. Mean predicted minimum Ta values for 2003 ranged from 0.5 to 5.8 

°C. Generally urban areas appear warmer than the surrounding areas. To explore these 

differences we analyzed Ta from eight different representative sites covering an area of 4×4 

km2 (highlighted in Fig. 5 by rectangles). The results are shown in Fig. 6.

As it can be seen in Fig. 6, there are temperature changes between the rural open and the 

built-up areas. There is a noticeable change between urban area yearly mean Ta (e.g. point 2 

predicted Ta=5.2 °C) and vegetative open space areas (e.g. point 6-predicted Ta=2.3 °C). In 

addition, sampled suburban areas located near main roads exhibited higher temperature of 

0.4–0.5 °C compared to the inner part. Also there is a great variability in standard deviation 

(SD) among all sampled areas suggesting the local influence of different wind patterns and 

urban canyon geometry on the measured Ta.

The kriging model resulted as expected in a much lower R2 compared to the R2 of our 

combined model (0.30 versus 0.95 respectively).

4. Discussion

In this paper we assessed Ta across MA during the year 2003 based on MODIS Ts data. 

There are several important key features differentiating our study from previous studies (Fu 

et al., 2011; Saaroni et al., 2000; Vancutsem et al., 2010; Yang et al., 1994). First and 

foremost, the use of daily Ts–Ta calibrations allows a better assessment of space–time 

interactions than models that include only spatially resolved time invariant land use terms. 

Indeed, this daily calibration approach exhibits the differences in short-term temperature 

values between grid cells. Most importantly, our model predicts temperature values for days 

when satellite Ts is unavailable (extensive cloud coverage, snow etc.). For example, in 

epidemiology such data could be used to assess the acute effects (short-term) of temperature 

(heat waves, cold spells), and chronic effects (long-term) of temperature, or combines the 

acute and chronic effects. As shown in our analysis, Ts can be reliably used to predict Ta if 

modeled appropriately.

Although Vancutsem et al. (2010) found relatively good correlation between night Ts and 

minimum Ta for vegetative and non-urban land cover types, six stations exhibited higher 

variability between measured and predicted values. This was explained by the following 

factors: (i) site location near the sea or lake; (ii) directional effects due to the angular 

anisotropy of emissivity; and (iii) temperature variability in mountainous areas (e.g., 

difference of spatial scales, point vs. areal average). Moreover, the differences were also 

related to location and seasonal changes. Because different variables can influence the Ts–

Ta relationship we applied a mixed effects model approach. The underlying assumption was 

that the effect of time-varying parameters influencing the Ts–Ta relationship (e.g., relative 

humidity, surface properties, land cover type, location) can be taken into account using daily 

calibrations. In this regard, to the best of our knowledge our models are the first to cover 

both vast urban and rural areas across MA, USA with high prediction accuracy for all sites.

Our predicted mean values across MA for the year 2003 are in a good agreement with the 

recorded annual mean minimum temperatures. For example, in central Boston the annual 
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mean difference between measured (NCDC, 2010) and predicted Ta was 0.2 °C (5.4°–5.6 

°C respectively). In the semi-rural area of Fitchburg, MA there was a slightly higher 

difference of 0.6 °C (3.8°–3.2 °C respectively). Since our model could be used in studies on 

the acute effects of temperature we sampled the same points for a representative day in the 

summer (12.08.2003). In central Boston the daily difference between measured and 

predicted Ta was 0.54 °C (21.85°–21.24 °C respectively). In the semi-rural area of 

Fitchburg, MA there was a slightly higher difference of 0.15 °C (19.85°–19.70 °C 

respectively). There is a 2 °C difference between urban and sub urban areas.

We ran a cluster analysis and found a significant clustering (P<0.001) around metropolitan 

areas (Boston, Worcester) and around coastal areas which is to be expected. Urban areas 

tend to show higher temperature values compared to rural areas due to well-known factors 

such as the urban heat island (UHI) (Kim, 1992) etc. Areas closer to the shoreline also tend 

to exhibit warmer temperatures compared to inland areas since shoreline areas are kept 

warmer by the water’s effect on the air (Pieri et al., 2011).

Based on our model results, the accuracy of estimating Ta was independent of the other 

covariates (NDVI, wind speed etc.). However, all covariates were found to be significant 

(n=5305, Akaike information criterion—AIC=30566.86, P<0.001) and therefore were 

included in our final model. Our results (as shown in Fig. 5) present high variability in SD 

values. This can be explained by air temperature spatial variability at the micro-scale level 

within selected locations (e.g. within points 1–8). In this regard, ground meteorological 

stations are unable to capture this variability, which is needed for epidemiological studies. 

However, the ability to estimate this variability is also available through the use of urbanized 

surface energy balance models that are used within the suite of weather forecasting models 

(Barry and Chorley, 2003; Friedl, 2002; Voogt and Oke, 2003). Furthermore, urban and 

densely populated areas exhibit a lower SD than the open rural and vegetation.

It is important to stress out that our prediction models were designed to use only night 

MODIS Ts for several key reasons. First, health effect studies examining the association 

between hot days and mortality suggest that the main predictor is minimum temperature. 

This is because people are more susceptible to the stress posed on the respiratory and 

circulatory systems when there is no sufficient nighttime cooling (Saez et al., 1995; 

Zanobetti and Schwartz, 2008). Furthermore, during nighttime, the Earth surface behaves 

almost as an isothermal and homogeneous surface. In contrast, during daytime there is a 

significant directional anisotropy effect which is due to differences in sun illumination vs. 

satellite viewing geometry, and different shading effects within pixels, giving rise to 

temperature differences as much as 20 °C (Wan and Dozier, 1996).

To the best of our knowledge, all previous epidemiological research studying the association 

between temperature and health effect have all used one central meteorological station to 

assign temperature exposure (Halonen et al., 2010; McMichael et al., 2008; O’Neill et al., 

2003). This introduces exposure error, and likely biases the effect estimates downward 

(Zeger et al., 2000). In this regard, predicting nighttime temperature exposures with fine 

spatial and temporal resolutions will be critical for improving the accuracy in future 
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epidemiological studies. In addition these models could be useful in other fields such as in 

urban planning, where development of adaptation strategies is necessary.

Although the minimum Ta may be expected near dawn (in most but not all cases), we are 

correlating Ts which overpasses at 10:30 pm local time with Ta at a different time. The 

empirical question is whether the use of daily calibration, which captures day to day 

differences in the association between Ts at one time and Ta several hours later, is sufficient 

to provide good predictive power. The answer is yes. Our out of sample R2 is very high. Had 

the predictive power been poor, we may have needed to revisit that choice, but in the event it 

was very good, and so we continued to predict the temperature that seemed most relevant for 

health studies.

There are a few limitations of the present study that need to be pointed out. For one since we 

use daily calibrations in this model, this requires a large amount of daily Ta stations which 

are not always available in other areas. This model would not be transferable in areas 

without sufficient Ta monitors. However there is nothing special about New England 

regarding the number of NCDC or WB/WU stations, and this information is available all 

over the US, as well as in Europe. In addition, MODIS satellite data only go back to March 

2000 and thus historical observations are not possible. The spatial resolution of 1×1 km is 

not as high as that of the multispectral sensors (e.g., Landsat 60 m and ASTER 90 m). 

However, these sensors have poor temporal resolutions which are roughly every 2 weeks. 

Finally, our approach should be used to assess daytime temperatures using daytime Ts. 

Although only the Terra satellite was used in this analysis, we do plan on incorporating the 

Aqua satellite in future studies and extending the model to a wider geographic area, and 

more years.

5. Conclusion

In summary, we have clearly demonstrated how Ts can be used reliably to predict daily Ta 

even in non-retrieval days. These results could be used in various studies such as health 

effect studies, urban climate and urban planning studies etc.
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Ts Surface temperature

Ta Air temperature

MODIS Moderate Resolution Imaging Spectroradiometer

MA Massachusetts
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Fig. 1. 
Map of the study area showing the full surface temperature grid and all air temperature 

monitor station across Massachusetts.
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Fig. 2. 
A scatter plot of the correlation between the weather underground/weatherbug stations and 

NCDC stations.
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Fig. 3. 
A scatter plot of the air temperature–surface temperature relationship before (A) and after 

(B) the daily 2003 calibrations.
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Fig. 4. 
A density plot exhibiting the daily variation of surface temperature slopes by time for 2003.
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Fig. 5. 
Mean air temperature in each 10×10 km grid during 2003 predicted by the surface 

temperature models.
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Fig. 6. 
Selected 4×4 km representative regions exploring differences in predicted annual mean air 

temperature between regions. The box represents the predicted air temperature while the 

whisks represent the standard deviation.
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Table 1

Prediction accuracy—cross validated R2 for all Ta prediction models for 2003.

R2

Overall R2 0.949***

Spatial R2 0.960***

Temporal R2 0.800***

Gamm R2 0.947***

*
Indicates a 0.1 significance level.

**
Indicates a 0.05 significance level.

***
Indicates a 0.01 significance level.
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