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Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation,
organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In
this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived
tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We com-
pared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth
germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR
and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues
as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13
are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP)
assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide
mechanistic insights into abnormal YAP activities in mice and humans.

Yes-associated protein (YAP) is a key transcriptional coactiva-
tor of the Hippo signaling pathway that plays pivotal roles in

stem/progenitor cell proliferation and organ size control (1–11).
YAP has also been shown to be a candidate oncogene in the devel-
opment and progression of multiple human cancers (12–14). The
activity of YAP is negatively regulated by its upstream kinase cas-
cade (MstI/2, Sav1, Lats1/2, and Mob1), which leads to the phos-
phorylation and subsequent degradation of YAP and its paralog
TAZ. Inhibition of Hippo signaling relieves YAP and TAZ, which
can then translocate into the nucleus. In the nucleus, YAP or TAZ
associates with TEAD or other transcription factors to activate the
transcription of its target genes (15–18). Conventional knockout
of Yap in mice causes early embryonic lethality due to defects in
yolk sac vasculogenesis (19). Overexpression of YAP results in
enlarged organ size in Drosophila and in mice with profound cell
proliferation and inhibition of apoptosis (1, 2, 7, 11, 20). In addi-
tion, YAP also plays a critical role in maintaining mouse embry-
onic stem cell pluripotency and regulating tissue-specific progen-
itor cells (21).

Although the core components of the Hippo pathway are
highly conserved between Drosophila and mammalian systems,
the transcriptional outputs differ greatly depending on when and
where the pathway is deployed. For example, overexpression of
YAP in the mouse small intestine leads to Notch-dependent hy-
perplasia and loss of terminally differentiated cell types but does
not appreciably increase the overall size of the organ (1). In Dro-
sophila, the YAP ortholog Yki induces the expression of cycE,
diap1, and bantam microRNA (11, 22). In mammalian cells, YAP
induces Birc2 and Birc5, two diap1 homologs, and connective tissue
growth factor (CTGF), Amphiregulin (AREG), and Cyr61 (2, 15, 20,
23, 24). Most YAP targets appear to be tissue and cell type specific,
suggesting that the function of YAP in mammals is modulated by
various biological inputs and associated proteins in a context-
dependent manner.

Teeth are typical ectodermal appendages that develop through
sequential and reciprocal interactions between oral epithelium

and the underlying neural-crest-derived mesenchyme. The early
stage of tooth development morphologically and molecularly re-
sembles that of other ectodermal organs, such as hair, feathers,
and salivary glands (25). We previously reported that Yap is ex-
pressed in both dental epithelial and mesenchymal tissues, with
slightly elevated expression in the inner and outer dental epithelia.
Overexpression of YAP in the dental epithelium affects tooth
morphogenesis and the patterning of enamel knots, while the sig-
naling center remains induced at the tip of the tooth germ by
epithelium-mesenchyme interactions (26). In this study, we com-
pared the gene expression profiles of embryonic day 14.5 (E14.5)
Yap conditional knockout (CKO) and YAP transgenic (Tg) mouse
tooth germs using transcriptome sequencing (RNA-Seq) analysis
and further confirmed the differentially expressed genes using
real-time PCR, in situ hybridization, sphere formation assay, and
chromatin immunoprecipitation (ChIP) assay. We found that
YAP regulates the expression of Hoxa1 and Hoxc13 in oral and
dental epithelial tissues as well as in the epidermis of skin during
the embryonic and adult stages. The regulation of Hoxa1 and
Hoxc13 by YAP is highly conserved between mice and humans and
may be mediated through the TEAD transcription factors. Since
misregulation of YAP, HOXA1, and HOXC13 can cause various
developmental disorders and human cancers, these results pro-
vide insight into the molecular mechanisms underlying abnormal
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YAP activities in mice and humans and may also provide clues for
potential treatment targets.

MATERIALS AND METHODS
Animals. All mouse use was in compliance with the protocols approved
by Harvard University Institutional Animal Care and Use Committee.
Yap conditional knockout genes and YAP transgenes were under the con-
trol of the human keratin 14 (K14) promoter, which drives gene expres-
sion in ectoderm-derived epithelial tissues. Yap CKO mice were generated
through breeding Yapfl/fl and K14-Cre mice (27). YAP Tg mice were gen-
erated through breeding Col-TetO-YAPS127A mice with K14-rtTA mice (1,
27, 28) in which a human YAP1 protein with a mutation in residue 127
(Ser ¡ Ala) was constitutively activated upon doxycycline (Dox) admin-
istration (2 mg/ml in drinking water).

Histology, apoptosis assay, and cell proliferation analysis. Embry-
onic mouse heads and adult skin samples were fixed in 4% paraformalde-
hyde (PFA)–phosphate-buffered saline (PBS), dehydrated using an etha-
nol series, embedded in paraffin, sectioned at intervals of 7 to 10 �m, and
stained with hematoxylin and eosin (HE) for morphological examination.
Fluorescence images were acquired using conventional microscopes
(Zeiss Axio) or confocal fluorescence microscopes (Zeiss LSM510).
Apoptosis was assessed by terminal deoxynucleotidyltransferase-medi-
ated dUTP nick end labeling (TUNEL) staining (Roche), and cell prolif-
eration was examined using an EdU (5-ethynyl-2=-deoxyuridine) incor-
poration staining kit (Life Technologies) in serial sections of E14.5 mouse
tooth germs according to the manufacturer’s protocol.

Cell culture, YAP knockdown, and overexpression in human
keratinocytes. HaCaT cells (an immortalized human keratinocyte line)
were purchased from Cell Line Service (CLS, Germany). HaCaT cells were
cultured in Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum and penicillin-streptomycin, transfected with scram-
bled control small interfering RNA (siRNA) or YAP siRNA using Lipo-
fectamine RNAiMAX (Life Technologies), and collected at 24-h, 48-h,
and 72-h intervals for total RNA extraction. YAPS127A-inducible HaCaT
cells (HaCaT-iYAPS127A) were cultured in CNT-07 defined epidermal ke-
ratinocyte medium (CELLnTEC, Switzerland), treated with Dox (100 ng/
ml), and collected at 6-h, 24-h, and 48-h intervals for total RNA extraction
(27).

Sphere formation assay. Growth factor reduced Matrigel (BD Biosci-
ences) was used to coat eight-well chamber slides (BD Falcon Cul-
tureSlide). HaCaT-iYAPS127A cells (5,000 per well) were seeded in Dul-
becco’s modified Eagle’s medium supplemented with 10% fetal bovine
serum, 2% Matrigel, and penicillin-streptomycin overnight and were then
treated with scrambled control siRNA, YAP siRNA, HOXA1 siRNA, or
HOXC13 siRNA overnight. After that, Dox (100 ng/ml) was added to
CNT-BM media (CELLnTEC) containing 2% Matrigel to induce YAP
expression. The medium was changed every 3 days, and the number of
spheres in each well was counted after 10 days of culture.

RNA-Seq analysis and qPCR. Total RNA was extracted and purified
using TRIzol (Life Technologies) and an RNAeasy minikit (Qiagen) and
evaluated by the use of an 2100 bioanalyzer (Agilent Technologies, CA).
RNA-Seq analysis was performed using an Illumina HiSeq 2000 system by
the Biopolymers Facility at Harvard Medical School. To eliminate the
differences represented by individual embryos, each total RNA sample for
RNA-Seq was pooled from three biologically different E14.5 tooth germs
with equal amounts of total RNAs. The transcriptomic profiles of the Yap
CKO and wild-type tooth germs, as well as those of the YAP Tg and
wild-type mouse tooth germs, were compared. (Data corresponding to
the RNA-Seq Raw sequencing reads and aligned reads are available
through the Gene Expression Omnibus.) The RNA-Seq raw data were
analyzed using DNAnexus software and further validated using quantita-
tive PCR (qPCR). The qPCR primers used were as follows: for mouse Yap,
5=-CCCGACTCCTTCTTCAAGC-3= and 5=-CTCGAACATGCTGTGGA
GTC-3=; for mouse Hoxa1, 5=-CTTCTCCAGCGCAGACCTT-3= and 5=-
CTGTGAGCTGCTTGGTGGT-3=; for mouse Hoxc13, 5=-GGAAGTCTC

CCTTCCCAGAC-3= and 5=-CTGGCTGCGTACTCCTTCTC-3=; for
human YAP, 5=-GAACCCCAGATGACTTCCTG-3= and 5=-CTCCTTCC
AGTGTTCCAAGG-3=; for human HOXA1, 5=-ACATCTTCTCCAGCG
CAGAC-3= and 5=-CGTGAGCTGCTTGGTAGTGA-3=; and for human
HOXC13, 5=-TCAGGTGTACTGCTCCAAGG-3= and 5=-CAGCTGCAC
CTTAGTGTAGGG-3=.

Immunofluorescence staining and in situ hybridization. Immuno-
fluorescence staining and in situ hybridization with digoxigenin-labeled
RNA probes were conducted on paraffin sections as previously described
(26, 29). The antibody against YAP was purchased from Santa Cruz. The
antibodies against mouse E-cadherin and P-cadherin were from Life
Technologies.

ChIP. The skin samples were collected from the E14.5 YAP Tg em-
bryos, fixed in 1% formaldehyde, sonicated, and then immunoprecipi-
tated and collected using YAP or control IgG antibodies (Cell Signaling)
according to the manufacturer’s protocol (Millipore). Recovered chro-
matin DNA samples were used for detection of the putative TEAD bind-
ing site-containing fragment. Equal amounts of the eluted DNA samples
were used for PCR. The chromatin immunoprecipitation (ChIP)-PCR
primer pair for moue Hoxa1 was 5=-CACCACAATCGACCTACAGC-3=
and 5=-CTTTCTTGCAGGCCTCCTGT-3=. The ChIP-PCR primer pair
for mouse Hoxc13 was 5=-ACCCTCTCAGCCAGCCTTA-3= and 5=-GTC
AGCATGGTCGGTCTTC-3=.

Microarray data accession number. RNA-Seq raw sequencing reads
and aligned reads are available through the Gene Expression Omnibus at
accession no. GSE65524.

RESULTS
Yap deficiency in the dental epithelium results in small tooth
size with reduced epithelial cell proliferation. Previous studies
showed that Yap is expressed in skin progenitor cells and that loss
of YAP in the epidermis results in a thin and fragile skin with
reduced epithelial progenitor cell proliferation (24, 27). In this
study, we analyzed the tooth phenotype of Yap conditional knock-
out mice in which Yap was deleted in the oral and dental epithe-
lium as well as in the epidermis of the skin under the control of the
human keratin 14 promoter (K14-Cre; Yapfl/fl [Yap CKO]). Yap
CKO mice either were aborted or died shortly after birth due to
dehydration (27). We examined the tooth phenotype of Yap CKO
mice at different embryonic stages. At E13.5, Yap CKO mice ex-
hibited tooth budding similar to that in control mice (Fig. 1A and
B). At E14.5, wild-type tooth germ developed into a cap stage with
distinct histodifferentiation of enamel organ and the underlying
dental papilla mesenchyme (Fig. 1C). YAP transcripts and pro-
teins were detected in both dental epithelium and mesenchyme,
with intense expression in the outer and inner dental epithelial
cells (Fig. 1I and K). Conditional knockout of Yap under the con-
trol of the human keratin 14 promoter resulted in a small tooth
germ with reduced expression of YAP transcripts and proteins in
the oral and dental epithelial tissues (Fig. 1D, J, and L). However,
in the E14.5 Yap CKO tooth, we still observed the histodifferen-
tiation of outer and inner dental epithelial cells and enamel knot at
the tip of the enamel organ, as well as condensed dental mesen-
chymal cells underlying the enamel organ (Fig. 1D). At the E16.5
and E18.5 bell stage of tooth development, although Yap CKO
tooth germs were smaller than those of their control littermates,
they exhibited a typical pattern of histodifferentiation, with outer
and inner dental epithelia as well as star-shaped stellate reticulum
cells in the center of the enamel organ (Fig. 1E to H).

To examine whether the reduced tooth size in the Yap CKO
mice was due to reduced cell proliferation or to increased cell
death, we performed EdU incorporation assay and TUNEL stain-
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ing to detect cell proliferation and apoptosis, respectively. EdU
incorporation assay revealed profound cell proliferation in the
outer and inner dental epithelia of E14.5 wild-type tooth germ
(Fig. 1M). The enamel knot area at the tip of the tooth germ was
devoid of dividing cells (30, 31). Dental epithelial cell proliferation
was significantly reduced in E14.5 Yap CKO tooth germ compared
to that in wild-type tooth germ (P � 0.01), whereas cell prolifer-
ation in the dental mesenchyme was not dramatically affected
(Fig. 1M and N). At E14.5, apoptotic cells were detected within the
enamel knot area of both wild-type and Yap CKO tooth germs
(Fig. 1O and P). These data demonstrated that Yap deficiency in
the dental epithelium resulted in a small tooth size with reduced
dental epithelial cell proliferation but might not have affected the
histodifferentiation and apoptosis of tooth germs.

Hoxa1 and Hoxc13 genes exhibit changes concurrent with
those of Yap in the Yap CKO and YAP Tg dental epithelial tis-
sues and skin epidermis. To decipher the molecular mecha-

nisms underlying the tooth phenotypes of Yap CKO mice, we
first analyzed the expression patterns of Shh, Fgf4, Sox9,
Notch1, Fgf3, and Wnt3a transcripts using in situ hybridization
and found expression patterns of these genes in E14.5 Yap CKO
tooth similar to those in the wild types (Fig. 2A to L). Shh, Fgf4,
Fgf3, and Wnt3a continued to show high levels of expression in
the enamel knot area, further indicating that Yap deficiency in
the dental epithelium may not affect the histodifferentiation
of the enamel organ. Previous studies showed that E-cadherin
ligation can sequester YAP in the cytoplasm, where it is tran-
scriptionally inert (32). Our recent study showed that overex-
pression of YAP in the dental epithelium caused dysregulation
of E- and P-cadherin proteins in the enamel organ (26). How-
ever, we observed expression patterns of E-cadherin and P-
cadherin proteins in the E14.5 Yap CKO tooth that were similar
to those in wild-type tooth (Fig. 2M to P).

To identify the downstream target genes of YAP involved in

FIG 1 Yap deficiency in the dental epithelium leads to development of a small tooth germ with reduced cell proliferation. (A and B) E13.5 Yap CKO tooth germ
exhibited budding similar to that seen in wild types. (C and D) At E14.5, wild-type tooth developed into a cap stage with inner and outer dental epithelia and a
compact cluster of enamel knot cells at the tip of the enamel organ. Condensed dental mesenchymal cells were immediately underneath the enamel organ. The
E14.5 Yap CKO tooth was smaller than that in wild-type mice but still exhibited histodifferentiation of the enamel organ and condensed dental mesenchyme. (E
to H) At the E16.5 and E18.5 bell stage of tooth development, Yap CKO tooth germs were smaller than the control tooth germs. However, they still exhibited a
typical pattern of histodifferentiation, with outer and inner dental epithelia as well as star-shaped stellate reticulum cells in the center of the enamel organ. (I and
J) In situ hybridization of E14.5 mice showed that Yap transcripts were downregulated in Yap CKO dental epithelium compared with that in wild-type tooth. (K
and L) Confocal images of YAP immunofluorescence staining showed reduced YAP protein expression in the dental epithelium of Yap CKO tooth compared to
that in wild-type tooth. (M and N) EdU incorporation assay revealed profound cell proliferation in the enamel organ and dental mesenchyme of E14.5 tooth
germ, with the enamel knot area at the tip of the enamel organ devoid of proliferating cells. Dental epithelial cell proliferation was greatly reduced in the E14.5
Yap CKO tooth. (O and P) Apoptotic cells were detected within the enamel knot of wild-type and Yap CKO tooth germs in similar patterns. Dashed lines indicate
the boundary between the dental epithelium and mesenchyme of tooth germs. Scale bars, 100 �m.
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tooth development, we utilized the Yap CKO mouse line and also
the YAP transgenic mice (YAP Tg) in which a human YAP trans-
gene was inserted and constitutively activated in the mouse ge-
nome upon doxycycline (Dox) administration (1). We dissected
E14.5 developing tooth germs from both Yap CKO and YAP Tg
mice, extracted their total RNAs, and compared their transcrip-
tional profiles with those of their wild-type littermates by the use
of RNA-Seq. The differentially expressed genes identified from the
RNA-Seq analysis were further verified using real-time PCR and
in situ hybridization. Previous studies showed that overexpression
of YAP in mouse liver upregulates Birc2 and Birc5 transcripts (2).
salv deficiency in mouse heart tissues causes increased YAP activ-
ity and also upregulates the expression of Birc2 and Birc5 (20).
YAP overexpression increases the expression of Cyr61 in primary
mouse keratinocytes and also activates AREG and CTGF in hu-
man MCF10A mammary epithelial cells (15, 23, 24). In the E14.5
YAP Tg mouse tooth germs and skin, Areg, Birc2, Birc5, Ctgf, and

Cyr61 showed expression levels similar to those in wild-type mice.
In E14.5 Yap CKO mice, however, the expression levels of Ctgf and
Cyr61 were significantly increased in the skin and dental epithelia
(unpublished data). These results further demonstrate that the
downstream targets of YAP are regulated in a cell- and tissue-
context-dependent manner (10).

Our RNA-Seq data revealed that some Hox genes had dramatic
changes, with altered Yap expression. Interestingly, we found sig-
nificant changes of Hoxa1 and Hoxc13 transcripts concurrent with
changes of Yap transcripts in both Yap CKO and YAP Tg mouse
tooth germs. In the Yap CKO mice, the levels of transcripts of Yap,
Hoxa1, and Hoxc13 were significantly reduced compared to those
in their wild-type littermates (Fig. 3A). In contrast, in the YAP Tg
mice, the levels of expression of Yap, Hoxa1, and Hoxc13 were all
significantly upregulated compared to those in their wild-type lit-
termates (Fig. 3B). In addition, however, qPCR results showed
that the relative levels of expression of Hoxa2, Hoxa3, Hoxa5,

FIG 2 Yap deficiency in the dental epithelium does not affect the expression of some key signaling and adhesion molecules. (A to L) At E14.5, the levels of
expression of Shh, Fgf4, Sox9, Notch1, Fgf3, and Wnt3a in wild-type and Yap CKO tooth germs were similar. Shh, Fgf3, Fgf4, and Wnt3a were expressed in the
enamel knot area at the tip of developing tooth germs. (M and N) Confocal images of E-cadherin immunofluorescence staining showed similar expression levels
of E-cadherin in wild-type and Yap CKO tooth germs. (O and P) Confocal images of P-cadherin immunofluorescence staining showed that P-cadherin was highly
expressed in the inner and outer dental epithelia and enamel knot cells of the enamel organ. The expression of P-cadherin in the Yap CKO tooth was similar to
that in wild-type tooth. Dashed lines indicate the boundary between dental epithelium and mesenchyme. Scale bars, 100 �m.
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Hoxb9, Hoxc4, Hoxc8, and Hoxd1 were not significantly changed
in the Yap CKO and YAP Tg mouse tooth germs compared to
those in wild-type mouse tooth germs (unpublished data), al-
though RNA-Seq results demonstrated differential expression lev-
els of these Hox genes. We then performed in situ hybridization
analysis and found that levels of Yap transcripts were greatly re-
duced in the dental epithelium of E14.5 Yap CKO tooth and were
greatly increased in the oral and dental epithelium of E14.5 YAP
Tg tooth (Fig. 3C to E). At E14.5, Hoxa1 was expressed in both
dental epithelial and dental mesenchymal tissues, with a high level
of expression in the outer dental epithelium and enamel knot cells
(Fig. 3F). High levels of Hoxc13 transcripts were also detected in

the outer and inner dental epithelia (Fig. 3I). Both Hoxa1 and
Hoxc13 expression levels were greatly reduced in the dental epi-
thelial cells of Yap CKO tooth germs and were greatly increased in
the dental epithelial cells of YAP Tg tooth germs (Fig. 3F to K). The
changes of Hoxa1 and Hoxc13 transcripts concurrent with Yap
transcript changes indicated that YAP regulates the expression of
Hoxa1 and Hoxc13 in developing tooth germs.

Similar concurrent changes of Hoxa1 and Hoxc13 transcripts
with Yap changes were also observed in the E14.5 mouse skin
epidermis, with decreased expression of Yap, Hoxa1, and Hoxc13
in the Yap CKO epidermis and increased expression of these genes
in the YAP Tg epidermis (Fig. 4A to I and unpublished data). To

FIG 3 Hoxa1 and Hoxc13 transcripts show changes concurrent with those of Yap in E14.5 tooth germs. (A) The expression levels of Hoxa1 and Hoxc13 were
significantly decreased and Yap transcript levels were reduced in E14.5 Yap CKO tooth germs compared to those in wild types. (B) The expression levels of Hoxa1
and Hoxc13 were significantly increased and Yap expression levels were elevated in the E14.5 YAP Tg tooth germs compared to those in wild-type mice. (C to K)
During E14.5 cap-stage tooth development, Yap is expressed in both dental epithelial and mesenchymal tissues, with intense expression in the inner and outer
dental epithelia. Hoxa1 and Hoxc13 showed intense expression in the outer dental epithelium and enamel knot area. Yap, Hoxa1, and Hoxc13 mRNA transcripts
were all significantly downregulated in the dental epithelial cells of Yap CKO mice, whereas they were significantly increased in the YAP Tg tooth germs. In panels
A and B, data represent the experimental means of the results from three biologically different samples � standard errors of the means (SEM). *, P � 0.05; **,
P � 0.01. Dashed lines indicate the boundaries between dental epithelium and mesenchyme. Scale bars, 100 �m.
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study whether YAP also regulates the transcription of Hoxa1 and
Hoxc13 in adult mice, we activated YAP transgene expression in
10-week-old YAP Tg mice by administrating Dox for 7 days. We
also observed similar concurrent upregulations of YAP, Hoxa1,
and Hoxc13 transcripts as well as enhanced cell proliferation in
adult mouse epidermis (Fig. 4J to O). These data indicated that
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse em-
bryonic tooth germs as well as in embryonic and adult mouse
epidermis.

YAP regulates the expression of HOXA1 and HOXC13 in hu-
man keratinocytes. To examine whether YAP also regulates the
expression of HOXA1 and HOXC13 in human cells, we knocked
down YAP gene in a human immortalized keratinocyte line, the
HaCaT cells (33). When the HaCaT cells were transfected with
YAP siRNA, levels of YAP transcripts were significantly reduced
after 24 h, 48 h, and 72 h (Fig. 5A). The relative expression levels of
HOXA1 and HOXC13 were significantly downregulated after 24 h
and 48 h compared with that of scrambled control siRNAs (Fig. 5B
and C). Conversely, when we administered Dox in the HaCaT-
iYAPS127A cells (27), YAP transcripts were significantly upregu-
lated after 6, 24, and 48 h (Fig. 5D). HOXA1 transcripts were
significantly upregulated after 6, 24, and 48 h (Fig. 5E). HOXC13
transcripts also showed significant immediate upregulation after 6
h (Fig. 5F). These results indicate that YAP regulates HOXA1 and
HOXC13 expression in human keratinocytes.

The sphere formation assay is an in vitro technique to analyze
the clonogenic growth potential of progenitor cells or neoplastic
cells (13, 34). Previous studies showed that YAP regulates the pro-
liferation of epithelial progenitor cells and is involved in the ex-
pansion of progenitor cell pools (1, 13, 27). To examine the role of
HOXA1 and HOXC13 in YAP activity, we performed sphere for-
mation assay using the HaCaT-iYAPS127A cells. Dox administra-
tion in the HaCaT-iYAPS127A cells caused constitutive activation

of YAP (27) and significantly increased the numbers of spheres
formed from the single cells (P � 0.01) (unpublished data). We
then transfected YAP siRNA into Dox-administered HaCaT-
iYAPS127A cells and found a remarkable reduction of sphere for-
mation compared with those transfected with scrambled control
siRNAs (P � 0.05) (Fig. 5G), indicating that YAP siRNA effi-
ciently downregulates YAP activity in these cells. Remarkably,
when we transfected HOXA1 or HOXC13 siRNA into Dox-ad-
ministered HaCaT-iYAPS127A cells, we also observed a significant
reduction of sphere formation (P � 0.01) (Fig. 5G). Cotransfec-
tion of both HOXA1 and HOXC13 siRNAs showed similar reduc-
tions of sphere formation in these cells (P � 0.01) (Fig. 5G). These
results implied that HOXA1 and HOXC13 may be functionally
involved in YAP-regulated epithelial progenitor cell proliferation.

Endogenous YAP binds to the Hoxa1 and Hoxc13 promoter/
enhancer regions containing TEAD binding elements. YAP is a
transcriptional coactivator which cannot directly bind to DNA
and needs to interact with TEAD transcription factors to regulate
its target genes (15, 17, 18, 35–37). YAP is also known to strongly
bind to SMAD1, p73, and RUNX2 transcription factors (17, 38–
42). We did not find putative SMAD1, p73, and RUNX2 binding
elements in the promoter/enhancer regions of Hoxa1 and Hoxc13
genes but found several putative TEAD binding elements in
mouse and human Hoxa1 and Hoxc13 loci (Fig. 6A and B and
unpublished data). To examine whether YAP directly regulates
Hoxa1 and Hoxc13 expression through TEAD transcription fac-
tors, we collected E14.5 YAP Tg mouse skin samples and per-
formed ChIP assay using YAP antibody. Chromatin isolated from
the skin prior to ChIP was used as an input control. The chroma-
tin DNA isolated after the ChIP was used to amplify the corre-
sponding DNA fragments containing the putative TEAD binding
sites. PCR amplification using chromatin isolated through the use
of normal rabbit IgG antibody served as a negative control. The

FIG 4 Hoxa1 and Hoxc13 transcripts exhibit changes concurrent with those of Yap in the epidermis of embryonic and adult mouse skin. (A to I) Yap, Hoxa1, and
Hoxc13 transcripts were downregulated in E14.5 Yap CKO mouse epidermis, whereas they were significantly increased in the YAP Tg mouse skin. (J to O) Yap
mRNA transcripts were upregulated in the epidermis of 10-week-old YAP Tg mouse, which was given Dox for 7 days to induce YAP transgene expression. After
Dox treatment, the epidermal thickness of YAP Tg mouse was significantly increased, and Hoxa1 and Hoxc13 mRNA expression levels were also elevated. Dashed
lines indicate the boundaries between epidermis and dermis. Scale bars, 100 �m.
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eluted chromatin immunoprecipitated by YAP antibody pro-
duced a clear 310-bp DNA product containing the putative TEAD
binding site (CAGCATCT) in the Hoxa1 locus and a clear 359-bp
band containing two putative TEAD binding sites (TTGTATTT)
in the Hoxc13 locus (Fig. 6A to D). These results suggested that
endogenous YAP directly regulates transcriptions of Hoxa1 and
Hoxc13, possibly through interaction with TEAD transcription
factors (Fig. 6).

DISCUSSION

The Hippo signaling pathway plays critical roles in regulating
stem/progenitor cell proliferation, organ size control, and tumor-
igenesis (1, 2, 4–9). Although the core components of the Hippo
pathway are highly conserved between invertebrates and verte-
brates, the downstream targets of Hippo/YAP signaling seems to
be cell and tissue dependent (10). We previously reported that Yap
is expressed in both dental epithelial and dental mesenchymal

FIG 5 YAP regulates HOXA1 and HOXC13 expression in human keratinocytes. (A) YAP transcript levels were significantly reduced in HaCaT cells after 24, 48, and 72
h of YAP siRNA treatment. (B) The relative expression levels of HOXA1 were significantly downregulated in HaCaT cells after 24 h and 48 h of YAP siRNA treatment.
(C) The relative expression levels of HOXC13 were significantly downregulated in HaCaT cells after 24 h and 48 h of YAP siRNA treatment. (D) The expression levels of
YAP were significantly increased in the HaCaT-iYAPS127A cells at 6 h, 24 h, and 48 h after Dox administration. (E) The relative expression levels of HOXA1 were
significantly upregulated in HaCaT-iYAPS127A cells at 6 h, 24 h, and 48 h after Dox administration. (F) The relative expression levels of humanHOXC13 were significantly
upregulated in the HaCaT-iYAPS127A cells at 6 h after Dox administration. (G) Sphere formation assay indicated that the number of spheres formed from single
HaCaT-iYAPS127A cells treated with Dox was greatly reduced in YAP siRNA-treated cells compared to those treated with scrambled (Scrbl) control siRNAs (P � 0.05).
Either HOXA1 or HOXC13 siRNA treatment alone or a combination of HOXA1 siRNA treatment and HOXC13 siRNA treatment significantly decreased the number of
spheres formed from single HaCaT-iYAPS127A cells treated with Dox (P � 0.01). *, P � 0.05; **, P � 0.01. n � 3.
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tissues of developing tooth and that overexpression of YAP af-
fected tooth morphogenesis and the patterning of enamel knot
(26). In the present study, we analyzed the effect of loss of function
of YAP in the developing mouse tooth germ and found that Yap
deficiency in the dental epithelium resulted in a small tooth germ
with reduced dental epithelial cell proliferation. Shh, Fgf3, Fgf4,
Sox9, Notch1, and Wnt3a transcripts were expressed in a pattern in
Yap CKO tooth germ similar to that in wild-type tooth, suggesting
that loss of function of YAP in the dental epithelium did not affect
the histodifferentiation of enamel organ. Some previously re-
ported targets of YAP, such as Areg, Birc2, Birc5, Ctgf, and Cyr61,
did not show altered expression in the Yap CKO tooth germs.
Interestingly, we identified Hoxa1 and Hoxc13 as direct down-
stream targets of YAP in epithelial tissues of mouse embryonic
tooth germs and skin, as well as in adult mouse epidermis and
human keratinocytes.

YAP regulates Hoxa1 and Hoxc13 expression in the dental
epithelium of developing tooth and skin epidermis. Hox genes
encode a set of evolutionally conserved transcriptional factors
which share a 60-amino-acid helix-turn-helix DNA binding
homeodomain and define cellular identities along the major and
secondary body axis. There are 39 Hox genes in mouse and human
genomes; those genes are arranged in four linkage groups (Hoxa,
Hoxb, Hoxc, and Hoxd) on four separate chromosomes. Based on

their sequence similarities and locations within the linkage
groups, Hox genes are further categorized into 13 paralogous clus-
ters (43). The spatial and temporal expression orders of Hox genes
along the anterior-to-posterior axis of the embryo are colinear
with their chromosomal organizations; the first gene located at the
3= end of the cluster is transcribed in the more anterior body
segments, whereas genes situated more 5= are progressively ex-
pressed in the more posterior areas. Therefore, a particular Hox
product defines the morphology of a specific body segment and
thus controls the axial patterning of body segments during embry-
onic patterning (44–46). Mutations of Hox genes can cause
homeotic transformations and produce new body segments, such
as legs growing in place of antenna or an extra set of wings in
Drosophila (47–49), as well as multiple developmental defects in
mice and humans (46).

The regulation of Hox genes is highly complex and involves an
intricate combination of local and long-range cis-regulatory ele-
ments (50–53). Recent studies revealed that polycomb group pro-
teins are critical in silencing Hox genes through modulation of
chromatin structure. Dynamic patterns of histone marks and
higher-order chromatin structure are also important determi-
nants of Hox gene regulation (54–58). To date, much progress has
been made in defining the cis-regulatory elements controlling Hox
gene expression. In contrast, the nature of the signals and tran-

FIG 6 Endogenous YAP binds to the Hoxa1 and Hoxc13 promoter/enhancer regions containing TEAD binding elements. (A and B) Schematic representation
of the sequence and location of putative TEAD binding sites in mouse Hoxa1 and Hoxc13 promoter/enhancer regions. One putative TEAD binding sequence
(CAGCATCT) is at �4586 to �4578 in mouse Hoxa1 (A), and two putative TEAD binding sequences (TTGTATTT) are at �1950 to �1942 and at �1761 to
�1753 in mouse Hoxc13 (B). Arrow pairs indicate the locations of the PCR primers. (C and D) ChIP of endogenous YAP binding to a TEAD binding element
within the Hoxa1 and Hoxc13 promoter/enhancer regions in E14.5 YAP Tg mouse skin. A 310-bp PCR product containing CAGCATCT in the mouse Hoxa1 gene
was amplified from isolated chromatin DNA pulled down through YAP antibody. (D) A 359-bp PCR product containing TTGTATTT in the mouse Hoxc13 gene
was amplified from isolated chromatin DNA pulled down through YAP antibody. The input chromatin is shown as a positive control for the ChIP. (E) A
schematic representation of the regulation of Hoxa1 and Hoxc13 by YAP through TEAD transcription factors. ON, transcription of Hoxa1 and Hoxc13 is active
when the YAP-TEAD complex is recruited into the promoter/enhancer regions of Hoxa1 and Hoxc13 genes.
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scription factors regulating Hox gene expression remains largely
unknown. So far, only a few transcription factors have been iden-
tified to regulate Hox gene expression. For instance, Krox20 was
shown to be required for the induction of Hoxa2 and Hoxb2 in
rhombomeres 3 and 5, and Kreisler can induce Hoxa3 and Hoxb3
expression in rhombomeres 5 and 6 of developing hindbrain (53,
59–61). Cdx proteins have been shown to modulate the expression
of multiple Hox genes in the more posterior areas of both meso-
derm and neural tissues (62, 63). In addition, retinoid acid signal
also plays an essential role in regulating the timing of Hox gene
induction in vertebrates (64). Several retinoic acid response ele-
ments (RARE) located in the vicinity of genes Hox1 to Hox4 are
necessary for the temporal colinear initiation of Hox genes
(65–68).

By using RNA-Seq analysis, real-time PCR, and in situ hybrid-
ization in both Yap CKO and YAP Tg mice, we found changes of
Hoxa1 and Hoxc13 transcripts concurrent with Yap expression
changes in dental epithelium of developing tooth and skin epider-
mis, including downregulation of Hoxa1 and Hoxc13 in the Yap
CKO mice and upregulation of those genes in the YAP Tg mice.
Same concurrent changes were also observed in the human
HaCaT immortalized keratinocytes as well as in adult mouse skin
epidermis, suggesting that Hoxa1 and Hoxc13 are downstream
targets of YAP in these ectoderm-derived tissues.

YAP is a transcriptional coactivator that is brought to its target
gene promoters/enhancers by associating with diverse DNA bind-
ing transcription factors, such as TEAD, RUNX, p73, or SMAD
(15, 17, 18, 35–37). In most tissues, there is at least one TEAD
expressed, supporting the idea of a ubiquitous role of YAP-TEAD
transcription complex in cell proliferation and survival (21, 35, 69,
70). A screen of a human transcription factor library also identi-
fied TEADs as the targets that are most potently activated by YAP
(15). Knockdown of TEADs or disruption of YAP-TEAD interac-
tion blunts the regulation of YAP-dependent genes and dimin-
ishes the activity of YAP in promoting cell proliferation, onco-
genic transformation, and epithelium-mesenchyme transition,
suggesting that TEAD is required for YAP-induced target gene
expression (15, 71). In the promoter/enhancer regions of mouse
and human Hoxa1 and Hoxc13 genes, we did not find putative
DNA binding sites of RUNX2, p73, or SMAD but identified sev-
eral putative TEAD binding elements. One copy of a TEAD bind-
ing sequence (CAGCATCT) is located at �4737 to �4729 in the
promoter/enhancer region of the human HOXA1 locus (unpub-
lished data) that was similar to that at �4586 to �4578 in mouse
Hoxa1 gene (Fig. 6A). There is also one copy of a TEAD binding
sequence (TTGTATTT) located at �1735 to �1727 in the pro-
moter/enhancer region of human HOXC13 locus (unpublished
data) that was similar to those at �1950 to �1942 and at �1761 to
�1753 in the mouse Hoxc13 gene (Fig. 6B). Our ChIP assay fur-
ther suggested that endogenous YAP binds to the Hoxa1 and
Hoxc13 promoter/enhancer regions containing TEAD binding el-
ements. Sphere formation assay results implied that Hoxa1 and
Hoxc13 may be functionally involved in YAP-regulated epithelial
progenitor cell proliferation. Based on these data, we propose that
YAP directly regulates the expression of Hoxa1 and Hoxc13 in
epithelial tissues of ectoderm-derived organs, including tooth
germ and skin, possibly through TEAD transcription factors. Fur-
ther studies, such as TEAD ChIP assay and direct-site mutagenesis
of the putative TEAD binding sites of Hoxa1 and Hoxc13, are

needed to confirm that TEAD transcription factors are indeed
involved in the direct regulation of Hoxa1 and Hoxc13 by YAP.

In the E14.5 Yap CKO tooth germs, we noticed that Hoxa1 and
Hoxc13 expression levels were reduced more than the Yap expres-
sion levels compared to the results seen with their control litter-
mates (Fig. 3A). In addition, Hoxa1 and Hoxc13 transcripts
seemed downregulated in both dental epithelial and dental mes-
enchymal tissues (Fig. 3F and G and I and J). Since Yap may affect
gene expression via different target genes through reciprocal epi-
thelium-mesenchyme interactions, we propose that Yap might
directly regulate Hoxa1 and Hoxc13 expression in the dental epi-
thelium whereas it might regulate mesenchymal Hoxa1 and
Hoxc13 expression through epithelial Hoxa1/Hoxc13 or some
other Yap target genes.

In the present work, we cannot exclude the possibility that
some other Hox genes are also regulated by the Hippo/Yap path-
way in ectodermally derived tissues. Whether the levels of Hox
gene expression in these tissues follow cluster regulation patterns
similar to those seen in axial patterning or whether they are regu-
lated by a totally different mechanism needs further investigation.
Additionally, it would be interesting for future research to exam-
ine whether TAZ, a homolog of YAP, also regulates Hox genes in
oral and skin epithelial tissues.

Implication of YAP, Hoxa1, and Hoxc13 in development and
tumorigenesis. YAP plays crucial roles in the maintenance of pro-
genitor cells and organ size control and is also involved in vascu-
logenesis and nervous system development. Yap is expressed from
E3.5 to E18.5 in mouse heart and liver and intestinal, neural, and
skin progenitor cells (19, 27, 72–78). Yap conventional knockout
mice exhibited shortened body axis and developmental arrests
around E8.5 with severe defects in yolk sac vasculogenesis (19).
Conditional knockout Yap in skin, heart, and liver impaired pro-
genitor cell proliferation and organ regeneration (27, 74–79). Yap
deficiency in heart also results in severe vascular abnormalities
(75–77, 80). YAP overexpression or defects in the upstream com-
ponents of Hippo signaling result in enlarged imaginal wing disc
in Drosophila, as well as in enlarged liver and heart in mice (1, 2, 7,
10, 11, 20, 76, 77, 81–84). In addition, YAP is expressed in neural
progenitor cells, and loss of function of YAP in chicken neural
tube results in increased cell death and premature neuronal dif-
ferentiation (79). In this study, Yap CKO led to smaller tooth
germs in mice and reduced dental epithelial cell proliferation.

Notably, Hoxa1 has also been associated with organ size con-
trol. Hoxa1 mutant mouse embryos exhibited dramatic reduc-
tions in the sizes of rhombomeres 4 and 5 and ear hypoplasia (66,
85, 86). The double mutant of Hoxa1 and Hoxb1 exhibited lung
hypoplasia (87). HOXA1 A218G polymorphism is closely associ-
ated with lower cerebellar volume in healthy humans and with
increased head circumference in patients with autism (88–90). A
homozygous truncating mutation of HOXA1 in humans causes
severe congenital cardiovascular malformation, craniofacial and
inner-ear defects, and brainstem abnormalities (91, 92).

In addition, YAP has also been implicated in maintaining basal
epidermal progenitors and regulating hair follicle morphogenesis
(24, 27, 93, 94). Overexpression of YAP in the basal epidermis
gradually leads to alopecia and, eventually, to hair loss in mice
(94). Hoxc13 was reported to be highly expressed in the tail, limbs,
and nails in early embryos (95–97). Hoxc13 deficiency in mice and
humans causes external hair loss and nail defects, whereas over-
expression of Hoxc13 in mice results in ulceration and alopecia
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(95–100). Our studies showed that both HOXA1 and HOXC13
play important roles in YAP-regulated epithelial progenitor cell
proliferation. Whether Hoxa1 and Hoxc13 are involved in YAP-
associated developmental disorders needs further investigations.

The Hippo/YAP signaling was initially defined as a tumor sup-
pressor pathway in Drosophila, and YAP functions as a proto-
oncogene. However, recent studies indicated that both gain of
function and loss of function of YAP may cause cancer. YAP over-
expression can result in oncogenic transformation, and elevated
YAP expression and nuclear localization have been observed in
mouse mammary and liver tumors, as well as in multiple types of
human cancers, including oral and esophageal squamous cell car-
cinoma, gastric and liver cancers, colonic and lung adenocarci-
noma, ovarian cancers, prostate cancers, and brain tumors (2, 10,
13, 14, 70, 101–105). It has recently been reported that loss of YAP
activity potently represses the growth of oncogene-induced mam-
mary tumors and that the YAP inhibitor verteporfin suppresses
the growth of human breast cancer cell lines (106). On the other
hand, YAP has also been reported to have proapoptotic activity
and was previously proposed to exert its tumor suppressor func-
tion through potentiating p73-mediated apoptosis (36, 73, 104,
107–111). Low expression of cytoplasmic YAP exists in ductal
carcinoma of the breast (104). In addition, low expression of YAP
is associated with worse outcome in the human luminal A breast
cancer subgroup and invasive breast carcinomas (107, 111). In
mice, loss of Yap in intestine results in crypt hyperplasia and over-
growth with increased Wnt/R-spondin1 hypersensitivity after
whole-body irradiation, and complete loss of YAP is associated
with high-grade, stage IV colorectal carcinoma in human patients
(73).

Similarly, the involvement of HOX genes in tumorigenesis has
also drawn increasing attention from researchers (46, 112, 113).
Alterations of expression patterns of many HOX genes are in-
volved in a large range of tumors, such as lung, breast, and ovarian
tumors (113–115). High levels of expression of HOXA1 and
HOXC13 are found in various human tumors. Overexpressed
HOXA1 was detected in oral squamous cell carcinomas, and its
expression is correlated with poor prognosis, probably as a conse-
quence of increasing tumor cell proliferation (116). Forced ex-
pression of HOXA1 in human mammary epithelial cells also
causes oncogenic transformation and aggressive tumor formation
in vivo (117). In contrast, recent studies showed that low expres-
sion of HOXA1 is associated with a poor prognosis of small-cell
lung cancer and with lower survival rates (118). In addition, both
mRNA levels and protein levels of HOXA1 are significantly cor-
related with chemotherapy response in human patients. HOXC13
has also been shown to be strongly and progressively expressed in
human melanoma and highly expressed in cells of the MCF-7
breast cancer cell line (119, 120). Our findings that Hoxa1 and
Hoxc13 are direct downstream targets of YAP in the epithelial
tissues of developing tooth and the epidermis of skin may provide
insights into understanding the molecular mechanisms of YAP in
not only organism development but also human disease onset and
progression.
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