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Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally acti-
vate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein
tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor �8 integrin that plays essential roles in
directional cell motility. �8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance
patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissoci-
ation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell’s leading edge promotes local activation
of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the
membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory
mechanism for controlling signaling events at the leading edge of directionally migrating cells.

The protein tyrosine phosphatase (PTP) family consists of
transmembrane and cytoplasmic members that catalyze the

dephosphorylation of protein substrates to regulate cell growth,
migration, and other processes in development and disease (1, 2).
PTPN12/PTP-PEST is a 120-kDa intracellular protein that con-
tains an N-terminal catalytic domain and several proline, gluta-
mate, serine, and threonine (PEST)-rich sequences in the C ter-
minus (3). PTP-PEST is broadly expressed and plays important
roles in cell adhesion and migration during development (4, 5).
Cultured PTP-PEST�/� cells show impaired motility due, in part,
to hyperactivation of the Rho GTPase Rac1 (6). Multiple protein
substrates for PTP-PEST have been identified, including Rho gua-
nine nucleotide exchange factors (GEFs) and GTPase activating
proteins (GAPs) (7), as well as adhesion proteins, such as paxillin
(8), focal adhesion kinase (3, 9), and p120 catenin (10).

Integrins are adhesion receptors for many extracellular matrix
(ECM) protein ligands (11). �8 integrin is a 100-kDa glycoprotein
that dimerizes exclusively with the 135-kDa �v integrin subunit
(12, 13). �v�8 integrin binds to RGD motifs in various ECM
protein ligands, including latent transforming growth factor �
(TGF�) proteins, which are produced by cells as inactive ECM-
bound complexes (14). During brain development, �v�8 integrin
in neural cells promotes latent TGF� activation and signaling to
control angiogenesis and formation of the blood-brain barrier
(15–20). Single nucleotide polymorphisms in the human �8 in-
tegrin (ITGB8) gene that diminish protein expression have been
identified in patients with brain vascular malformations (21).
ITGB8 expression levels are upregulated in nervous system malig-
nancies, including glioblastoma (22, 23) and peripheral nerve
sheath tumors (24).

The �8 cytoplasmic domain is divergent from that in other
integrins, suggesting novel signaling functions. For example, �8
integrin lacks NPXY motifs and other conserved amino acid se-
quences that are common to other integrins and that play key roles
in inside-out and outside-in signaling (25, 26). In the developing
kidney, �8 integrin has been shown to bind directly to Rho GDP

dissociation inhibitor 1 (RhoGDI1) (27), a 21-kDa cytoplasmic
protein that inhibits activation of Rho GTPases (28). RhoGDIs
suppress Rho GTPase signaling by sequestering GDP-bound pro-
teins in the cytoplasm and inhibiting conversion to the active
GTP-bound forms (29, 30). In migrating cells, growth factors
stimulate Src-mediated phosphorylation of RhoGDI1 on Y156,
and this phosphorylation diminishes RhoGDI1 affinities for
GDP-bound cytoplasmic Rho GTPases and promotes their acti-
vation at the membrane (31). Paradoxically, phosphorylated
RhoGDIs also translocate to the cell’s leading edge, although the
functional importance of these events has remained uncertain. In
addition, proteins that interact with phosphorylated RhoGDIs
and mediate their dephosphorylation and release from the leading
edge have remained enigmatic. Here, we report on a protein com-
plex consisting of �v�8 integrin and PTP-PEST that controls
RhoGDI1 activities by regulating its subcellular localization and
phosphorylation status. Hence, the �v�8 integrin-PTP-PEST-
RhoGDI1 multimeric protein complex serves to fine-tune Rac1
and Cdc42 signaling at the leading edge to drive directional cell
migration.
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MATERIALS AND METHODS
Isolation and manipulation of mouse astrocytes and fibroblasts. All ex-
perimental animal procedures were reviewed and approved by the Insti-
tutional Animal Care and Use Committee at the University of Texas M. D.
Anderson Cancer Center. Astrocytes were cultured from the cerebral cor-
tices of wild-type or �8�/� newborn pups and propagated on laminin-
coated dishes, as described previously (32). Given the limited growth of
primary astrocytes in culture, we immortalized cells as described previ-
ously (33). Primary astrocytes were transduced with retroviruses express-
ing E6/E7 and V12–H-Ras oncogenes, and cells were selected in growth
medium containing 0.5 �g/ml puromycin and 750 �g/ml G418. Cell mi-
gration in scratch-wound assays was imaged by time-lapse microscopy
using an Olympus IX81 inverted microscope mounted with an automated
stage, humidified chamber, and DP25 digital camera. SlideBook software
(Intelligent Imaging Innovations) was used to quantify the migration in-
dex. Migration was analyzed in separate frames, and wound closure was
defined when five migrating cells from opposite sides of the scratch
(within a �200 magnification field) made contacts within the wound
region. For analyzing integrin protein localization, �8�/� astrocytes were
infected with retroviruses expressing green fluorescent protein (GFP) or
�8-GFP, and cells were plated on laminin-coated dishes. The GFP-tagged
integrin construct was generated by ligating a GFP cDNA into the retro-
viral plasmid pQCXIP (Clontech) via NotI and BamHI restriction sites. A
cDNA encoding full-length murine �8 integrin was inserted upstream of
GFP using the NotI and AgeI restriction enzyme sites.

Control and PTP-PEST-null mouse embryonic fibroblasts (MEFs)
have been described elsewhere (6) and were provided by one of us
(Zhimin Lu). MEFs were transiently transfected with a pcDNA3 expres-
sion vector containing a constitutively active (Y527F mutant) chicken Src
cDNA originally purchased from Addgene (plasmid 13660) in combina-
tion with RhoGDI1-myc or Flag-tagged PTP-PEST. Experiments were
performed in the absence of pervanadate.

Immunoprecipitation, immunoblotting, and antibodies. Cells were
surface biotinylated in phosphate-buffered saline (PBS) containing 0.1
mg/ml normal human serum-biotin (Pierce Chemicals, Inc.), rinsed with
Tris-buffered saline, and lysed in radioimmunoprecipitation assay
(RIPA) buffer (10 mM Tris, pH 7.4, 1% NP-40, 0.5% deoxycholate, 0.1%
SDS, 150 mM NaCl, 1 mM EDTA) with protease and phosphatase inhib-
itors (Roche). Protein concentrations were determined using a bicin-
choninic acid (BCA) assay kit (Thermo Scientific). Membranes were
probed with streptavidin-horseradish peroxidase (HRP) and chemilumi-
nescent reagents (Amersham). The following antibodies were purchased:
rabbit anti-phospho-Src (Y416), rabbit anti-phospho-Src (Y527), mouse
anti-Src, rabbit antidoublecortin, rabbit anti-Erk1/2, mouse anti-PTP-
PEST, and rabbit anti-Cdc42 (Cell Signaling Technology); rabbit anti-
RhoGDI and mouse anti-phosphotyrosine pY99 (Santa Cruz Biotechnol-
ogy); mouse anti-myc and anti-V5 antibodies (Invitrogen); mouse
anti-Flag (M2) antibody and phalloidin-tetramethyl rhodamine isocya-
nate (Sigma); rabbit and mouse anti-GFP antibodies (Abcam); and mouse
anti-Rac1 and mouse anti-N-cadherin antibodies (BD Bioscience). The
antibody recognizing phosphoserines 198 and 203 in mouse Pak1 has
been described previously (34). HRP- or Alexa Fluor-conjugated second-
ary antibodies were purchased from Jackson ImmunoResearch. Details
about the anti-�8 and anti-�v integrin antibodies used for immunopre-
cipitation and immunoblotting have been reported previously (17, 35).

Generation of GST fusion proteins and deletion constructs. A cDNA
encoding the entire 67-amino-acid sequence of the human �8 integrin
cytoplasmic tail (�8cyto) was inserted in the pGEX-6P-1 bacterial expres-
sion vector. Alternatively, pGEX-6P-1 vectors engineered to express dif-
ferent PTP-PEST catalytic domain proteins (wild-type or C231S or
D199A mutant proteins) were used to transform BL21(DE3) bacteria.
Cultures in log-phase growth were treated with IPTG (isopropyl-�-D-
thiogalactopyranoside; 1 mM), and glutathione S-transferase (GST)-
tagged proteins were purified from detergent-soluble lysates using gluta-
thione-agarose (Pierce). The RhoGDI1 C-terminal domain (CTD)

construct was generated by amplifying cDNA sequences encoding amino
acids 74 to 204 of human RhoGDI1 and subcloning the fragment into the
XhoI/BamHI sites of pcDNA3.1-Myc. The cDNA sequences encoding the
N-terminal domain (NTD; amino acids 1 to 300) or the CTD (amino
acids 301 to 780) of human PTP-PEST were amplified by PCR using
full-length pcDNA3-Flag-PTP-PEST as a template. Fragments were sub-
cloned into the BamHI/NotI sites of pcDNA3-Flag. GST-PTP-PEST cat-
alytic domain constructs (wild-type and C231S mutant constructs) were
provided by Sarita Sastry and have been described elsewhere (10). The
PTP-PEST D199A mutation was generated by QuikChange site-directed
mutagenesis (Agilent) using the wild-type construct as a template. The
mutagenesis primers used to generate the D199A mutation were (5=-GT
TTCATTATGTGAACTGGCCAGCCCATGATGTTCCTTCATCAT
TTG-3= (forward) and 5=-CAAATGATGAAGGAACATCATGGGCTGG
CCAGTTCACATAATGAAAC-3= (reverse). The D199A point mutation
was confirmed by DNA sequencing (Lone Star Labs).

Subcellular fractionation and phosphatase assays. Cells were lysed in
fractionation buffer (10 mM Tris, pH 7.5, 5 mM MgCl2, 1 mM dithiothre-
itol, 0.25 M sucrose) containing phosphatase and proteinase inhibitor
cocktails, and membrane/cytosol fractions were isolated by ultracentrifu-
gation. To assay PTP-PEST activities in vitro, 1 �g GST-RhoGDI1 protein
(Cytoskeleton, Inc.) was phosphorylated in vitro by mixing with 10 units
purified p60-Src (Millipore) and kinase buffer containing 100 �M ATP
for 60 min at 30°C. GST-RhoGDI1 was fractionated using glutathione-
agarose and then incubated with various amounts of the PTP-PEST cata-
lytic domain (AnaSpec) for 2 h at 30°C. Proteins were resolved by SDS-
PAGE and immunoblotted for phosphorylated tyrosine or GST. Controls
were p60-Src protein alone or GST-RhoGDI1 alone in the absence of
PTP-PEST.

FRET and TIRF imaging. The Raichu-Cdc42 and Raichu-Rac1 intra-
molecular fluorescence resonance energy transfer (FRET) biosensors have
been described previously (36). Mouse astrocytes were cultured on fi-
bronectin-coated (10 �g/ml) glass-bottom MatTek dishes in low-glucose
Dulbecco modified Eagle medium. Cells were transfected with plasmids
carrying Cdc42 or Rac1 FRET probes. After 24 h the cells were washed and
FRET imaging was performed using a Zeiss Stallion microscope config-
ured with cyan fluorescent protein (CFP)-yellow fluorescent protein
(YFP) FRET module using a 63� (numerical aperture, 1.40) oil objective.
Time-lapse images (CFP, FRET, and YFP) were taken every 1 min for 30 to
60 min. Images were analyzed using EMBL ImageJ software. A binary
mask was derived from the YFP image and multiplied by the CFP and
FRET images separately. Subsequently, FRET images were divided by CFP
images to obtain FRET/CFP ratios. A rainbow 2-color lookup table was
applied, and brightness and contrast were adjusted to display the ratio of
FRET images in an intensity-modulated manner. For quantitative analy-
sis, YFP-masked FRET and CFP images were thresholded to measure the
pixel intensity of each individual image in the stack, and FRET/CFP in-
tensity ratios were calculated as previously reported (37). Line scans were
generated using ImageJ to visualize the gradient of FRET activity across
the cell as described previously (38, 39).

To visualize Cdc42 and Rac1 activation at the plasma membrane by
total internal-reflection fluorescence (TIRF), cells were transfected with
the GFP-wGBD (where wGBD is the Cdc42-binding domain of N-WASP)
(40) or pYpet-Pak binding domain (pYpet-PBD) (41) reporter, respec-
tively. Imaging was performed with a TIRF 3 microscope (Carl Zeiss Mi-
croimaging, Thornwood, NY) equipped a with Photometrics Quant EM
512SC electron-multiplying charge-coupled device. Time-lapse images
were obtained every 15 s for 30 to 60 min using a Plan-Apochromat 100�
(numerical aperture, 1.46) oil objective lens. In both FRET and TIRF
experiments, time-lapse series from 3 to 5 individual cells were obtained
in single replicates and experiments were repeated three times. FRET and
TIRF quantitative data were analyzed by one-way analysis of variance
(Minitab 16) and displayed using box plot representations. Differences
were considered significant at P values of �0.05.
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Experimental mice. �8flox/flox and �8�/� mice were purchased from
the Mutant Mouse Regional Resource Center. Nestin-Cre (N-Cre) trans-
genic mice (42) were purchased from The Jackson Laboratory. To gener-
ate control and conditional knockout mice, �8flox/flox females were bred
with hemizygous nestin-Cre (N-Cre/�) transgenic males. The genotypes
of the F1 progeny were determined by PCR-based amplification of
genomic DNA isolated from ear snips (20). N-Cre/�; �8flox/� males were
then crossed with �8flox/flox females. Controls (N-Cre/�; �8flox/� mice)
were heterozygous null for �8 integrin gene expression in cells that ex-
press Cre, whereas mutant littermates (N-Cre/�; �8flox/flox mice) were
homozygous null for �8 integrin gene expression in Cre-expressing cells.
Tgfbr2flox/flox mice (43) were crossed to nestin-Cre transgenic mice as
described previously (19). Bacterial artificial chromosome (BAC) dou-
blecortin-GFP (DCX-GFP) mice (44) were purchased from the Mutant
Mouse Regional Resource Center.

SVZ isolation and migration assays. Mouse subventricular zone
(SVZ) regions were dissected as described previously (35). Dasatinib (1
�M; Bristol-Myers), PTP-PEST inhibitor (10 �M; EMD Millipore), or
NSC23766 (50 to 100 �M; R&D Systems) was added to Matrigel as well as
culture medium for the entire culture period. Each explant was imaged

under an inverted light microscope (Olympus), and the mean migration
distance was calculated by measuring the length of the neuroblast chains
from the edge of each explant using ImageJ software. At least 5 individual
explants were analyzed in each experimental group. For immunoblotting,
cell lysates were prepared in RIPA buffer, and protein concentrations were
determined using the BCA assay (Thermo Scientific). Alternatively, after
cardiac perfusion with 4% paraformaldehyde–PBS, brains were removed
and SVZ/rostral migratory stream (RMS) regions were dissected and
postfixed. Tissue slices (100 to 200 �m) were prepared with a vibratome,
and immunofluorescence was imaged with a Zeiss LSM 510 confocal mi-
croscope. For in vitro scratch-wound assays, Smartpool small interfering
RNAs (siRNAs; Thermo Scientific) were used to silence PTP-PEST.

RESULTS
�v�8 integrin promotes directional cell migration. To analyze
the roles for �8 integrin-dependent signal transduction in direc-
tional cell motility, we cultured brain astrocytes from wild-type
and �8�/� mice. Biotinylation and immunoprecipitation experi-
ments revealed that wild-type astrocytes express robust levels of

FIG 1 �8 integrin promotes directional cell migration in vitro. (A) �v�8 integrin is expressed in primary astrocytes. Biotinylation and immunoprecipitation (Ip)
with an anti-�8 integrin antibody revealed cell surface integrin protein expression in wild-type (�/�) cells and a complete absence of �v�8 integrin dimers in
�8�/� cells. Inputs show that �v integrin is expressed in the absence of �8 gene expression. (B) Schematic showing an engineered 125-kDa protein comprised of
GFP fused to the C terminus of mouse �8 integrin which dimerizes with the 135-kDa �v integrin subunit. (C) Astrocytes expressing GFP or �8-GFP were cell
surface biotinylated and immunoprecipitated with control IgG antibodies or anti-GFP antibodies and then labeled with streptavidin-HRP. Note that �8-GFP
forms cell surface complexes with �v integrin (left). Astrocytes expressing GFP or �8-GFP were lysed and immunoprecipitated with anti-GFP and immuno-
blotted with anti-�v integrin (right). (D) Confluent monolayers of astrocytes infected with lentiviruses expressing �8-GFP protein were scratched and then
immunolabeled with antipaxillin (left) and anti-GFP (middle), revealing that �8-GFP is enriched at the leading edge of migrating cells (overlay, right). Arrows
in the right panel indicate the direction of migration. (E) Confluent monolayers of wild-type and �8�/� astrocytes were scratched, and directional cell migration
was imaged over 36 h. (F) Quantitation of integrin-dependent migration defects in scratch-wound assays.
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�v�8 integrin protein on the cell surface, whereas �v�8 integrin
heterodimers were not detected in �8�/� cells owing to itgb8 ab-
lation (Fig. 1A). Subcellular localization of �v�8 integrin protein
expression was determined by infecting �8�/� cells with a retro-
virus expressing full-length murine �8 integrin fused at the C
terminus to GFP (�8-GFP) (Fig. 1B). Cell surface expression and
dimerization of �8-GFP with endogenous �v integrin protein
were confirmed by biotinylation and immunoprecipitation

(Fig. 1C). The �v�8-GFP fusion protein was enriched at the
leading edge of migrating cells but not in paxillin-expressing
focal adhesions (Fig. 1D; see also Fig. S1A in the supplemental
material). Next, �8 integrin-dependent directional migration
was quantified in wild-type and �8�/� cells using live-cell im-
aging and scratch-wound assays (45). Integrin-dependent dif-
ferences in early stages of cell polarity were not detected (data
not shown). However, �8�/� cells displayed defects in sus-

FIG 2 �8 integrin dampens Rac1 and Cdc42 activation in live cells. (A) FRET images of wild-type (�/�) and �8�/� astrocytes expressing Raichu-Cdc42 (top)
or Raichu-Rac (bottom). The images shown were selected at particular intervals from the beginning of a time-lapse series. (B) TIRF images of wild-type and
�8�/� astrocytes expressing EGFP-wGBD (top) or pYpet (bottom), Cdc42 and Rac biosensors, respectively, that are sensitive to RhoGDIs. Note that �8�/�

astrocytes displayed increased and mislocalized activation of Cdc42 and Rac1. Quantitative analysis was based on time-lapse series collected from 3 to 5 cells of
each genotype in each of three independent experiments. Each time-lapse series consisted of 30 to 60 frames. Data are presented in box-and-whiskers diagrams,
where the bold central lines of the box plots indicate the median values, whereas the top and bottom lines indicate the 3rd and 1st quartiles, respectively. The
whiskers extend up to 1.5 times the interquartile range. Statistically significant differences between genotypes are indicated. LUT, lookup table; A.U., absorbance
units.
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tained directional migration leading to a significant delay in
wound closure (Fig. 1E and F).

�v�8 integrin dampens Rac1 and Cdc42 activation at the
leading edge. The cytoplasmic domain of �8 integrin is divergent
from that of other integrins (see Fig. S1B in the supplemental
material), suggesting signaling functions that are distinct from
those of other integrins. Members of the Rho family of small
GTPases regulate directional migration; therefore, we tested the
hypothesis that migration defects in �8 integrin-deficient cells are
linked to Rho GTPase signaling. Förster fluorescent resonance
energy transfer (FRET) biosensors were used to quantify spatio-
temporal patterns of integrin-dependent Cdc42 and Rac1 activa-
tion. Raichu-Cdc42 and Raichu-Rac1 consist of truncated Rho
GTPase sequences fused to the Cdc42- and Rac-interactive bind-
ing domain (CRIB) of Pak1 flanked by YFP at the N terminus and
CFP at the C terminus (36). Intramolecular interactions between
endogenous GTP-bound Cdc42 and Rac1 and the CRIB domain
juxtapose YFP and CFP, leading to FRET from CFP to YFP. In
wild-type cells we detected spatially restricted patterns of active
Cdc42 and Rac1 predominantly at membrane ruffles; in contrast,
active Cdc42 and Rac1 distributed throughout the cell membrane,

resulting in elevated total FRET in �8�/� cells (Fig. 2A; see also
Movies S1 and S2 in the supplemental material). Raichu FRET
biosensors are constitutively targeted to the membrane, and their
activation state reflects the local balance between GEFs and GAPs;
however, these probes are insensitive to RhoGDIs. Therefore, we
visualized endogenous Cdc42 and Rac1 activation by TIRF mi-
croscopy in astrocytes expressing wGBD-enhanced GFP (EGFP)
(40) and pYpet-PBD (41), respectively. These probes consist of
the Cdc42-binding domain of WASP fused to EGFP (wGBD-
EGFP) and the Rac-binding domain of Pak fused to the YFP vari-
ant (pYpet-PBD). As shown in Fig. 2B and Movies S3 and S4 in the
supplemental material, activation of Cdc42 and Rac1 was signifi-
cantly increased in �8�/� cells. Furthermore, the elevated Rac1
and Cdc42 signaling in �8�/� cells occurred primarily at the
membrane (see Fig. S2 in the supplemental material).

�v�8 integrin binds to RhoGDI1 with phosphorylated Y156
(RhoGDI1pY156). Our data that revealed that �8 integrin damp-
ens Cdc42 and Rac1 signaling suggested a mechanism involving
RhoGDI suppressive functions. Indeed, we detected interactions
between �8 integrin and RhoGDI1 by immunoprecipitation and
GST pulldown assays (Fig. 3A and B). RhoGDI1 protein pools that

FIG 3 �8 integrin binds preferentially to RhoGDI1pY156 to regulate Rac1 and Cdc42 activation at the leading edge. (A, B) Myc-tagged RhoGDI1 protein binds
to �8 integrin in wild-type astrocytes but not �8�/� cells, as revealed by coimmunoprecipitation (A) or pulldown assays using a recombinant protein consisting
of GST fused to the cytoplasmic domain of �8 integrin (B). (C) Astrocytes were transfected with myc-tagged RhoGDI1 or Y156 point mutant constructs, and
interactions with �8 integrin were analyzed by coimmunoprecipitation. Note that the mutant with the Y156E mutation showed enhanced binding to �8 integrin.
A darker exposure would reveal relatively weak interactions with wild-type (WT) RhoGDI1. (D) Schematic showing constructs comprised of V5-tagged �8
integrin (100 kDa), myc-tagged full-length RhoGDI1 (21 kDa), or the 13-kDa myc-tagged RhoGDI1 CTD, which contains Y156 (asterisks). (E) V5-tagged �8
integrin interacts with full-length RhoGDI1 or the RhoGDI1 CTD, as revealed by coimmunoprecipitation. (F) In comparison to full-length RhoGDI1, the CTD
of RhoGDI1 is hyperphosphorylated on tyrosine and binds weakly to Rac1. FL, Flag tag.
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are not complexed with Rho GTPases can be phosphorylated by
Src on Y156, leading to RhoGDI1 recruitment to the leading edge
(31). Interactions between �8 integrin and RhoGDI1 were tested
with the phosphomimetic mutant, the RhoGDI1 protein with a
Y156E mutation (RhoGDI1Y156E). In comparison to myc-tagged
wild-type RhoGDI1 protein or the RhoGDI1 protein with a
Y156F mutation (RhoGDI1Y156F), enhanced binding between
�8 integrin and RhoGDI1Y156E was detected (Fig. 3C). The
RhoGDI1Y156E variant also showed reduced binding to Rac1 and
Cdc42 (Fig. 3C). RhoGDIs are comprised of N-terminal and C-
terminal domains that control Rho extraction from the mem-
brane and sequestration in the cytoplasm. Structural studies reveal
that RhoGDIs are targeted to the membrane via their CTD,
whereas the N-terminal domain mediates Rho extraction from the
membrane and sequestration in the cytoplasm (46). To determine
which domains of RhoGDI1 bind to the �8 integrin cytoplasmic
tail, myc-tagged RhoGDI1 deletion mutants were generated (Fig.
3D). The N-terminal portion of RhoGDI1 containing amino acids
1 to 65 was not expressed in cells (data not shown), consistent with
a prior report showing that this isolated region is susceptible to
protease-mediated degradation (46). In contrast, the isolated
CTD of RhoGDI1, which contains Y156, showed enhanced bind-
ing to �8 integrin (Fig. 3E). In comparison to full-length
RhoGDI1, the isolated CTD was heavily tyrosine phosphorylated
and showed reduced binding to Rac1 (Fig. 3F) and Cdc42 (data
not shown).

�v�8 integrin promotes RhoGDI1pY156 release from the
membrane. To test whether �v�8 integrin is necessary for recruit-

ment of phosphorylated RhoGDI1 to the membrane, RhoGDI1
subcellular localization was quantified in wild-type and �8�/�

cells. RhoGDI1 proteins (Y156E and CTD) were present in
similar quantities in membrane fractions from wild-type and
�8�/� cells, revealing that �v�8 integrin is not essential for
recruitment of tyrosine-phosphorylated RhoGDI1 (Fig. 4A and
B). RhoGDI1Y156E and CTD protein variants were enriched at
the astrocyte membrane, as revealed by immunofluorescence (Fig.
4C). Next, integrin-dependent levels of endogenous RhoGDI1
and other signaling effectors were analyzed in cytosolic and mem-
brane fractions using phospho-specific antibodies (Fig. 4D). In
comparison to control cells, elevated levels of RhoGDI1 and Rac1
proteins were detected in �8�/� membrane fractions but not in
cytoplasmic fractions (Fig. 4D) or whole-cell lysates (data not
shown). Densitometry revealed that the RhoGDI1 protein showed
3-fold enrichment in membranes fractionated from �8�/� cells
(Fig. 4E). Integrin-dependent levels of active Src (phosphorylated
Y416 [pY416]) or inactive Src (phosphorylated Y527 [pY527])
were not detected in membrane fractions. Collectively, these re-
sults show that �v�8 integrin is not essential for recruitment of
tyrosine-phosphorylated RhoGDI1 to the membrane but is nec-
essary for the membrane release of RhoGDI1, likely via dynamic
control of dephosphorylation via phosphatase activities.

�8 integrin forms a complex with PTP-PEST to regulate
RhoGDI1 dephosphorylation. PTP-PEST�/� fibroblasts (MEFs)
display hyperactive levels of Rac1, leading to impaired motility (6,
7). Therefore, we analyzed the roles for PTP-PEST in �v�8 integ-
rin-mediated regulation of RhoGDI1 functions. Protein interac-

FIG 4 �8 integrin is dispensable for RhoGDI1 membrane recruitment but is essential for RhoGDI1 membrane release. (A) Membrane fractions from wild-type
and �8�/� astrocytes expressing myc-tagged wild-type RhoGDI1 or Y156E or Y156F point mutants reveal that RhoGDI1Y156E localizes to membranes in an
integrin-independent manner. (B) Cells were mock transfected (M) or transfected with plasmids expressing the CTD of RhoGDI1. Note the integrin-indepen-
dent enrichment of the CTD at the plasma membrane. (C) Immunofluorescence staining of astrocytes expressing myc-tagged wild-type RhoGDI1 (left), the
RhoGDI1 CTD truncation (center), or the RhoGDI1Y156E point mutation (right). Note that the Y156E and CTD mutant proteins are enriched at the cell
membrane (arrows). (D) Membrane and cytosol fractions from wild-type or �8�/� astrocytes were immunoblotted for various signaling proteins, revealing
elevated levels of RhoGDI1 and Rac1 proteins in �8�/� membranes. Integrin-dependent differences in total Src (tSrc) or phosphorylated Src variants were not
detected. In these experiments, N-cadherin and Erk1/2 are controls showing exclusive expression in the membrane and cytosol, respectively. Membrane and
cytosol fractions were analyzed in at least three different experiments. (E) Quantitation of RhoGDI1 protein levels in membrane (Memb.) and cytosol fractions
from wild-type or �8�/� astrocytes (data are for immunoblots from three different lysates). Note that RhoGDI1 protein levels are elevated in �8�/� membrane
fractions but not in cytosolic fractions. Error bars indicate SDs. *, P � 0.05.
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tions with �v�8 integrin were tested using full-length PTP-PEST
or deletion constructs consisting of the isolated N terminus con-
taining the enzymatic domain (NTD) or the PEST-rich CTD (Fig.
5A). Full-length PTP-PEST and the isolated NTD bound to the �8
integrin cytoplasmic tail (Fig. 5B). Coimmunoprecipitation ex-
periments also showed interactions between the NTD and V5-
tagged �8 integrin. Interestingly, in comparison to full-length
PTP-PEST, the isolated NTD showed enhanced binding to �8
integrin (Fig. 5C), suggesting that the PTP-PEST CTD may nega-
tively regulate NTD interactions with �8 integrin. To determine if
�8 integrin is necessary for recruiting PTP-PEST to the mem-
brane, we fractionated the membranes and cytosol from control
and �8�/� astrocytes. Membrane fractions from �8�/� cells con-
tained significantly lower levels of PTP-PEST protein (Fig. 5D).

We next performed substrate-trapping experiments using
wild-type or catalytically inactive PTP-PEST constructs. As shown
in Fig. 6A, the GST-tagged D199A PTP-PEST variant but not
wild-type PTP-PEST or the C231S variant interacted with the hy-
perphosphorylated RhoGDI1 CTD. Prior studies have shown that
the D199A mutant shows higher affinities for phosphorylated
substrates (47), which may account for its preferential binding to
RhoGDI1 CTD. To further link PTP-PEST enzymatic activities to
the RhoGDI1 phosphorylation cycle, we used recombinant GST-
RhoGDI1 protein that was phosphorylated with purified Src and
performed in vitro phosphatase assays using the catalytic domain
of PTP-PEST. As shown in Fig. 6B, PTP-PEST catalyzed the ty-
rosine dephosphorylation of RhoGDI1. PTP-PEST protein is ex-
pressed at the leading edge of migrating astrocytes (Fig. 6C), and
silencing its gene expression in astrocytes resulted in increased

Rac1/Cdc42 signaling, as revealed by Pak hyperphosphorylation
on serines 198 and 203 (Fig. 6D). Next, signaling in heterozygous
control and PTP-PEST�/� MEFs was analyzed using an antibody
recognizing phosphorylated Pak1. PTP-PEST�/� cells contained
elevated levels of phosphorylated Pak protein (Fig. 6E) and
showed defective cell migration in scratch-wound assays (see Fig.
S3 in the supplemental material), findings consistent with previ-
ous reports (6, 48). Analysis of cells expressing constitutively
activate Src (Y527F mutant cells) revealed elevated levels of
tyrosine-phosphorylated RhoGDI1 protein in PTP-PEST-null
MEFs (Fig. 6F). Forced expression of Flag-tagged PTP-PEST in
null MEFs resulted in diminished levels of tyrosine-phosphor-
ylated RhoGDI1 (Fig. 6G).

Links between �8 integrin, PTP-PEST, and RhoGDI1 phos-
phorylation were also analyzed in explants taken from the mouse
brain SVZ. Astrocyte-like progenitor cells in the SVZ give rise to
neuroblasts that migrate directionally to the olfactory bulbs via
the RMS (49), and SVZ tissue explants show robust migration ex
vivo (see Fig. S4 in the supplemental material). Neuroblasts sorted
from the SVZ express �8 integrin, and integrin protein was de-
tected mainly at the leading edge of migrating cells (see Fig. S8 in
the supplemental material). SVZ explants were dissected from
wild-type and �8�/� mice, and integrin-dependent cell migration
was quantified. In comparison to control SVZ explants, �8�/�

explants showed obvious defects in sustained migration (Fig. 7A;
see also Fig. S4 in the supplemental material). SVZ regions isolated
from nestin-Cre; �vflox/flox and nestin-Cre; �8flox/flox conditional
mutant mice also displayed obvious migration defects (see Fig. S5
in the supplemental material). To further link cell migration de-

FIG 5 The �8 integrin cytoplasmic tail interacts with the PTP-PEST N-terminal domain. (A) Schematic diagram showing Flag-tagged full-length 120-kDa
PTP-PEST (PTP-PEST FL) or truncated variants containing the 90-kDa CTD or the 30-kDa NTD. (B) Cell lysates containing Flag-tagged PTP-PEST were
incubated with GST or GST-�8cyto. (Left) Anti-Flag immunoblotting reveals interactions between �8 integrin and PTP-PEST. (Middle and right) GST or
GST-�8cyto proteins were tested for interactions with Flag-tagged PTP-PEST (FL) or the CTD and NTD mutants. Note that GST-�8cyto shows preferential
binding with the isolated NTD. (C) (Left) Flag-tagged PTP-PEST and V5-tagged �8 integrin (�8V5) coimmunoprecipitate from transfected cell lysates. (Middle
and right) Cotransfection analysis reveals that V5-tagged �8 integrin binds preferentially to the isolated NTD. (D) Endogenous PTP-PEST protein levels were
analyzed in membrane and cytosol fractions from wild-type or �8�/� astrocytes. Note that PTP-PEST membrane localization is integrin dependent. All
immunoprecipitation and GST pulldown experiments were performed at least three different times.
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fects to the RhoGDI1 phosphorylation cycle, SVZ explants were
treated with dasatinib, a small-molecule kinase inhibitor that
shows specificity for Src family kinases (50). Dasatinib signifi-
cantly blocked cell migration from SVZ explants (Fig. 7B), and
this correlated with reduced levels of tyrosine-phosphorylated Src
and RhoGDI1 (Fig. 7C; see also Fig. S6 in the supplemental mate-
rial). SVZ explants were also treated with a synthetic molecule that
blocks the enzymatic activities of PTP-PEST (51). Pharmacologic
inhibition of PTP-PEST resulted in the blockade of cell migration
from SVZ explants (see Fig. S6 in the supplemental material).
We attempted to rescue �8 integrin-dependent neuroblast mi-
gration defects using NSC23766, a synthetic inhibitor of the
Rac1 GEF Tiam1. However, treatment of �8�/� SVZ explants
with NSC23766 did not restore cell migration (see Fig. S7 in the
supplemental material), highlighting that a precise balance of
Rac1 and Cdc42 activation is necessary for control of motility.

Given the importance of �8 integrin control of TGF� activa-
tion and signaling in brain vascular development (52), we next
analyzed roles for TGF� signaling in neural cell migration using
an anti-TGF� neutralizing antibody that blocks canonical TGF�
receptor signaling (Fig. 7D). However, inhibition of TGF� signal-
ing did not inhibit cell migration from the SVZ in ex vivo assays
(Fig. 7E). Conditional ablation of the Tgfbr2flox/flox gene in neural
cells via nestin-Cre did not impact neuroblast migration from the
SVZ to the olfactory bulbs (see Fig. S9 in the supplemental mate-
rial). Furthermore, inducible deletion ablation of Tgfbr2 in endo-

thelial cells, which results in brain vascular pathologies (15), did
not cause neuroblast migration defects in the RMS (H. S. Lee and
J. H. McCarty, unpublished data). Collectively, these data support
our model in which the RhoGDI1 phosphorylation cycle regu-
lated by Src and the �v�8 integrin-PTP-PEST complex is essential
for control of cell migration but indicate that these events occur
via TGF�-independent adhesion and signaling.

�8 integrin is essential for directional cell migration in vivo.
Next, �8 integrin control of directional cell migration was ana-
lyzed in vivo. Neuroblast migration defects were apparent in the
�8�/� RMS, as revealed by anti-Dcx immunofluorescence (Fig.
8A and B). �8�/� cells failed to form well-organized chains and
often dispersed as individual cells, resulting in a disorganized RMS
cytoarchitecture (Fig. 8C), with fewer Dcx-positive cells being
found in the olfactory bulbs (Fig. 8D). Prior reports have shown
that blood vessels guide migrating neuroblasts (53, 54); however,
cell migration defects in �8�/� mice were not due to obvious
blood vessel patterning defects (see Fig. S8A and B in the supple-
mental material). A nestin-Cre transgene (42), which is active in
RMS neuroblasts (see Fig. S8D in the supplemental material), was
used to conditionally ablate �8flox/flox and �vflox/flox genes. Nestin-
Cre; �8flox/flox and nestin-Cre; �vflox/flox conditional knockouts
developed cell migration defects in the RMS similar to whole-
body �8�/� mice (see Fig. S5 in the supplemental material). Im-
munoblotting of SVZ/RMS lysates prepared from �8�/� mice
(n 	 4 per genotype) revealed increased Pak phosphorylation

FIG 6 Integrin-bound PTP-PEST dephosphorylates RhoGDI1. (A) Substrate trapping experiments with the wild-type PTP-PEST catalytic domain or catalyt-
ically inactive point mutants reveal binding between the hyperphosphorylated RhoGDI1 CTD and the D199A mutant construct. (B) The PTP-PEST catalytic
domain promotes dephosphorylation of the Src-phosphorylated RhoGDI1 protein in vitro. The GST-RhoGDI1 protein was tyrosine phosphorylated in vitro by
mixing with purified Src and ATP. GST-RhoGDI1 complexes were then incubated with various amounts of the PTP-PEST catalytic domain. Glutathione-agarose
was used to fractionate GST-RhoGDI1, and proteins were immunoblotted with anti-GST or anti-pY antibodies. Controls were Src alone or GST-RhoGDI1 alone
in the absence of PTP-PEST. (C) Mouse astrocytes transfected with a Flag-tagged PTP-PEST construct show PTP-PEST protein enrichment at the membrane.
DAPI, 4=,6-diamidino-2-phenylindole. (D) Silencing of PTP-PEST gene expression in astrocytes using siRNAs leads to increased levels of phosphorylated Pak,
indicating hyperactive Rac1/Cdc42 signaling. Also note the decrease in �8 integrin protein levels after PTP-PEST silencing. All immunoprecipitation and GST
pulldown experiments were performed at least three different times. Nontargeting (NT) si and PTP si, siRNAs specific for NT and PTP. (E) MEFs genetically null
for PTP-PEST show elevated levels of pPak proteins and express reduced levels of �8 integrin protein. (F) The levels of tyrosine-phosphorylated RhoGDI1 in
control or PTP-PEST�/� MEFs expressing RhoGDI1-myc and constitutively active Src (Y527F mutant cells) were analyzed. Note that cells lacking PTP-PEST
show elevated levels of tyrosine-phosphorylated RhoGDI1. (G) PTP-PEST�/� MEFs stably expressing constitutively active Src (Y527F mutant cells) show
elevated levels of tyrosine-phosphorylated RhoGDI1 protein. These levels are reduced upon forced expression of PTP-PEST.
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(Fig. 8E and F), indicating hyperactive Rac1/Cdc42 signaling. Im-
munofluorescence staining of fixed brain sections revealed
RhoGDI1 protein expression in neuroblasts in the RMS (Fig. 8G).
Collectively, these in vivo and in vitro data reveal that regulation of
the RhoGDI1 phosphorylation cycle is essential for control of di-
rectional cell motility (Fig. 8H).

DISCUSSION

Here, we have characterized an adhesion and signaling unit com-
prised of PTP-PEST, �8 integrin, and RhoGDI1 that controls the
spatiotemporal patterns of Rac1/Cdc42 activation in directionally
migrating cells. Our experiments reveal the following novel find-
ings: (i) �v�8 integrin localizes to the cell leading edge and is
essential for directional motility in vitro (Fig. 1); (ii) FRET imag-
ing reveals that �8 integrin dampens Rac1 and Cdc42 activation at
the leading edge, with �8�/� cells displaying elevated levels and
mislocalized patterns of GTP-bound Rac1 and Cdc42 (Fig. 2); (iii)
�8 integrin binds with a high affinity to the CTD of RhoGDI1 that
is phosphorylated on Y156 by Src (Fig. 3 and 4); (iv) interactions
with �8 integrin at the cell leading edge promote RhoGDI1 de-
phosphorylation via integrin-bound PTP-PEST, resulting in
RhoGDI1 release from the membrane (Fig. 5 and 6); (v) perturb-
ing the RhoGDI1 phosphorylation cycle by genetic ablation of �8
integrin or pharmacologic inhibition of PTP-PEST or Src leads to
cell migration defects ex vivo (Fig. 7; see also Fig. S6 in the supple-
mental material); and (vi) mice genetically null for �8 integrin
display neuroblast migration defects in vivo due, in part, to hyper-
activation of Rac1 and Cdc42 (Fig. 8). Collectively, these data
identify the �v�8 integrin-PTP-PEST protein complex to be a
regulatory switch that spatiotemporally controls RhoGDI func-
tions at the leading edge.

A prior study has shown that RGD-containing peptides inhibit
astrocyte polarity and directional migration, although the exact
integrin heterodimers and ECM protein ligands involved in these
events were not identified (55). While �8 integrin is essential for
directional migration, we have not found �8 integrin-dependent
defects in astrocyte polarity (data not shown), revealing that adhe-
sion/signaling pathways controlled by other RGD-binding integrins
are involved in cell polarization. Interestingly, we have found that
astrocytes lacking all �v-containing integrins display a complete fail-
ure to polarize and migrate (data not shown). �
�3 integrin acti-
vates Rac1 by facilitating interactions with GEFs at the leading edge,
with RhoGDIs suppressing Rac1 membrane localization (56, 57). On
the basis of these data, it is enticing to speculate that the �v�8 integ-
rin-PTP-PEST complex cross talks with the�v�3 integrin pathway to
cooperatively regulate subcellular localization of RhoGDI and facili-
tate spatiotemporal Rac1 interactions with GEFs.

Given the importance of integrin activation of latent TGF�s in
brain development (58), we assumed that integrin control of cell
migration would be dependent on TGF� signaling. However, our
in vitro and in vivo data revealed apparently normal cell migration
following TGF� blockade and TGF� receptor gene deletion (Fig.
7; see also Fig. S9 in the supplemental material). Therefore, ECM
protein ligands other than latent TGF�s are involved in integrin
signaling via PTP-PEST, RhoGDIs, and probably other effectors.
Interestingly, the extracellular region of �8 integrin lacks a dead-
bolt domain that in other integrins suppresses adhesion until sig-
naling proteins induce inside-out structural changes that activate
ECM adhesion (59). Hence, �v�8 integrin may be constitutively
active and signal via PTP-PEST, RhoGDI1, and other effectors
possibly via ECM-independent mechanisms.

FIG 7 Inhibition of �8 integrin gene expression or RhoGDI1 tyrosine phosphorylation blocks cell migration in tissue explants. (A) SVZ explants from wild-type
or �8�/� mice were assayed for migration in a three-dimensional Matrigel. Note that �8�/� explants show statistically significant defects in neural cell migration.
(B) Brain SVZ explants from wild-type mice were assayed for migration in a three-dimensional Matrigel with dasatinib (1 �M). Src family kinase inhibition
results in statistically significant cell migration defects. DMSO, dimethyl sulfoxide. *, P � 0.01. (C) Astrocytes were treated with various doses of dasatinib and
the phosphatase inhibitor pervanadate. Levels of Src autophosphorylation (pY416) and RhoGDI1pY were then analyzed by immunoblotting. (D) Neurospheres
were cultured from the SVZ and treated with TGF�1 (2 ng/ml) in the presence of control IgGs and anti-TGF� antibodies. Note that TGF� neutralization blocks
Smad activation, as determined by anti-phospho-Smad3 immunoblotting. tSmad3, total pSmad3; pSmad3, phosphorylated Smad3. (E) SVZ explants were
embedded in Matrigel in the presence of 10 �g/ml control IgG (top) or anti-TGF� neutralizing antibody (bottom). There were no statistically significant
differences in cell migration following TGF� inhibition.
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Growth factors, including epidermal growth factor (EGF) and
platelet-derived growth factor, activate Src to promote tyrosine
phosphorylation of RhoGDI1 (31). �8 integrin is dispensable for
Src-mediated RhoGDI1 phosphorylation, and we have not de-
tected protein complexes between �8 integrin and Src (data not

shown). We propose that the �v�8 integrin-PTP-PEST protein
complex is a hub for modulating signaling by Rac1/Cdc42 and
other promigratory effectors at the leading edge. RhoGDI1 is a key
intracellular substrate for PTP-PEST; however, additional pro-
teins and possibly other Rho effectors are likely dephosphorylated

FIG 8 �8 integrin promotes directional cell migration in vivo. (A) Representative coronal sections through the RMS of wild-type and �8�/� mice stained with
anti-Dcx and anti-glial fibrillary acidic protein (anti-GFAP) reveal neuroblasts and astrocytes, respectively, in the RMS. Note the neural cell migration defects in
�8�/� mice. (B) Representative sagittal sections through the RMS of wild-type and �8�/� mice labeled with anti-Dcx and anti-GFAP antibodies. Note the
abnormal clusters of neuroblasts in �8�/� brain sections. (C, D) Quantitation of integrin-dependent neuroblast migration defects in the RMS (C) and olfactory
bulbs (OBs) (D). (E) Tissue lysates were prepared from the SVZ/RMS of wild-type and �8�/� mice and immunoblotted with anti-phospho-Pak, a readout for
Rac1/Cdc42 activation. tPak, total Pak; pPak, phosphorylated Pak. (F) Quantitation of integrin-dependent phospho-Pak protein levels. (G) RhoGDI1 protein is
expressed in neuroblasts in the mouse rostral migratory stream, as revealed by colocalization with polysialylated neural cell adhesion molecule (PSA-NCAM).
The right image is a higher-magnification image of the white boxed area. Arrows indicate neuroblasts expressing RhoGDI1 and PSA-NCAM. (H) In migrating
cells, Src phosphorylation of RhoGDI1 on Y156 leads to deposition of Rac1/Cdc42 proteins at the leading edge, enabling their activation. RhoGDI1pY156 also
translocates to the leading edge, where it is coupled to PTP-PEST via interactions with �v�8 integrin, which facilitates RhoGDI1 dephosphorylation, release from
the membrane, and subsequent suppression of Rac1/Cdc42 signaling in the cytoplasm. Collectively, these events control the spatiotemporal patterns of
Rac1/Cdc42 activation to promote directional cell motility.
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by integrin-bound PTP-PEST to promote motility. For example,
PTP-PEST dephosphorylates and inactivates the Rho GEF Vav2
and the Rho GAP p190 (7) as well as the p120 catenin, which may
have RhoGDI-like functions (10). Interestingly, in astrocytes and
MEFs that express diminished levels of PTP-PEST (Fig. 6), we
detected decreased �8 integrin protein, suggesting that PTP-PEST
may regulate integrin protein stability and/or gene expression.
PTP-PEST is reported to dephosphorylate epidermal growth fac-
tor receptor (EGFR) to suppress kinase activities (60). Hence, it is
possible that integrin-bound PTP-PEST is a component of a sig-
naling loop that dampens EGFR-induced Src activities. EGFR
suppresses neuroblast migration in the SVZ (61), but how this
suppression is relieved in migrating cells remains unknown. In-
terestingly, �8�/� neuroblasts cluster in the SVZ, and neuro-
spheres cultured from �8�/� mice fail to proliferate/self-renew in
EGF-containing media (18). Hence, integrin-bound PTP-PEST
may dephosphorylate EGFR to regulate its tyrosine kinase activi-
ties and control cell growth in the SVZ and migration in the RMS.

Lastly, while our experiments have focused on components of
the �v�8 integrin-PTP-PEST signaling complex in neural cells,
this pathway likely drives migration in other nonneural cell types.
RhoGDIs and PTP-PEST are broadly expressed, and �v�8 integ-
rin plays important roles in tissue development and pathophysi-
ology outside the nervous system. For example, dendritic cells
utilize �v�8 integrin to traffic through the intestine and colon to
control normal homeostasis, with ablation of �v or �8 integrin
gene expression in immune cells leading to autoimmunity and
cancer (62, 63). While these pathologies have largely been attrib-
uted to defective latent TGF� activation (64), �v�8 integrin-de-
pendent intracellular signaling pathways may also play roles in
immune cell migration during homeostatic surveillance. A recent
report has shown that deletion of PTP-PEST in dendritic cells
leads to defective migration and spontaneous autoimmunity in
mice (65). In addition, �v�8 integrin signals via the effector pro-
tein Band 4.1B during embryonic heart morphogenesis (66), likely
in migratory cardiac neural crest cells. Primary tumors in the lung,
mouth, skin, and other organs commonly upregulate �8 integrin
gene expression during metastatic dispersal, and inhibition of in-
tegrin expression diminishes metastasis (67–70). Hence, the �v�8
integrin-PTP-PEST-RhoGDI1 signaling unit probably modulates
leading edge dynamics and motility in divergent cell types.
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