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ABSTRACT: The small molecule universe (SMU) is defined as a set of
over 1060 synthetically feasible organic molecules with molecular weight
less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU
molecules for the purpose of discovering favorable structures is impossible.
We take a stochastic approach and extend the ACSESS framework
(Virshup et al. J. Am. Chem. Soc. 2013, 135, 7296−7303) to develop
diversity oriented molecular libraries that can generate a set of compounds
that is representative of the small molecule universe and that also biases the
library toward favorable physical property values. We show that the
approach is efficient compared to exhaustive enumeration and to existing
evolutionary algorithms for generating such libraries by testing in the NKp
fitness landscape model and in the fully enumerated GDB-9 chemical
universe containing 3 × 105 molecules.

■ INTRODUCTION

The small molecule universe of organic molecules with molecular
weight < ∼500 Da is estimated to contain ∼1060 stable
compounds.2 This vast number of structures makes the prospect
of mining the SMU a daunting but an enticing task. Synthetic
chemistry over the last century has produced ∼60 million
compounds.3 Diversity oriented synthesis (DOS) and natural
product motifs provide a means to create libraries with diverse
structures of potential value.4 However, the rate of molecular
discovery has not kept pace with the demand for molecular species
that address compelling challenges,5 and one hopes to develop
theoretical approaches to accelerate the pace of progress.
Computational efforts are underway to develop strategies that

map and mine molecular space. Reymond’s group has
enumerated organic libraries that contain hundreds of billions
of novel compounds.6 However, computational considerations
limit exhaustive enumeration to molecules up to ∼20 heavy
atoms - enumeration of GDB-17 required over 11 CPU-years.6

The size of the small molecule universe makes its exploration and
mining very challenging indeed. We have devised a chemical
space exploration method called Algorithm for Chemical Space
Exploration with Stochastic Search (ACSESS)1 that allows
computationally feasible surveying of unexplored regions of the
small molecule universe without exhaustive enumeration.
While chemical space mapping and exploration is itself a novel

undertaking, it does not guarantee the discovery of useful struc-
tures. Some success in identifying valuable structures was accom-
plished using the enumerated GDB-11 and GDB-137 libraries, but
screening of every member of a large enumerated library is very
demanding. Hence, there is a pressing need for computational
approaches that bias molecular searches to produce useful libraries

of compounds drawn from the vastness of molecular space. Here,
we describe a method within the ACSESS framework to mine
chemical space for collections of diverse compounds possessing
favorable values (defined within a threshold from the global
optimum) of a targeted physical property. The performance of this
approach is tested on a GDB-9 enumerated space. As an example,
we show that the property-optimizing ACSESS procedure can be
used to construct libraries of diverse, large dipole moment
molecules (within GDB-9) without enumerating all molecules
within the GDB-9 space. We also evaluate the performance of the
property-optimizing ACSESS method using the NKp fitness
landscape. The NKp model landscape has been used to test the
performance of various evolutionary algorithms.8,9 This model
tunes the “ruggedness” of the property landscape by changing the
length of a bit string (specified by the parameter N) and the
numbers of local hills and valleys (specified by the parameters
K and p).8,9 To our knowledge, this is the first time that the NKp
landscape model was used to compare strategies for chemical space
search. These studies demonstrate that property-optimizing
ACSESS maximizes the diversity of useful molecules more
efficiently than popular simple genetic algorithms. The approach
presented here can likely be extended to other molecular design
challenges in drug discovery and materials design.

■ METHOD

We begin with a definition of terms and a review of ACSESS.
Chemical space is defined as an N-dimensional Cartesian space

in which compounds can be mapped using cheminformatics
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descriptors. Descriptors describe physical, chemical, and topo-
logical properties of the compounds. In our analysis, each
compound is mapped using a set of 40 autocorrelation descriptors
(which defines our molecular space).10 For each molecule, we
computed the Moreau-Broto autocorrelation descriptor.10 This
descriptor encodes the correlations of atomic properties in a
molecule as a function of the topological distance between atoms
in the molecule. Both the molecular structure and the
physicochemical properties of a molecule can be encoded in this
way, which is used successfully to construct structure−activity
relationships.11 The autocorrelation descriptor is
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dij is the shortest bond distance between atoms i and j, and pi, pj are
the descriptors of atoms i and j, respectively.
The properties p were atomic number, Gasteiger−Marsili

partial charge, atomic polarizability, topological steric index, and
unity (i.e., pi =1 for all i).10 Values of d that represent the
topological distance (bond distance), ranges from 0 to 7.10 The
choice of the range for d is based on a previous study.1 The use of
the above five listed atomic properties and topological distance
results in a 40 dimensional descriptor. Here, the molecular
descriptors of the generated molecules are mean centered and
normalized to have unit variance.
The chemical space distance between two compounds is defined

as the Euclidean distance between compounds based on their
descriptors
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where dik and djk are the kth descriptor of molecules i and j,
N is the length of the descriptor vector, Dij is the Euclidean
distance between molecules i and j, Dij

ham is the Hamming
distance between two bit strings i and j of length N, XOR(i,j) is
the count of bit positions that differ in the two strings, Dmin is the
distance of the nearest molecule j from molecule i, i.e., the
nearest-neighbor distance of the molecule i, andM is the number
of molecules in the library.
Themolecular f itness of any structure is a real valued molecular

property. The magnitude of the molecular dipole moment, or a
value drawn from the NKp model, is used in our analysis.
Next we introduce the property-optimizing ACSESS strategy

to find optimal structures. We then describe property
calculations within the enumerated (GDB-9) chemical universe
and the enumerated binary fitness model (NKp landscape).
Finally, we describe searching for optimal structures within both
fitness landscapes using the property-optimizing ACSESS strategy.
ACSESS Algorithm To SearchMolecular Space. ACSESS

samples from a chemical space by iteratively optimizing

(maximizing) the nearest-neighbor distances (diversity) of a subset
of compounds in the space of all possible compounds.1 There are
four main steps in the property-optimizing ACSESS calculation
described here: (1) initialize a library, (2) breed new compounds,
(3) remove compounds that do not have a property value above a
threshold, and (4) select a maximally diverse subset of property
qualified structures.1 ACSESS can be seeded with a collection
of compounds or with a single molecule. The initial library is
modified by making mutations and crossovers. Among the
generated compounds, a diverse subset is chosen by applying
either maximin or cell-based partitioning algorithms.1 The
maximin algorithm maximizes the nearest-neighbor distance
between compounds. It does so by applying an iterative approach
where, to start with, a compound from a library is randomly
selected. It then selects the next compound that is furthest from
the initial compound in chemical space distance (eq 2). The next
compound from the library it selects will be the furthest from both
of the initially selected compounds. This process is repeated until a
desired diverse library size is obtained.12 On the other hand, a cell-
based partitioning algorithm effectively partitions the chemical
space into discrete multidimensional grids and picks a molecule
that falls in each grid.13 The advantage of cell-based partitioning is
that it scales linearly with large library size.
Earlier implementations of ACSESS did not include an

approach to property optimization. As modified here, the
modified ACSESS now iteratively selects a maximally diverse
set of solutions with property values above a threshold value. In
order to iteratively increase the property value, we increase the
property value cutoff linearly with each iteration until a desired
property value threshold is reached. Initially the threshold is set
to a low value to ensure that the population does not collapse to
zero size because of the fitness constraint. A schematic of this
algorithm is shown in Figure 1.

Software. Property-optimizing ACSESS made use of
OpenEye OEChem TK14 for molecule generation, OpenEye
MolProp TK14 for filtering, and OpenEye OMEGA TK15,16 for
conformer generation.

Figure 1. Property-optimizing ACSESS procedure uses property filter
and diversity-biased sampling to construct a diverse library with
properties above a cutoff value.
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Optimization within GBD9 Property Landscape. We
computed the Boltzmann-averaged dipole moment of all
molecules in GDB-9 and pursued strategies to identify molecules
in this set with large dipole moments. Compounds among the
300,000 compounds of GDB-9 with nine of fewer heavy atoms
(allowed atom types include C, N, O, S, and Cl) defined the
search space.14 For each molecule, the dipole moment (D) was
computed using

μ
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where μi is the dipole moment of a single conformation, β was
computed using Boltzmann constant (kB) 3.1668 × 10−6

Hartree per Kelvin and temperature (T) 298 K, i belonging
to a set of conformations C, and Ei is the internal energy of
conformation i. Conformations for each molecule, including
stereoisomers, were generated using OMEGA and flipper
tools.15,16 Each conformation was energy minimized, and the
total dipole moment was computed using AM1 calculations as
implemented in the Gaussian 09 package.17 Dipole moments

were stored in a database and retrieved during ACSESS explo-
ration of the chemical space.18 ACSESS was used to create
a maximally diverse set of compounds with dipole moments
above a threshold value of 5.5 D (the 90th percentile of GDB-9
dipole moments).

Optimization in the NKp Fitness Landscape Model. In
addition to the GDB-9 molecular space, we tested our approach
on a known binary fitness landscape. We chose the NKp model
since it has been widely used to test the performances of genetic
algorithms.19,20 The NKp fitness landscape maps a binary string to
a fitness value from 0 to 1.19,20 The fitness of a binary string is the
summation of the fitness contribution of each cell scaled by the
length of the string (eq 6). In this model, we model a binary
string and its NKp fitness value as representing a molecule and
the molecule’s property value, respectively (as in the case of
GDB-9 molecules and their dipole moments). A binary string is

Figure 2. Distribution of molecular property values for (A) the
enumerated NKp landscape with N = 19, K = 9, p = 0.9 and (B) the
dipole moments of all molecules in GDB-9.

Figure 3. (A) Diversity biased sampling and (B) fitness-biased sampling.
Diversity is first maximized to generate solutions that span a given
chemical space. Here, the nearest-neighbor diversity (eq 4) is defined as
the average hamming distance (eq 3) to the nearest neighbor. The
diverse solutions seed the property-optimizing ACSESS method, and
the fitness of the diverse set is improved iteratively. The global optimum
in our enumerated NKp model space was found within 30 iterations of
our optimization (data shown are averaged over ten different runs).
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associated with three parameters: (1) its length N, (2) the
number K of associations each bit makes to other bits in a string
(ranges from 0 toN-1), and (3) the fitness contribution or weight
p (also ranges from 0 to 1) of each bit position. By varying the
parameters K and p, we constructed a fitness landscape with
multiple optima (to mimic the multiple optima case in the
GDB-9 space; details presented in the Supporting Information).
The fitness (Φ) of a bit string (g) in the NKp fitness landscape

model is19
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We computed the fitness of all possible bit strings of 19 bits
using the NKp model (eq 6). We then applied property-
optimizing ACSESS runs to create a maximally diverse set of bit
strings with an NKp value equal to a threshold value of ∼0.3

(the global maximum within our enumerated NKp model). In
this case, the property-optimizing ACSESS library was modified
to work with the binary strings. The mutations were defined as the
bit flips, and crossovers were defined as combinations of two
fragments of binary strings by cutting them both at a randomly
chosen position. The maximin algorithm used the Hamming
distance (eq 3) measure to compute the nearest-neighbor distances
(eq 4).

■ RESULTS
We enumerated all possible 19-bit patterns and computed their
fitness withN = 19,K = 9, and p = 0.9 (total of 524,288 bit strings,
which is similar to the number of molecules in the GDB-9 space).
We also computed the averaged dipole moments of all molecules
in GDB-9. The distributions are shown in Figure 2.

ACSESS Exploration of a NKpModel Space.We used the
property-optimizing ACSESS method to construct a diverse set
of strings in theN = 19, K = 9, and p = 0.9 fitness landscape. First,
a maximally diverse set of binary strings was generated without
using fitness-based selection (Figure 3A). The maximally diverse
set was used to seed the property-optimizing ACSESS method
that maximizes fitness (Figure 3B). As shown in Figure 3B, the

Figure 4.Comparison of property-optimizing ACSESS outcomes to the simple genetic algorithm (SGA) optimization for generating multiple solutions
with the largest NKp fitness value. SGA iteratively samples the fittest solutions and improves upon them. (A) indicates that SGA finds the fittest solutions
(global maximum in the constructed NKp model) after 30 iterations. (B) indicates that property-optimizing ACSESS runs escapes local optima more
effectively than do the SGA runs, i.e. the success rate of finding largest fitness solution of property-optimizing ACSESS is 100% compared to 60% for
SGA (from 10 runs of each method). (C) indicates that the property-optimizing ACSESS runs also performs better than SGA to sample diverse fittest
solutions as it samples a larger number of fittest solutions compared to SGA. (D) indicates that, on average, the fitness of solutions generated by
property-optimizing ACSESS is larger than that of SGA.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500749q
J. Chem. Inf. Model. 2015, 55, 529−537

532

http://dx.doi.org/10.1021/ci500749q


property-optimizing ACSESS method finds the fittest solutions
after 30 iterations without exhaustively enumerating and
evaluating all possible bit strings.
Comparing Property-Optimizing ACSESS with Simple

Genetic Algorithm Searches. To judge the performance of

the property-optimizing ACSESS method relative to a simple
genetic algorithm (SGA) that uses elitism (selecting the fittest
molecules at each iteration),21 we implemented a SGA as an
extension of ACSESS for molecular library design. We ensured
fair comparison by 1) applying NKp based fitness filters to SGA
and ACSESS in every generation and 2) initializing both
algorithms with the same diverse subset sampled using ACSESS
(Figure 3A). With the parameters and simulation steps exactly
the same as in ACSESS, the only difference between ACSESS
and SGA is that, at each iteration, SGA selects an equal number
of the fittest solutions without considering the diversity among
the solutions. Figure 4A indicates that the SGA finds the best
solution (with the largest NKp fitness value). However, SGA
tends to be trapped in local extrema more often than ACSESS
(Figure 4B, 40% of SGA runs failed to find the optimum
structures as opposed to 0% for ACSESS). On average, the solu-
tions that SGA finds are suboptimal compared to those found
using ACSESS (Figure 4D). Also, among the fittest solutions
(solutions having the largest NKp fitness function value, 19 total
possibilities binary strings), the number of fittest solutions found
by SGA is smaller (on average ∼3 fittest solutions) compared to

Figure 5. Progress of ACSESS runs that sample GDB-9. The plots show
the mean of the dipole moments from multiple runs, and the error bars
represent one standard deviation from the mean of either nearest-
neighbor distance or dipole moment. (A) Initially, a maximally diverse
set (measured by nearest-neighbor distance) is generated. (B) The
maximally diverse set is used to maximize their dipole moments.
The minimum dipole moment found after 60 iterations is the desired
dipole moment threshold (i.e., the top 10% fittest molecules).

Table 1. Performance of Methods Based on the Computed
Fitness and Diversity: Comparison of ACSESS with Simple
Genetic Algorithms (SGAs)

methods dipole moment diversity (eq 4)

GA-Roulette 5.8 ± 0.03 6.5 ± 0.7
GA-Tournament 6.4 ± 0.08 3.5 ± 0.7
GA-Elitism 6.74 ± 0.08 5.4 ± 0.4
ACSESS 6.05 ± 0.05 9.7 ± 0.6

Figure 6. ACSESS and SGAs runs that maximize the dipole moments
(fitness) of diverse molecules. The two plots track the average fitness of
libraries generated by each design algorithm (color coded differently),
and the error bars represent one standard deviation from the mean for
multiple runs. (A) compares the fitness of the library optimized using
ACSESS with three other genetic algorithms (colored coded differ-
ently). (B) compares the diversity of the fit libraries generated by
ACSESS and SGAs.
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the number of fittest solutions found by ACSESS (on average
∼15 fittest solutions) (Figure 4C).
ACSESS Explorations in GDB-9. Property-optimizing

ACSESS was used to sample diverse molecules in GDB-9 with
average dipole moments ≥5.5D (the top 10% of molecules). As
in the NKp model space exploration, ACSESS first generated a
maximally diverse set of compounds, without fitness optimiza-
tion, spanning the GDB-9 universe (Figure 5A). The maximally
diverse set was used to seed the next step, where the fitness of the
diverse set was improved iteratively. Figure 5B indicates that
ACSESS finds diverse molecular structures with dipole moments
above the 90th percentile of compounds in the GDB-9 universe
without exhaustively enumerating and evaluating each molecule.
Comparisons of Property-Optimizing ACSESS and

Genetic Algorithm Methods for Property Optimization.
We compared the performance of ACSESS to standard genetic
algorithms (SGAs) to judge the relative performance for pro-
perty biased library design. We ensured fair comparison by 1)

applying dipolemoment filtering in every generation for SGAs and
property-optimizing ACSESS and 2) initializing all algorithms
with the same diverse subset of GDB-9 structures generated using
ACSESS (Figure 5A). SGAs are used mainly for fitness optimiza-
tion, but they can also maintain the diversity of solutions using
techniques such as roulette wheel selection and tournament
selection.21,22 We now explore how well ACSESS optimizes the
fitness and diversity of the library by comparing to these standard
approaches. We compare the performance of ACSESS with SGAs
where each method starts with the same diverse set constructed
using ACSESS (Figure 5A).
As summarized in Table 1, we found, on average, that ACSESS

generate molecules with similar or more favorable dipole
moments (fitness) compared to SGAs, but ACSESS generates
a more diverse set of fit molecules (dipole moment ≥5.5D)
compared to SGAs. More specifically, ACSESS generates
molecules with higher dipole moments (fitness) than SGA
with roulette wheel selection, but ACSESS generates solutions of

Figure 7. SOM for the enumerated and sampled GDB-9. (A) shows the full GDB-9 with color-bar representing average dipole moment per neuron from
blue (low) to red (high). (B) shows the ACSESS designed diverse library (without maximizing the dipole moment). The filling of the plot in B indicates
that the diverse library from ACSESS spans the GDB-9 space. The color bar in B indicates the number of molecules assigned to each neuron. The white
space in both maps indicates regions where no compounds are assigned.
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similar fitness to SGA with tournament selection (Figure 6A).
SGA with elitism (selecting the fittest solutions in every
generation) performs marginally better than ACSESS. However,
Figure 6B indicates that the diversity (measured using the nearest-
neighbor Euclidean distance defined in eq 4) of the molecular
library for ACSESS is much larger than is found with the SGAs. In
fact, the nearest-neighbor Euclidean distance (Euclidean distance of
∼10) of the library generated by ACSESS is similar to the nearest-
neighbor Euclidean distance (Euclidean distance of ∼12) that is
found for the enumerated GDB-9 molecules with dipole moments
≥5.5D. These results indicate that the diversity of the ACSESS
generated library is similar to the diversity of the enumeratedGBD-
9 universe that contains only the compounds above a fitness cutoff.
These findings are similar to those from the model NKp landscape,
where ACSESS generated multiple global optima without
becoming trapped in local optima. In contrast, the SGAs became
trapped in local optima in 40% of the runs (Figure 4B) and
produced far fewer fittest solutions (Figure 4C). These calculations
indicate that the diversity enforcement in ACSESS yields sampling
of different high fitness regions of the GDB-9 space favorably
compared to SGAs. It is important to note that, while ACSESS
generates large diversity solutions, the fitness is still comparable to

and better, in some cases, compared to that found with popular
simple genetic algorithms (Figures 4D and 6A).

Self-Organizing Maps of GDB-9 and of Sampled
Solutions. Additional insight into performance of property-
optimizing ACSESS and SGAs is obtained by visualizing the
sampled molecules with respect to the enumerated molecular
space. For this purpose, we projected the 40 dimension chemical
space into two dimensions using a self-organizing map (SOM).
SOMs are widely used in cheminformatics.23 They have the
useful property of representing high-dimensional neighborhood
relationships.23 A 100 × 100 torroidal grid was used where each
grid point is a neuron.24,25 The SOM in this case was trained
using the enumerated GDB-9. During the training, each neuron
is randomly assigned a chemical space coordinate, and the
neurons are trained by presenting a descriptor vector for each
molecule.24,25 Neurons compete with each other for the pre-
sented descriptor vector and adjust their coordinates based on
the descriptor vector closest to them.23 In the resulting two-
dimensional representation after training the structurally similar
molecules clumped together in the same neuron or nearby
neurons, and the structurally is similar molecules are assigned to
the more distant neurons.

Figure 8.Comparison of the diversity found in an ACSESS library and in an SGA-elitist library to the fully enumerated GDB-9 library. The color bars in
A and B indicate the number of compounds per neuron. (A) shows the more fit molecules (molecules above the fitness cutoff) generated by ACSESS,
(B) shows the more fit molecules (molecules above the fitness cutoff) generated by SGA (elitist), and (C) shows the fittest regions of GDB-9 (≥5.5D
dipole moment) where the color bar represents the number of compounds per neuron. The oval indicates molecules in GDB-9 that are discovered using
ACSESS but missed by SGAs.
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We projected the enumerated GDB-9 on the SOM and also
the maximally diverse subset of GDB-9 sampled using ACSESS
without maximizing the dipole moments (Figures 7A and 7B).
Comparing Figures 7A and 7B we see that by maximizing the
diversity of GDB-9 molecules, we are able to sample various
regions of the enumerated GDB-9. We also projected, on the
trained SOM, the libraries designed using property-optimizing
ACSESS (Figure 8A) and SGA (using the elitist selection
scheme, Figure 8B) and compared those with the high-activity
regions (dipole moment ≥5.5 D) within GDB-9 (Figure 8C).
Figure 8 indicates that the high activity regions of GDB-9 are

identified in ACSESS analysis (Figure 8A in oval) but overlooked
by SGA-elitist analysis (Figure 8B oval). The medium activity
regions (yellow colored regions in Figure 7A) populated by the
ACSESS library that lie above the black oval (Figure 8A) are
absent in SGA library (Figure 8B). The underperformance of
SGA explains why libraries generated by SGAs have lower
diversity compared to the ACSESS generated libraries. While
ACSESS is able to explore different activity islands of GDB-9, the
SGAs fail to do so.

■ CONCLUSIONS

In this study, we showed that property-optimizing ACSESS
explorations navigate large chemical spaces to find compounds
with favorable targeted property values. ACSESS not only
samples diverse regions of chemical space but also samples useful
regions without having to enumerate and test every single
molecule. In fact, only ∼30,000 fitness evaluations were carried
out to locate the different optimal regions of GDB-9 (which
contains ∼300,000 molecules). We explored ACSESS perform-
ance in an NKp landscape and in the GDB-9 for molecular dipole
moment. In these studies, ACSESS performs favorably in terms
of discovering diverse fit solutions compared to standard genetic
algorithms, and ACSESS performs much more efficiently than
exhaustive enumeration.
ACSESS can also be used to sample astronomically large

chemical spaces, and this represents a research direction. Since
property-optimized ACSESS libraries contains multiple favor-
able molecules, one can choose from among the diverse available
alternatives. This approach may assist in reducing attrition in
molecular design challenges. Studies presented here on known
landscapes demonstrate that property-optimized ACSESS can indeed
help to discover diverse useful molecules from the vastness of libraries
chemical space and may assist in successful molecular discovery.
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