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Abstract

Purpose—This work develops a compressive sensing approach for diffusion-weighted (DW) 

MRI.

Methods—A phase-constrained low-rank (PCLR) approach was developed using the image 

coherence across the DW directions for efficient compressive DW MRI, while accounting for 

drastic phase changes across the DW directions, possibly as a result of eddy current, and rigid and 

non-rigid motions. In PCLR, a low-resolution phase estimation was used for removing phase 

inconsistency between DW directions. In our implementation, GRAPPA was incorporated for 

better phase estimation while allowing higher undersampling factor. An efficient and easy-to-

implement image reconstruction algorithm, consisting mainly of partial Fourier update and 

singular value decomposition, was developed for solving PCLR.

Results—The error measures based on diffusion-tensor-derived metrics and tractography 

indicated that PCLR, with its joint reconstruction of all DW images using the image coherence, 

outperformed the frame-independent reconstruction through zero-padding FFT. Furthermore, 

using GRAPPA for phase estimation, PCLR readily achieved a 4-fold undersampling.

Conclusion—The PCLR is developed and demonstrated for compressive DW MRI. A 4-fold 

reduction in k-space sampling could be readily achieved without substantial degradation of 

reconstructed images and diffusion tensor measures, making it possible to significantly reduce the 

data acquisition in DW MRI and/or improve spatial and angular resolutions.
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Introduction

Diffusion-weighted (DW) MRI is a technique that allows the non-invasive mapping of the 

diffusion process of water molecules in biological tissues. This is achieved by applying a 

series of non-collinear diffusion-sensitive gradients to relate MRI signal attenuation to the 

water diffusion in the tissues of interest [1]. Because DW MRI can provide unique 

biologically and clinically relevant information in the living brain non-invasively, it has 

been widely applied in basic and clinical neuroscience for probing white matter integrity and 

connectivity of the brain [1-4]. One major obstacle of the technique, however, is the 

prolonged acquisition time. This is partially due to the fact that images need to be acquired 

with diffusion gradient applied in multiple directions to sufficiently sample the “diffusion 

space” in order to disentangle complex neuronal fiber crossings in the brain [5]. The scan 

time is even longer for several more sophisticated DW MRI techniques, including diffusion 

spectrum imaging (DSI) [6] and multi-shell Q-ball imaging [7], which require acquiring 

more than one shells of diffusion weighting. In addition, if high spatial resolution is desired, 

the segmented acquisition may be needed (i.e., covering the k-space in two or more 

segments), further increasing the data acquisition time. Thus, it is imperative to improve the 

DW MRI technique for reduced scan time and/or increased spatial and angular resolution 

without further time penalty.

Inspired by compressive sensing [8,9], compressive MRI with highly undersampled k-space 

has been actively pursued since 2006 [10]. Relevant to compressive DW MRI for 

reconstructing the DW images (x-q), the existing dynamic sparsity models for the 

spatiotemporal images (x-t) can be roughly classified into six categories. (1) The first 

dynamic sparsity model utilizes the 1D pixel-wise Fourier transform along the temporal 

dimension from the x-t space to the x-f space [11-13]. However, the temporal periodicity of 

x-t images, a key for the sparsity in the x-f domain, does not exist for DW images. (2) The 

second type uses the local sparsity up to certain transform, such as wavelet [10]. (3) The 

third is the adaptive local sparsity through dictionary learning [14]. (4) The fourth is the 

global sparsity via the low-rank model (LR) that involves singular value decomposition 

(SVD) of the x-t image along the temporal dimension [15,16]. (5) The fifth involves both the 

local sparsity and the global LR sparsity [17], which uses the supposition of both terms. (6) 

The last one is another use of both local and global sparsity, i.e., the rank-sparsity 

decomposition [18,19], where the image is modeled as two terms, assuming one term is 

globally sparse, e.g., the similar and stable background, and the other is locally sparse, e.g., 

the distinct and varying features. In the context of DW MRI, assuming no phase 

inconsistency between DW directions, we compared the above six models, and found that 

the LR model, a global sparsification of DW images via SVD, provides the best image 

reconstruction [20,21]. In addition, relative to the dictionary learning method for adaptive 

local sparsity, a prior-image constrained low-rank model was developed as an adaptive 

global sparsity method [22].

The sparsity model in DW MRI has been applied for image denoising [23,24], 

undersampling of DW directions [25-28], and undersampling of k-space [29-33]. With 

regard to undersampling of k-space, which is the focus of this work, various methods based 

on local and global sparsity have been developed, including local sparsity via total variation 
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[29,30], tensor-model based image consistency [31], a mean-image based local sparsity, 

which is equivalent to a rank-one and sparsity decomposition [32], a PCA based global 

sparsity [32], and a group local sparsity, i.e., the L1 sum of L2 coefficients [33].

A major practical challenge for developing an efficient compressive DW MRI 

reconstruction method that uses the coherence between different diffusion directions is the 

drastic phase inconsistency between different DW directions as a result of eddy currents and 

the rigid and non-rigid motion. As a result, image coherence across the DW directions is 

destroyed, and all the above models are no longer valid, unless a phase correction is 

incorporated into the model. To the best of the knowledge, this phase problem has not been 

addressed for compressive DW MRI in the literature. This work describes the Phase-

Constrained Low-Rank (PCLR) model that permits the use of coherence between different 

diffusion directions for compressive DW MRI.

Theory

The LR model takes advantage of image similarity, and thus is efficient for compressive 4D 

MRI [15-19]. Mathematically, LR is a convex minimization problem, in which the temporal 

similarity or coherence of the real part and the imaginary part of complex images can be 

enforced respectively through the nuclear norm, and the data fidelity term is linear with 

respect to the reconstruction variables, as the complex images are separated into the real and 

imaginary parts.

However, the existing LR is not applicable for compressive DW MRI. In DW MRI, there 

are drastic differences in the image phase between diffusion directions due to eddy currents 

and rigid and nonrigid body motion. As a result, the similarity of real or imaginary part no 

longer holds true, although the image magnitude is still coherent.

A plausible approach is to regularize the image magnitude while still reconstructing the real 

and imaginary part, in which the nuclear norm of the image magnitude acts similarly as the 

isotropic total variation. Unfortunately, from our experience, this approach is inadequate for 

image reconstruction, although the problem is still convex and linear.

Another logical direction is to reconstruct the magnitude and phase directly instead of the 

real and imaginary part, which may include the additional regularization of the phase, such 

as total variation. However, since the data fidelity is now non-linear in the magnitude and 

the phase, the problem becomes non-convex and the optimization is harder to solve. Again, 

our implementation on this has not been successful for satisfactory image reconstruction.

On the other hand, it is well known that the MR image phase can be approximated by a low-

resolution phase with fairly good accuracy [34]. In the following, we will introduce the 

PCLR model, in which the low-resolution phase is used as a constraint in the nuclear norm 

regularization. That is the low-resolution phase is assumed to be a good approximation and 

utilized to compensate the drastic phase change, so that the complex DW images conjugated 

by the low-resolution phases regain the coherence in the DW gradient dimension. Please 

note that the low-resolution phase is not simply taken as the phase of the reconstructed 

images; rather it is used as a phase estimate and constraint to regain the DW similarity for 
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better image reconstruction. In contrast, the final image phase was fixed to be a low-

resolution one in [30]; in addition, the motivation of using the phase was to enable the 

model-based reconstruction, where the assumed diffusion tensor intensity model only 

applies to the amplitude.

K-space Sampling

When using the LR method, it is desirable to have complementary k-space sampling with 

respect to the DW dimension, so that the common features across the DW dimension that 

may be missed otherwise due to undersampling can be recovered through LR. Meanwhile, 

the central k-space needs to be consistently sampled for PCLR, so that the low-resolution 

phase can be estimated as the phase constraint for PCLR.

The k-space sampling for PCLR is described in Fig. 1, and the modified version for PCLR 

that incorporates GRAPPA [35,36](GP-PCLR) is illustrated in Fig. 2. In both, the peripheral 

sampling is circulant with respect to the DW dimension, and is repeated every a few DW 

directions. Here the random sampling strategy is not used, since we find the circulant 

sampling strategy offers the comparable image quality, is more robust, and more 

straightforward for pulse sequence implementation.

To balance the low-frequency and high-frequency sampling, half of the data is acquired at 

the central k-space, while the other half is acquired at the peripheral k-space. For PCLR 

(Fig. 1), the central k-space is fully sampled, and the k-space with the central data and zero-

filling elsewhere is used to generate the low-resolution phase estimate. Subsequently, with 

the phase-constrained image regularization, the image reconstruction utilizes all the acquired 

data to reconstruct the DW images. For GP-PCLR (Fig. 2), the central k-space is also 

circulantly undersampled with respect to the DW dimension. For image reconstruction, 

GRAPPA is used to fill in the missing central data; then the k-space with all the acquired 

and filled central data and zero-filling elsewhere is used to generate the low-resolution phase 

estimate. Then with the phase-constrained image regularization, the image reconstruction 

utilizes all the acquired and filled data to reconstruct the DW images.

PCLR Model

Let us start with some notations and definitions. X={xijkn, i≤Nx, j≤Ny , k≤Nz,m≤Nc,n≤N}, 

where Nc is the number of coils and N is the number of DW directions. Our data acquisition 

for DW MRI is independent with respect to different slices, i.e., Nz. To simplify the 

notation, let us consider the reconstruction of only one slice from one coil X={xijn, i≤Nx, 

j≤Ny, n≤N}, and then the other slices can be reconstructed in the same way. Here, although 

GRAPPA uses multiple-coil data for k-space interpolation, the reconstruction process after 

the k-space filling is still independent with respect to the coil. After coil-independent 

reconstruction, the images from all coils are combined through the simple sum-of-square 

formula [34].

Let Xn be an aligned column vector of each 2D DW image, and X be represented as a matrix, 

i.e., X=[X1··· Xn ··· XN]. The forward model is defined with the 2D Fourier transform matrix 

F and sampling matrix Sn, which is one for sampled k-space and zero for un-sampled k-
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space. We denote the forward model by AX=SFX=[S1FX1 ···SnFXn ··· SNFXN]. Let Y be the 

given data for the image reconstruction in the matrix format, i.e., Y=[Y1 ··· Yn ··· YN], where 

Yn is an aligned column vector of the nth 2D DW k-space, with the zero value at the un-

sampled location. For GP-PCLR, the filled central k-space is also included in Y. On the 

other hand, let YC consists of the central k-space of Y and zero-filling elsewhere. Again the 

central part includes the filled data by GRAPPA for GP-PCLR.

A major challenge for developing an efficient LR method of compressive DW MRI is that 

the image phase changes drastically across the DW directions, which is a compound effect 

of eddy current and motion, and consequently similarity regularization of the real and 

imaginary part of the complex images cannot be justified in LR. This motivates the 

following PCLR model

(1)

where P is the low-resolution phase, which is computed from YC by P=F−1YC and then 

normalized by its magnitude, i.e., P=P/| P|. Here, ∥ ∥* is the nuclear norm for promoting the 

similarity in DW direction, which is defined as the sum of the singular values of the matrix; 

P*X is an element-wise multiplication rather than a matrix multiplication with * denoting 

the conjugate operation.

Here we consider an example to illustrate the importance of the phase constraint in Fig. 10, 

by comparing the reconstructed images between PCLR (with phase constraint) and LR 

(without phase constraint) using the 4-fold undersampling (Fig. 1). For LR, no phase 

information was used, i.e., P=I; for PCLR, the estimated phase using the acquired central k-

space was utilized as the phase constraint P. Due to the phase inconsistency, LR failed to 

utilize the image similarity across the DW dimension. In contrast, through the phase 

constraint P to compensate the phase inconsistency, the image similarity across the DW 

dimension was recovered, and therefore the image quality was significantly improved by 

PCLR.

Solution Algorithm

In this section, we provide an efficient algorithm for solving PCLR (Eq. (1)), which mainly 

consists of partial Fourier update and singular value decomposition (SVD). The first trick is 

to reformulate the constrained problem Eq. (1) into the following unconstrained 

optimization with the Bregman update f

(2)

(3)

With the add-residual-back Bregman update of f via Eq. (3), the strategy of choosing a fixed 

regularization parameter λ is equivalent to the adaptive strategy of optimizing λ during 

iteration [37].
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Secondly, Eq. (2) is split into a data fidelity minimization

(4)

and a nuclear norm minimization problem

(5)

The explicit solution to Eq. (5) is given by the singular value thresholding (SVT) formula 

[38], i.e.,

(6)

where the phase-conjugated image P*X is first decomposed with SVD, and the singular 

values are thresholded, i.e.,

(7)

Finally, Eq. (4) is reformulated as

(8)

And its explicit solution is given by

(9)

Eq. (9) is indeed a partial Fourier update [34], where the k-space data at the sampled 

location come from the acquired data Y, and the data at the un-sampled location come from 

the last iteration with the best data consistency.

To summarize, PCLR can be solved through the following simple single-loop solution 

algorithm

(10)

That is, PCLR (Eq. (1)) is solved iteratively with partial Fourier update, phase-constrained 

SVD, and add-residual-back Bregman update. The partial Fourier step provides the data 

fidelity, while the SVD step enforces the DW image similarity after the phase correction. 

Finally, the Bregman update is used to add the uncorrected residual back to be corrected, 

which is equivalent to optimize λ. Here it is apparent that the low-resolution phase P is used 

as the phase constraint rather than as the phase of reconstructed images. The algorithm Eq. 

(10) turns out to be a special case of the so-called Bregman operator splitting method [39] 
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when applied to MRI, and therefore the convergence of the algorithm Eq. (10) is guaranteed. 

The equivalence proof is given in the Appendix.

In Eq. (10), the only parameter to be tuned is λ. However, the algorithm is robust with 

respect to λ, when the problem is properly scaled. That is the k-space data need to be scaled 

(i.e., multiplied by a constant) so that the maximum of the image magnitude is nearly one, 

which for example can be quickly determined through the inverse Fourier transform. 

Moreover, the algorithm is robust in λ, as long as λ is sufficiently large. The smaller the λ, 

the faster the convergence of the solution. Therefore, the solution algorithm Eq. (10) is 

nearly parameter-free, although an educated guess of λ will certainly accelerate the solution 

convergence with the reduced number of iterations. In this work λ is set to be one. On the 

other hand, the change of relative difference (i.e., ∥Xn+1-Xn∥) can be used as an efficient 

stopping criterion. That is, the iteration stops when the iterate difference no longer decreases 

significantly.

Methods

Data Acquisition

MRI was performed on a Siemens 3T Trio scanner (Siemens Medical System, Malvern, PA) 

with a twelve-channel phased-array coil. Foam cushions were used to minimize head 

motion. Diffusion MRI data were collected on a healthy male volunteer with a DW spin-

echo EPI sequence. A dual spin-echo technique combined with bipolar gradients was used to 

minimize eddy-current effects [40]. The parameters used for diffusion data acquisition were 

as follows: DW gradients applied in 60 directions with a b value of 1,000 sec/mm2, 

repetition time/echo time of 10,800/114 msec, field of view of 256×256 mm2, matrix size of 

128×128, resolution of 2×2×2 mm3, and 64 slices with no gap, covering the whole brain. 

Averages of two sets of DW images with phase-encoding directions of opposite polarity 

(left–right) were acquired to correct for susceptibility distortion [41]. The total diffusion 

MRI scan time was approximately 20 min.

Image Reconstruction

The acquired k-space was subsampled using the undersampling patterns in Figs. 1 and 2. For 

GP-PCLR, the GRAPPA algorithm was first applied to fill in the 4-fold undersampled 

central k-space: the non-acquired k-space values were estimated through a linear 

combination of nearby k-space values; the linear coefficients were found through a kernel 

fitting, with each kernel consisting of 4 neighboring blocks in the phase encoding direction 

and 7 nearest ones in the frequency encoding direction [36]; the b0 images were used as 

auto-calibration (ACS) lines to estimate the linear combination and the fitting was solved 

through the L2-regularizd least-squares. Subsequently, the k-space with the full central part 

and zero- filling elsewhere was used to generate the low-resolution phase estimate, and the 

k-space of all the sampled data (and the filled central part) was utilized in PCLR to 

reconstruct the DW images. The sumof-square formula [34] was used to combine the images 

from all coils to generate the magnitude images.
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Image Analysis

Data preprocessing

The preprocessing of all DW MRI images retrospectively reconstructed by various methods 

was performed using Oxford Center for Functional Magnetic Resonance Imaging of the 

Brain's Software Library [42]. DW images were first corrected for eddy-current distortion. 

Susceptibility distortion was removed [41] using Matlab (Matlab7, Mathworks) codes 

incorporated in SPM5 [43]. This postprocessing technique for removing susceptibility-

induced distortion takes advantage of the symmetric distortions in the two repetitions of 

diffusion MRI data with opposite phase encoding blips. The method generates images with a 

much higher geometric fidelity achievable using the conventional field map method [41,44]. 

Since (i) most diffusion imaging protocols need to acquire several repetitions for improved 

signal-to-noise ratio anyway and (ii) a relatively high angular resolution (60 diffusion 

directions) can be achieved with the current diffusion protocol incorporating the phase-

reversal method, we incorporated this method in most diffusion MRI projects at our center.

Data analysis

Diffusion tensor and its derived metrics were calculated. We evaluated the performance of 

the zero-padding Fourier transform (FFT), PCLR and GP-PCLR under two k-space 

undersampling rates (50%, 25%), by comparing the root-mean-square-error (RMSE) of the 

reconstructed images, whole-brain fractional anisotropy (FA), mean diffusivity (MD), the 

principal diffusion direction (V1) and the diffusion tractography of the pyramidal tracts of 

the reconstructed data with those derived from images without undersampling. It should be 

noted that all analyses were conducted both before and after the merging of the two data sets 

with opposite phase encoding directions for susceptibility distortion correction. We reported 

only the results after the merging of the two data sets for susceptibility distortion correction 

because our tests showed almost identical trends in the data before the merging of the two 

repetitions, and the phase reversal method has become a standard post-processing technique 

for many diffusion MRI-related projects carried in our center.

We calculated the root-mean-squared-error (RMSE) of the whole brain, which is defined as:

(11)

where x and xi are the intensity of a voxel in the gold standard (full k-space sampling) and 

the corresponding reconstructed images. Low RMSE indicates more accurate reconstruction.

In our evaluations, we compared the fractional anisotropy (FA), mean diffusivity (MD) and 

the principal diffusion direction (V1) between the reconstructed images and the ground 

truth. We also traced the pyramidal tracts of the reconstructed data using FDT toolbox in 

FSL [42] and compared the results visually with the gold standard. It should be noted that 

the ball-and-stick partial volume model that enables the delineation of up to two crossing 

fibers, instead of the diffusion tensor model, was used in the tractography analyses [45]. A 

single seed voxel was placed in the middle of the corticospinal tract at the level of the pons 
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and a waypoint mask at the posterior limb of internal capsule (PLIC) was drawn in each 

hemisphere to constrain the pyramidal tracts. Tracts traveling to the other side of the 

hemisphere were excluded in the final results. The resultant tracts were then normalized by 

the total number of the streamlines obtained in the results of the gold standard, and then 

thresholded at 5%. Maximal-intensity-projection (MIP) images of the normalized and 

thresholded results were then generated for qualitative comparisons.

Results

Raw diffusion images

The RMSE across 60 diffusion directions are shown in Fig.3A, and the images at two 

representative directions (Dir=13, 46) are plotted in Fig.3B. Three major points can be made 

from the figure: (1) for 50% and 25% k-space undersampling rates, the PLCR method 

always outperforms the corresponding FFT method; (2) with the addition of GRAPPA, the 

GP-PCLR with a 25% undersampling rate significantly outperforms the PCLR and FFT 

methods at 25% undersampling rates without GRAPPA; (3) The performances of the PCLR 

and FFT vary significantly across diffusion directions when the sampled data in k-space is 

low (25%). For example, the RMSE in the diffusion direction 46 is almost twice as high as 

that in the diffusion direction 13, which could significantly affect diffusion-tensor-based 

metrics (see below).

DTI-derived metrics

The histogram of the FA differences (gold standard – reconstructed images) of the whole 

brain, representative FA and difference images are shown in panels A and B of Fig.4. 

Consistent with the analyses based on the raw diffusion images, the PCLR method 

outperforms the corresponding FFT method at two undersampling rates (50%, 25%). The 

GP-PCLR with 25% achieved a performance similar as those by the PCLR and FFT method 

at 50% undersampling. It is interesting to see that for all compressive DW MR images, 

slightly more voxels in the brain have overestimated FA, which can be found to be mainly 

located at the gray matter of the brain (Fig.4B). The histogram of the MD differences (gold 

standard – reconstructed images) indicated that the majority of the voxels in the brain have 

overestimated MD, regardless of the method utilized (Fig.5). Similarly, GP-PCLR with a 

25% undersampling performed better than PCLR and FFT at the same undersampling rate, 

and achieved a comparable performance to the PCLR and FFT methods at the 50% 

undersampling rate. We then compared the angular difference of the principal diffusion 

direction between the gold standard and the reconstructed images. It can be seen that for GP-

PCLR method with 25% undersampling, the angular error is generally low in the deep white 

matter (~<6°) whereas in gray matter, it is much higher (~30°), which is consistent with the 

previous studies showing that diffusion tractography results are more reliable in deep white 

matter than in the gray matter of the brain [46] . The GP-PCLR with 25% undersampling 

rate consistently generated smaller angular error than those in the PCLR and FFT at 25% 

undersampling rate, as shown in Fig.6. Major contributions of the angular difference 

between the gold standard and the reconstructed images are in the gray matter areas, where 

isotropic diffusion is prominent (Fig. 6B).
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Delineation of the pyramidal tracts using diffusion tractography

To further evaluate the impact of the reconstruction methods and undersampling rates on 

tractography analyses, we delineated the pyramidal tracts bilaterally using the data 

reconstructed by three methods (FFT, PCLR, GP-PCLR) and the two k-space undersampling 

rates (50%, 25%). From a seed voxel in the corticospinal tracts at the level of the pons, the 

pyramidal tracts pass through the superior cerebral peduncle dorsoventrally, the posterior 

limb of internal capsule and then project to both precentral and postcentral cortices (Fig. 7). 

When an undersampling rate of 50% was used, the pyramidal tracts could be faithfully 

tracked, regardless of the methods employed (FFT, PCLR). However, at the 25% of k-space 

sampling, we found that both FFT and PCLR methods were unable to reconstruct the 

pyramidal tracts accurately compared to the ground truth, with the major cortical 

connections diverted erroneously to the prefrontal cortex, instead of precentral and 

postcentral cortex (Fig.7). The GP-PCLR, on the other hand, is shown to be the only method 

that can reconstruct the main trajectory the tracts with such an undersampling rate (25%), 

although less connectivity to the postcentral gyrus was observed in the GPPCLR 25% 

reconstructed data.

Discussions and Conclusions

In the present work, we developed and implemented a phase-constrained low-rank model for 

compressive reconstruction of DW MRI images. We systematically compared the 

performances of PCLR, GP-PCLR, and FFT at two undersampling rates (50%, 25%) based 

on a set of retrospectively undersampled diffusion data. Our results based on reconstructed 

images, DTI-derived metrics and tractography consistently demonstrated superior 

performances of PLCR compared to FFT.

Moreover, incorporation of GRAPPA with PCLR can further improve the performance of 

the PCLR, achieving a higher reduction of scan time and/or increased spatial and angular 

resolutions in DW MRI. It is possible that, instead of the explicit k-space filling and the 

explicit phase estimation using GRAPPA, an alternative strategy of incorporating the 

GRAPPA or SENSE as the multi-coil data or image consistency term into the reconstruction 

model [47] may be developed, which however may subject to the prior mentioned difficulty 

for solving magnitude-phase nonconvex optimization problem.

Our evaluations not only revealed the impact of the compressive sensing methodology on 

the resulting diffusion MRI-based measures, but also may help derive a “cutoff point” for 

the trade-off between the reconstruction accuracy and the k-space undersampling rates in 

evaluating compressive sensing methods. For example, while one may argue that the PCLR 

method with 25% k-space undersampling rate can produce diffusion MRI data with “decent” 

accuracy, our tractography analyses on the pyramidal tracts clearly demonstrated that the 

data based on such a method and undersampling rate would result in obvious false positive 

and negative connections that are against the classic neuroanatomical view of the pyramidal 

tracts, one of the most prominent projection fiber systems in the brain. Therefore, we can 

safely conclude that either the compressive sensing technique or the sampling rate needs to 

be modified for the technique to be useful. Indeed, with the incorporation of GRAPPA, 

GPPCLR with a 25% undersampling reconstructed the data that enable the tracking of the 
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main pyramidal tracts accurately, suggesting its practical value in neuroscientific and 

clinical settings. On the other hand, with the reduced scanning time, the imaging artifacts 

due to motion could be also potentially reduced, which will be investigated in the future 

prospective studies using the proposed PCLR.

One major attraction of our proposed GP-PCLR method is the reduced scan time for either 

faster data acquisitions or increased spatial and angular resolutions in diffusion protocols. 

For example, assuming a similar diffusion protocol in the current study with the TR of 

10800ms, b value of 1000, 64 slices, echo spacing of 1.16ms and a matrix size of 100×128, 

the GP-PCLR with 25% undersampling will take approximately 48% of the scan time 

required in the original diffusion protocol with full k-space sampling, This reduced scan 

time coupled with potentially minimized motion artifacts make the technique especially 

attractive in certain clinical settings such as pediatric and neonatal imaging. Phase 

inconsistencies due to eddy current and motion are common in a variety of MR imaging 

settings. The phase-constrained compressive reconstruction approach introduced here is 

generally applicable for compressive image reconstruction and complex image denoising 

when phase inconsistency poses a problem. For example, in cardiac imaging or fMRI, where 

cardiac or brain motion may induce phase variations between frames, the phase-constrained 

approach could be employed to further enhance the existing compressive sensing 

approaches.
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Appendix 1

Let us first consider the forward-backward operator splitting (FPOS) method [48] for 

solving

(A1)

That is, for any positive number δ, the FPOS method solves Eq. (A1), through decoupling 

Eq. (A1) into the following two iterative steps

(A2)

(A3)

Note that the algorithm is proven to converge when 0< δ<2/∥ATA∥ [48], which would be 0< 

δ<2 if A=F.

Let us consider the special case when δ=1. With A=SF, ST=S, STS=I, and FT=F−1, Eq. (A2) 

can be reformulated as
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(A4)

On the other hand, with P*P=I, Eq. (A3) can be also reformulated as

(A5)

Next, after adding the add-residual-back Bregman update to Eq. (A4) and Eq. (A5), i.e., 

through the so-called Bregman operator splitting (BOS) method [39], we have

(A6)

which is the same as the solution algorithm Eq. (10). Therefore, the solution algorithm Eq. 

(10) is indeed equivalent to the BOS method.

Appendix 2

The phase-constrained model is generally applicable to the compressive sensing techniques. 

For example, for the local sparsity model with the wavelet transform W, the phase-

constrained wavelet model, in analogy to Eq. (1), can be formulated as

(A7)

or

(A8)

For the sparsity transform satisfying WTW=I, the similar efficient algorithm to Eq. (10) can 

be derived, i.e.,

(A9)

In Eq. (A9), Tλ is the soft shrinkage formula, i.e., Tλ(x)=sgn(x)·max(|x-λ|,0) with the signum 

function sgn. Note that X is in the range of WT is assumed in order to derive the second step 
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of Eq. (A9). The algorithm is again the same as the BOS method, with the derivation similar 

to Appendix 1.

However, as suggested by our recent method comparisons [20,21], the LR model has a 

superior performance, which is also reflected through the qualitative comparison in Figs. 8 

and 9 that correspond to the reconstructed images at 13th and 46th diffusion direction (Fig. 

3) respectively from one repetition before the image postprocessing (e.g., the corrections of 

eddy-current and Susceptibility distortion) when using 25% data (Fig. 2). Here the three-

level Haar wavelet transform is used in the phase-constrained wavelet model.
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FIG. 1. 
K-space sampling for PCLR. For both 2-fold (X2) and 4-fold (X4) undersampling, the half 

of the data (red dots) is acquired at the central k-space, while the other half (yellow dots) is 

acquired at the peripheral k-space. The peripheral sampling is circulant with respect to the 

DW dimension, and is repeated every 3 or 7 DW directions for X2 and X4 respectively. The 

k-space with the central data (red dots) and zero-filling elsewhere is used to generate the 

low-resolution phase estimate. Then with PCLR, the image reconstruction utilizes all the 

data (red and yellow dots) to reconstruct the DW images.
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FIG. 2. 
K-space sampling for GP-PCLR. In this 4-fold (X4) undersampling example, the half of the 

data (red dots) is acquired at the central k-space, while the other half (yellow dots) is 

acquired at the peripheral k-space. Both the central and the peripheral sampling are circulant 

with respect to the DW dimension, and are repeated every 2 and 6 DW directions 

respectively. For reconstruction, GRAPPA is used to fill in the missing central data (blue 

dots), and the k-space with the central data (red and blue dots) and zero-filling elsewhere is 

used to generate the low-resolution phase estimate. Then with PCLR, the image 

reconstruction utilizes all the data (red, blue and yellow dots) to reconstruct the DW images.
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FIG.3. 
The root-mean-squared-error (RMSE) of the reconstructed raw diffusion and the difference 

images across diffusion directions. The RMSEs between the gold standard and the 

reconstructed diffusion raw images of the whole brain across DW gradients were calculated 

and plotted in (A). Different methods (FFT, PCLR, GP-PCLR) and sampling rates (50%, 

25%) were compared. It can be seen that GP-PCLR 25% showed less RMSEs than the 

PCLR25% and FFT25%. The representative axial slices of the raw diffusion images (upper 

row) and the difference images (lower row) at two diffusion directions (Dir=13, 46) were 
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also shown in Fig.B, C. Except that GP-PCLR generates low RMSEs, the performances of 

the method across the directions are more consistent across directions than the 

corresponding PCLR25% and FFT25%, which is critical for the accurate estimation of DTI-

derived measures. The difference images were magnified four times for easy visualization.
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FIG.4. 
The FA differences between the reconstructed FA and the ground truth in the whole brain 

using different methods (FFT, PCLR, GP-PCLR) and undersampling rates (50%, 25%). 

Normalized histogram of FA differences across different methods and sampling rates are 

shown in (A). A narrow peak with a high relative frequency centered near zero indicates 

small differences between the ground truth and the reconstructed FA. PCLR25% and 

FFT25% tend to overestimate FA, whereas GP-PCLR25% showed close performance as that 

of FFT50%. The reconstructed FA maps (upper row) and the FA difference (lower row) in a 

representative slice are shown in (B). Compared to PCLR25% and FFT25%, GPPCLR25% 

showed less differences and the errors tend to be more homogenous across the brain than the 

former two methods. The FA differences were magnified twice for easy visualization. Note 

that FA is the ratio of anisotropic diffusion and therefore is unitless.
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FIG.5. 
The MD differences between the reconstructed images and the ground truth under various 

methods and undersampling rates. All reconstructed MD images tend to have overestimated 

MD in the most voxels in the brain. Compared to FFT25% and PCLR25%, GP-PCLR25% 

showed superior performance. The MD differences in a representative slice are shown in 

(B). The MD differences were magnified four for easy visualization.
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FIG.6. 
The angular differences of the principal diffusion direction (V1) in the diffusion tensor 

model between the reconstructed images and the ground truth under various methods and 

undersampling. A narrow peak with high relative frequency centered near zero indicates 

more accurate reconstruction. GPPCLR significantly outperformed the other two methods 

(PCLR and FFT) under the same sampling rate (25%) (A). A representative slice of the 

angular differences is shown in (B). Generally, the estimation of the V1 is more accurate in 

the white matter than in CSF and gray matter. The unit of B is in radians
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Fig.7. 
Comparisons of diffusion tractography on the pyramidal tracts using different reconstruction 

methods. A seed was placed in the corticospinal tracts at the level of pons. Then, waypoint 

masks at the posterior limb of the internal capsule were used to restrain the tracts. 10,000 

streamline samples were sent from the seed voxel and the results were normalized using the 

total number of streamlines that were not rejected by the mid-sagittal exclusion mask in the 

ground truth. Then, the normalized tracts were thresholded at 0.5% and MIP images on the 

sagittal plane were plotted and compared. It can be seen that FFT 50% and PCLR50% 

generated most accurate results when compared to the ground truth. At the undersampling 

rate of 25%, GP-PCLR is the only method that enables a faithful reconstruction of the main 

course of the pyramidal tracts. In contrast, the tracts reconstructed by FFT25% and 

PCLR25% were significantly deviated from the original course, generating false connections 

to the prefrontal cortex and the cerebellum.
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FIG.8. 
The reconstructed images (without postprocessing) at the 13th diffusion direction with 25% 

data. (a) The ground truth; (b), (c), and (d) are from FFT, the phase-constrained wavelet 

model, and the PCLR respectively. (e-h) are their corresponding zoom-in details.
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FIG.9. 
The reconstructed images (without postprocessing) at the 46th diffusion direction with 25% 

data. (a) The ground truth; (b), (c), and (d) are from FFT, the phase-constrained wavelet 

model, and the PCLR respectively. (e-h) are their corresponding zoom-in details.
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FIG. 10. 
PCLR v.s. LR. The simulation data for image reconstruction are generated from the ground 

truth using 4-fold k-space undrsampling strategy (Fig. 1). In LR no phase information was 

used, while in PCLR the estimated phase using the acquired central k-space was utilized as 

the phase constraint. Due to the phase inconsistency, LR failed to utilize the image similarity 

across the DW dimension. In contrast, through the phase constraint to compensate the phase 

inconsistency, the image similarity across the DW dimension was recovered, and therefore 

the image quality was significantly improved by PCLR.
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