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Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers 
for early detection or diagnosis, most patients present with late-stage disease at the 
time of diagnosis, thus limiting the potential for successful treatment. Traditional 
cancer treatments, including surgery, chemotherapy and radiation therapy, have 
demonstrated very limited efficacy for patients with late-stage disease. Therefore, 
innovative and effective cancer treatments are urgently needed for cancer patients 
with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive 
cell transfer, has shown great promise in the treatment of patients with late-stage 
disease, including those who are refractory to standard therapies. In this review, we 
will highlight recent advances and discuss future directions in adoptive cell transfer 
based cancer immunotherapy.
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Background
Cancer is a leading cause of death worldwide, 
and the number of cases globally continues 
to increase [1]. According to the World Can-
cer Report 2014, the global burden of cancer 
rose to an estimated 14 million new cancer 
cases in 2012, and this figure is expected to 
rise to 22 million annually within the next 
two decades. Over the same period, cancer 
deaths are predicted to rise from an estimated 
8.2 million to 13 million per year. Most can-
cers can be prevented or cured if detected at 
an early stage and treated promptly. Unfor-
tunately, due to the lack of ideal cancer bio-
markers for early detection and diagnosis [2], 
most patients present with advanced-stage 
disease at the time of diagnosis, thus limiting 
the potential for successful treatment.

Traditional cancer treatments, including 
surgery, chemotherapy and radiation ther-
apy, have demonstrated very limited efficacy 
for patients with late-stage disease. In addi-
tion, chemotherapy and radiotherapy often 
cause considerable side effects. Therefore, 
innovative and effective cancer treatments 

are urgently needed for cancer patients with 
late-stage and refractory disease. Cancer 
immunotherapy has emerged as a promising 
approach for cancer treatment [3–6]. Recent 
US FDA approval of immunotherapy-based 
vaccines/drugs sipuleucel-T (Provenge®) [7] 
and ipilimumab (Yervoy®) [8] represent mile-
stones in the field of cancer immunotherapy 
for advanced prostate cancer and metastatic 
melanoma, respectively [5]. Furthermore, a 
Phase III clinical trial of gp100 peptide vac-
cine in patients with advanced melanoma has 
shown encouraging results [9]. Thus, cancer 
immunotherapy has become an important 
part of treating cancer patients with advanced 
or refractory disease. Furthermore, immuno-
therapy may be effective in preventing tumor 
recurrence following surgery. Cancer immu-
notherapy holds several key advantages over 
traditional therapies: high specificity, little 
or no side effects for active immunization, 
although adverse effects may occur in adop-
tive cell transfer (ACT) and good safety pro-
file. The key point of immuno therapy is to 
use the patient’s own immune system to con-
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trol and destroy cancer cells. Cancer immunotherapy 
approaches include active immunization, reversal of 
immunosuppression, nonspecific immune stimulation 
and ACT. To date, ACT has been demonstrated to be 
the most effective immunotherapy method for cancer 
treatment and has achieved very promising results in 
cancer clinical trials [10–14]. The first exciting clini-
cal trial of ACT used tumor-infiltrating lymphocytes 
(TILs) [15]. In the TIL-based ACT approach, TILs 
are isolated from the tumor tissues of cancer patients, 
expanded in vitro using a high concentration of IL-2 
(6000 U/ml), and then infused back into the patient. 
The feasibility of the TIL-based ACT approach was 
first demonstrated in melanoma [15], with a current 
objective response rate of 49–72% when lymphode-
pleting preparative regimen is performed prior to TIL 
infusion [4,16]. Successful TIL-based immunotherapy 
has promoted the rapid development of ACT. In 
addition to TIL-based immunotherapy, genetically 
modified cancer-specific T cells, such as T-cell recep-
tor (TCR)- and chimeric antigen receptor (CAR)-
transduced T cells, are being developed to augment 
ACT-mediated immuno therapeutic responses against 
various types of cancer and have already shown 
encouraging therapeutic effects in clinical trials [10–14].

The promising results achieved with the use of 
genetically modified T cells to target cancer earned 
cancer immunotherapy being named as the Science 
‘Breakthrough of the Year’ in 2013 [17]. For the first 
time in many years, many pharmaceutical industries 
are investing heavily to facilitate the development of 
effective genetically modified T cells to treat various 
cancer types. For example, the pharmaceutical giant 
Novartis teamed with the University of Pennsylvania 
in 2012 and invested $100 million to develop CAR-
transduced T cells. More recently, a new biotechnol-
ogy company, Juno Therapeutics Inc., has just been 
launched in December 2013 with an initial investment 
of $145 million to develop TCR- and CAR-trans-
duced T cells. In this review, we will highlight recent 
advances in ACT-based cancer immunotherapy and 
will also briefly discuss future directions in ACT-based 
cancer immunotherapy.

Cancer immunotherapy
The innate and acquired immune systems play a criti-
cal role in immune surveillance and immune defense 
[18,19]. Therefore, the use of the immune system to 
eliminate cancer is a very promising approach for can-
cer treatment [20,21]. Indeed, immunotherapy has dem-
onstrated great potential for cancer treatment [3–6], 
especially for disease refractory to traditional treat-
ments, including surgery, chemotherapy and radio-
therapy. Cancer immunotherapy approaches include 

active immunization, nonspecific immune stimulation 
and ACT. Among these strategies, ACT has achieved 
more exciting results in cancer clinical trials and 
therefore, holds the most promise for the treatment 
of malignant diseases [10–14]. The success of cancer 
immunotherapy relies largely on the identification of 
suitable cancer antigens for the generation of effective 
cancer vaccines and antigen-specific T cells. Since the 
first human cancer antigen MAGEA1 was identified 
in 1991 using in vitro expanded cancer-specific T cells 
from melanoma [22], a growing number of cancer anti-
gens have been identified in different tumor types. 
To date, 403 cancer antigenic peptides have been 
included in the peptide database [23,24]. Our group has 
been working on cancer antigen discovery for many 
years and has identified many cancer antigens includ-
ing TRP1, TRP2, NY-ESO-1, EBNA-1, PSGR and 
SATB1 [25–34]. We have also developed a novel genetic 
approach to identify cancer antigens recognized by 
CD4+ T cells [35–38], which are also believed to play an 
important role in antitumor immunity.

Cancer immunotherapy requires the activation 
and expansion of cancer-specific T cells, which kill 
cancer cells by recognizing antigen targets expressed 
on cancer cells. Over the past 20 years, studies have 
shown that the generation of cancer-specific immunity 
requires three steps (Figure 1). First, antigen-presenting 
cells (e.g., dendritic cells [DCs]) capture and process 
cancer antigens into antigenic peptides, which are pre-
sented in combination with human leukocyte antigen 
(HLA) molecules for recognition by TCR of T cells 
(signal 1) [39]. Second, T-cell activation requires the 
binding of the costimulatory surface molecules B7 
and CD28 on antigen-presenting cells and T cells, 
respectively (signal 2). To achieve optimal T-cell acti-
vation, both signals 1 and 2 are required. Conversely, 
antigenic peptide stimulation (signal 1) in the absence 
of costimulation (signal 2) cannot induce full T-cell 
activation, thus resulting in T-cell tolerance. In addi-
tion to costimulatory molecules, there are also inhibi-
tory molecules, such as CTLA-4 and PD-1, which 
induce signals to prevent T-cell activation [40]. Third, 
activated cancer-specific T cells arrive at tumor sites 
and recognize tumor antigens expressed by cancer 
cells, thereby killing the cancer cells. Although anti-
genic peptide stimulation initiates T-cell activation, 
the degree of T-cell activation is further determined by 
the balance between costimulation and cosuppression. 
Recent clinical trials have demonstrated that blockade 
of PD-1 coinhibition with anti-PD-1 or anti-PD-L1 
therapy enhances T-cell-mediated anticancer responses 
without severe adverse events (SAE) [41,42]. Also, inhi-
bition of CTLA-4 signaling has been shown to sig-
nificantly improve the survival of patients with late-
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Figure 1. The key points in cancer immunotherapy are ‘one activation and 
two inhibitions’ where cancer-reactive T-cell activation by cancer antigen 
represents the one activation and blockade of coinhibitory molecules on 
T cells and reversal of Treg cell-mediated immunosuppression represent 
the two inhibitions. 
DC: Dendritic cell.
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stage melanoma [8,43], leading to the FDA approval of 
the anti-CTLA-4 antibody ipilimumab (Yervoy) for 
metastatic melanoma in 2011. Besides T-cell-intrinsic 
regulation, T-cell activation can also be regulated by 
external factors (extrinsic). For example, cytokines, 
such as IL-2, released by CD4+ helper T cells (Th1 
and Th17) can directly promote cancer-specific T cell 
expansion, while IL-2 may also mediate expansion of 
CD4+ Treg, which antagonize function of cancer-spe-
cific T cells [44]. On the other hand, myeloid-derived 
suppressor cells (MDSCs) and Treg cells, which are 
normally present in the tumor microenvironment, 
inhibit cancer-specific T cell function and induce 
immuno suppression [45,46], leading to poor immuno-
therapy efficacy. Therefore, overcoming Treg/MDSC-
mediated immunosuppression in the tumor micro-
environment might be critical for successful cancer 
immunotherapy. Anti-CD25 antibodies (Ontak and 
Daclizumab) and cyclophosphamide have been used 
to eliminate CD4+CD25+ Treg cells. However, anti-
CD25 antibodies and cyclophosphamide are not 
specific for Treg cell depletion, because CD25 is also 
expressed on effector T cells. In an effort to overcome 
immune suppression and potential problems associated 
with current depletion strategies, we recently demon-
strated that stimulation of human Toll-like receptor 
8 with its ligand, Poly-G3 oligonucleotide, resulted 
in the functional reversal of Treg cells [45,47,48]. Our 
group has recently generated human Toll-like recep-
tor 8 transgenic mice to determine whether blockade 
of Treg cell-mediated immune suppression by Poly-G3 
can enhance antitumor immunity in vivo.

Sipuleucel-T (Provenge) and ipilimumab (Yervoy) 
have been approved by the FDA for treatment of prostate 
cancer and metastatic melanoma, respectively [7,8], and 
a Phase III clinical trial of the gp100 peptide-based vac-
cine in patients with melanoma also produced encourag-
ing results [9]. However, the clinical benefits reported for 
these agents have fallen far short of complete responses 
and permanent cures, although the clinical data for 
ipilimumab are still emerging [49]. In contrast, ACT 
therapy using cancer antigen-specific T cells including 
TILs, peptide-induced T cells and engineered T cells 
(TCR and CAR) has demonstrated dramatic potency 
in cancer treatment [10–14,50], leading to complete and 
durable responses in some patients with late-stage and 
refractory disease. Here, we will present a summary of 
the most exciting clinical results obtained with ACT 
summarized in Table 1 and also discuss future directions 
of ACT-based cancer immunotherapy.

A brief history of ACT for cancer treatment
As early as in the 1980s, lymphokine-activated killer 
(LAK) cells were used to treat tumors in mice and 

humans [74]. Subsequently, in the 1990s, cytokine-
induced killer (CIK) cells amplified from peripheral 
blood mononuclear cells (PBMCs) were evaluated for 
cancer therapy [75]. However, due to the lack of speci-
ficity, LAK and CIK-based therapy exhibited only lim-
ited efficacy [76,77]. With advances in immunology and 
new technologies, cancer antigen-specific T-cell-based 
therapy has shown great promise in treating cancer 
patients. The first cancer antigen-specific T-cell-based 
therapy was the use of TILs for the treatment of mela-
noma in 1988 [15,78]. In a recent series of three consecu-
tive clinical trials, lympho depletion prior to autologous 
TIL infusion achieved objective anticancer responses 
ranging from 49% to 72% [16]. Lymphodepletion may 
deplete Treg cells and other suppressive cells in the 
circulation and the tumor micro environment, thus 
enabling the survival and amplification of adoptively 
transferred TILs to achieve effective killing of cancer 
cells. TIL-based therapy can result in long-term remis-
sion (>5 years) and low recurrence rate [16]. Despite the 
clinical benefits of TIL-based therapy, there are limi-
tations to its successful implementation. TIL-based 
therapy is an individualized treatment that requires 
surgical removal of tumor tissues for TIL cultivation. 
Furthermore, few medical centers worldwide provide 
TIL-based therapy as it requires a highly skilled medi-
cal staff to isolate and cultivate TILs. To overcome 
these barriers, unmodified peptide-stimulated T cells 
and genetically engineered T cells (e.g., TCR- and 
CAR-transduced T cells) that specifically recognize 
antigen targets expressed on cancer cells have been 
employed in clinical trials and have achieved  promising 
and exciting results [10–14,50].
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TILs
Isolation and expansion of TILs for adoptive therapy 
was pioneered by Rosenberg et al. at the Surgery Branch, 
NIH [15]. Studies in mouse models showed that cancer-
reactive lymphocytes are concentrated in TILs and can 
mediate efficient cancer regression [79]. Recently, the 
mining of exomic sequencing data has shown that TILs 
can recognize epitopes of mutated melanoma antigens 
[80,81], further demonstrating that tumor tissues are a rich 
source of cancer-reactive T cells for ACT-based therapy. 
For TIL preparation, cancer tissues are cut into pieces, 
digested and then cultured in T cell medium contain-
ing 6000 U/ml IL-2 for approximately 2 weeks. Posi-
tive wells containing cancer-reactive cells are selected for 
further expansion to achieve large numbers of T cells for 
adoptive transfer. Rosenberg et al. [15] performed the first 

clinical trial of TIL-based adoptive T cell transfer, which 
demonstrated a significant objective response in patients 
with metastatic melanoma. However, cancer regression 
was transient, which was associated with the lack of per-
sistence of the transferred cells in vivo. Subsequently, 
in 2002, chemotherapy-induced lympho depletion was 
introduced to improve TIL-based treatment [51]. Che-
motherapy-induced lymphodepletion prior to adoptive 
cell infusion has been shown to dramatically enhance 
the persistence of the transferred cells and improve anti-
cancer effects [51]. More recently, in three sequential 
clinical trials, 93 patients with metastatic melanoma 
were treated with the adoptive transfer of autologous 
TILs administered in conjunction with IL-2 following 
a lympho depleting preparative regimen. Lymphodeplet-
ing preparative regimens (chemotherapy alone or in 

Malignancy Patient 
number

Type of T cells infused Target antigen Clinical outcomes Ref.

Metastatic melanoma 20 TIL Unknown 1 CR, 10 PR, 1 MR [15]

Metastatic melanoma 13 TIL Unknown 6 PR, 4 MR [51]

Metastatic melanoma 93 TIL Unknown 22 CR, 34 PR [16]

Metastatic melanoma 10 CD8+ T cells MART1/MelanA or 
gp 100

5 SD, 1 MR, 2 minor 
response

[52]

Metastatic melanoma 11 CD8+ T cells MelanA 1 CR, 1 PR, 1 MR, 1 SD [53]

Metastatic melanoma 1 CD4+ T cells NY-ESO-1 1 CR [54]

Metastatic melanoma 14 CD8+ T cells MelanA 2 CR, 4 PR, 1 SD [55]

Metastatic melanoma 11 CD8+ T cells MART1/Tyr/gp 100 1 CR, 5 SD [56]

Metastatic melanoma 17 TCR T cells MART1 2 PR, 1 MR [57]

Metastatic melanoma 36 High affinity TCR T cells MART1 or gp 100 1 CR, 8 PR [58]

Metastatic melanoma 3 TCR T cells CEA 1 PR [59]

Metastatic melanoma/
synovial sarcoma

17 TCR T cells NY-ESO-1 2 CR, 7 PR [60]

Metastatic melanoma 9 High affinity TCR T cells MAGEA3/MAGEA12 1 CR, 4 PR [61]

Metastatic melanoma/
myeloma

2 High affinity TCR T cells MAGEA3/Titin Not evaluable [62,63]

Neuroblastoma 19 CAR T cells GD2 3 CR [64]

Renal carcinoma 12 CAR T cells CAIX Not evaluable [65]

Colon cancer 1 CAR T cells  
(CD28-4-1BB-CD3ζ)

ERBB2 Not evaluable [66]

Lymphoma 1 CAR T cells (CD28-CD3ζ) CD19 1 PR [67]

Lymphoma and CLL 8 CAR T cells (CD28-CD3ζ) CD19 1 CR, 5 PR, 1 SD [68]

CLL 3 CAR T cells (4-1BB-CD3ζ) CD19 2 CR, 1 PR [69,70]

ALL 2 CAR T cells (4-1BB-CD3ζ) CD19 2 CR [71]

ALL 5 CAR T cells (CD28-CD3ζ) CD19 5 CR [72]

ALL 16 CAR T cells (CD28-CD3ζ) CD19 14 CR [73]

ALL: Acute lymphoblastic leukemia; CAR: Chimeric antigen receptor; CEA: Carcinoembryonic antigen; CLL: Chronic lymphocytic leukemia; CR: Complete response; 
MR: Mixed response; PR: Partial response; SD: Stable disease; TCR: T-cell receptor; TIL: Tumor-infiltrating lymphocyte.

Table 1. Recent clinical trials using T-cell-based immunotherapy.
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combination with 2 or 12 Gy irradiation) prior to TIL 
transfer resulted in objective response rates of 49–72% 
as assessed by Response Evaluation Criteria in Solid 
Tumors [16]. It has been clearly shown that increasing 
the intensity of lympho depletion enhances the can-
cer treatment efficacy of adoptively transferred TILs. 
The mechanisms underlying the beneficial effects of 
lympho depleting preparative regimens may include the 
following [82]: elimination of Treg cells and/or MDSCs; 
elimination of endogenous lymphocytes, which may 
remove the competition for homeostatic cytokines such 
as IL-7 and IL-15; and activation of antigen-presenting 
cells, which increases antigen presentation to T cells, 
thus enhancing anticancer immunity [83].

TIL-based adoptive immunotherapy has been 
shown to be the best available treatment for patients 
with metastatic melanoma compared with other treat-
ments including antibody and small molecule thera-
pies. However, there are still many issues that need to 
be resolved: to identify the basis for variation in patient 
response. Why do some patient respond to treatment 
and others do not? Why is TIL-based immunotherapy 
only effective against melanoma even though TILs 
can be also isolated from other solid tumors including 
colorectal cancer, breast cancer, lung cancer and ovar-
ian cancer? Can TIL-based therapy be used to treat 
other solid cancers in addition to melanoma? Further-
more, it is not possible to obtain tumor tissue for TIL 
cultivation from every patient or successfully cultivate 
TILs from resected tumor tissues. Therefore, alter-
native immunotherapeutic approaches to TIL-based 
ACT are needed to treat metastatic melanoma as well 
as other types of solid cancers.

Cancer antigen-induced specific T cells
Cancer antigen-specific T cells can be detected in 
PBMCs of cancer patients [84,85]. These antigen- specific 
T cells can be cultured or enriched from PBMCs or 
TILs following in vitro stimulation using autologous 
antigen-presenting cell pulsed with peptides derived 
from cancer antigens. Cancer antigen-induced spe-
cific T cells have been used for adoptive therapy to 
treat metastatic melanoma with little or no side effects 
[50]. A Phase I study showed that adoptive transfer of 
MART1/MelanA- and gp100-specific CD8+ T-cell 
clones did not show any serious toxicity in patients 
with metastatic melanoma. Furthermore, adoptively 
transferred T cell clones mediated the regression of 
individual metastases and induced minor, mixed or 
stable responses in eight of 10 patients with refractory 
metastatic disease [52]. In another clinical trial, adop-
tive T-cell therapy using MelanA-specific CD8+ T cells 
showed an antitumor response in three of 11 patients 
(one complete regression [CR], one partial regression 

and one mixed response) [53]. Interestingly, Hunder 
et al. reported that adoptively transferred CD4+ T cell 
clones with specificity for the melanoma-associated 
antigen NY-ESO-1 mediated a durable clinical remis-
sion and led to endogenous responses against mela-
noma antigens other than NY-ESO-1 in a patient with 
refractory metastatic melanoma who had not under-
gone any previous conditioning or cytokine treatment 
[54]. In this study, adoptively transferred CD4+ T cell 
clones persisted much longer in the patient’s blood 
(>3 months) than adoptively transferred CD8+ T cells, 
which survived only briefly (<20 days) in vivo in the 
absence of exogenous cytokine [52,53]. These results 
suggest that antigen-specific CD4+ T cells play a criti-
cal role in cancer treatment and may have important 
implications for a new generation of ACT that incor-
porates both antigen-specific CD4+ T cells and CD8+ 
T cells for the treatment of malignant diseases. Subse-
quently, in a Phase II study, six (43%) of 14 patients 
receiving ACT with PBMC-derived MelanA-specific 
T-cell clones experienced an objective response, with 
two patients achieving long-term CR (one CR for 
5 years and one CR for 28 months) [55]. More recently, 
in another clinical trial, 11 patients with refractory, 
progressive, metastatic melanoma received cyclophos-
phamide as conditioning prior to the infusion of anti-
gen-specific CD8+ T-cell clones followed by low-dose 
or high-dose IL-2. Five of 10 evaluable patients had 
stable disease at 8 weeks, and one of the 11 patients had 
a CR that continued for longer than 3 years [56].

The immunotherapeutic strategies using cancer 
antigen-induced specific T cells are clearly feasible 
and identification of potential cancer antigens recog-
nized by autologous T cells and epitopes presented by 
restricting HLA alleles are critical to developing such 
strategies. Our group, as previously mentioned, has 
identified a series of cancer antigens including TRP1, 
TRP2, NY-ESO-1, EBNA-1, PSGR and SATB1 
[25–34]. Some of these cancer antigens have been evalu-
ated in clinical trials and have achieved encouraging 
results [54,86]. With identification of more and more 
cancer antigens expressed by different types of cancer, 
there are opportunities to use such antigens to generate 
cancer antigen-specific T cells in vitro for the treatment 
of various types of cancer. To avoid cancer antigen loss, 
cancer antigen-specific T cells targeting several cancer 
antigens expressed on the same cancer cell type can 
be obtained by in vitro stimulation of peripheral blood 
T cells or TILs.

ACT using cancer antigen-induced specific T cells 
has several advantages: cancer-reactive T cells can be 
obtained by in vitro peptide stimulation of PBMCs, 
which are easily collected from patients; a number of 
cancer antigens and their derived HLA-restricted epi-
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topes have been identified, which will facilitate the 
development of antigen-specific T cells to treat vari-
ous types of cancer; peptides are synthesized cheaply 
and can be easily and safely delivered to any medical 
center for stimulation of cancer-reactive cells; and viral 
vectors are not needed for gene transduction. In addi-
tion to its benefits, ACT using cancer antigen-induced 
specific T cells has several disadvantages: targeting 
of cancer antigens expressed on cancer cells requires 
an MHC restriction; most cancer antigens are self- 
antigens, which are also expressed on normal cells. 
Thus infusion of antigen-specific T cells can target not 
only antigen-positive cancer cells in vivo but also nor-
mal tissues expressing the shared tumor antigen [87]; 
long-term stimulation or cultivation of antigen-specific 
T cells in vitro may exhaust T cells, leading to short-
ened survival in vivo after infusion. However, a recent 
report suggests that exposure of T cells to IL-21 during 
in vitro culture may improve their in vivo persistency 
and expansion efficiency [88]; and the time-consuming 
and labor-intensive limiting dilution approach is often 
used for selecting antigen-specific T cells from thou-
sands of T cell clones. Recently, CD137 has been suc-
cessfully used as a marker to enrich and expand can-
cer-specific T cells from both PBMCs [89] and cancer 
tissues [90], indicating that targeting CD137 may be 
a useful method to rapidly achieve large numbers of 
cancer-specific T cells for ACT.

Antigen-specific TCR-transduced T cells
TCRs expressed on T cells can be genetically engi-
neered in vitro to specifically recognize and kill can-
cer cells [12]. Two approaches are used for TCR gene 
transfer. In the first approach, the antigen-specific TCR 
from PBMC- or TIL-derived cancer-specific T-cell 
clone is cloned, transduced into the peripheral blood 
T cells of patients using lentiviral or retroviral vectors, 
and subsequently amplified using the rapid expansion 
protocol. The second approach involves the generation 
of antigen-specific TCRs through the immunization 
of HLA-I/II transgenic mice with cancer antigen. The 
antigen-specific TCR is cloned and transduced into the 
peripheral blood T cells of the patient for immunother-
apy as described above. TCRs generated in HLA-I/II 
transgenic mice have not been selected in the thymus 
against the full repertoire of human proteins; therefore, 
these murine TCRs usually have a higher affinity for 
human tumor antigens compared to those generated 
from human PBMCs or TILs.

TCR-transduced T cells against several tumor anti-
gens including MART1, CEA, gp100, NY-ESO-1 
and MAGEA3 have been tested in clinical trials [12]. 
The results from these clinical trials have shown great 
promise in treating various types of cancers including 

metastatic melanoma, metastatic colorectal cancer, 
metastatic synovial cell sarcoma and epithelial malig-
nancies. Cancer regression in patients with metastatic 
melanoma following administration of autologous 
T cells genetically engineered to express a TCR against 
MART1 was first reported in 2006 by Rosenberg 
et al. at the NIH [57]. In this study, two of 15 patients 
experienced objective tumor responses, and none of 
the patients developed autoimmune toxicities. Subse-
quently, a TCR with greater affinity for MART1 was 
used in clinical trials by the same group and shown to 
induce partial tumor responses in six of 20 patients [58]. 
However, autoimmune toxicity associated with T-cell-
mediated destruction of normal melanocytes occurred 
in 16 of the 20 patients. Transient dermatologic, ocu-
lar and otologic adverse events were observed including 
skin rash, uveitis and hearing loss. In another clinical 
trial, immunotherapy using a TCR against CEA gen-
erated by immunizing HLA-A2 transgenic mice with 
CEA

691-699
 [59] induced severe transient colitis in three 

patients and a partial tumor response in one patient. 
Importantly, more than 50% of metastatic melanoma 
and synovial cell sarcoma patients treated with adop-
tively transferred T cells expressing a TCR against the 
cancer/testis antigen (CTA) NY-ESO-1 [60] achieved 
objective tumor responses without the induction of 
autoimmune toxicities. Therefore, it seems that TCR 
gene therapy targeting a CTA can mediate tumor 
regression without triggering autoimmune responses 
in normal tissues. However, a recent study showed that 
four of nine patients receiving ACT with autologous 
T cells transduced with a high affinity TCR against 
the CTA MAGEA3

112-120
 [61] manifested severe neuro-

logical toxicities due to an unexpected cross-reactivity 
against a nonidentical HLA-A2-restricted epitope 
present in MAGEA12 that is expressed in normal 
brain tissue. Surprisingly, in another clinical trial, two 
patients who received autologous T cells transduced 
to express an affinity-enhanced human TCR against 
an HLA-A1-restricted epitope (EVDPIGHLY) of 
MAGEA3 experienced fatal cardiac toxicity associated 
with myocardial T-cell infiltration and elevated levels 
of genetically engineered cells in myocardial tissue 
[62,63]. Using an amino acid scanning approach, a pep-
tide from the muscle protein Titin (ESDPIVAQY) was 
identified as an alternative target for the MAGEA3-
derived peptide-specific TCR-transduced T cells and 
the most likely cause of in vivo toxicity.

In addition to antigen-specific TCR-transduced 
T cells, a novel class of recombinant TCRs, immune-
mobilizing monoclonal TCRs against cancer 
(ImmTACs), has been recently described [91]. These 
molecules combine high-affinity TCR-based antigen 
recognition with the immune-activating potential 
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Figure 2. Four generations of chimeric antigen receptor structures. First-generation chimeric antigen receptor (CAR) consists of a 
single signaling domain derived from the CD3ζ chain. Extracellular domain scFv is an antigen-binding site, which is derived from 
monoclonal antibodies. The CAR is tethered to the plasma membrane via a transmembrane domain; second-generation CAR is added 
with an additional intracellular signaling domain to the basic first-generation receptor configuration that provides a costimulatory 
signal (e.g., CD28 or 4-1BB); third-generation CAR is added with two costimulatory domains in series (e.g., CD28 and 4-1BB) to the 
T-cell activatory signaling domain. Fourth-generation CAR employs a vector encoding a CAR and a CAR-responsive promoter that 
responds upon successful signaling of the CAR by the transgenic production of cytokines. Either a first-, second- or third-generation 
CAR may be used in this configuration. 
scFv: Single-chain variable fragment; TM: Transmembrane.
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of an anti-CD3 antibody fragment to potently redi-
rect T cells to kill tumor cells. ImmTACs have been 
demonstrated to be capable of eradicating cancer cells 
in vitro and in vivo [92,93]. An advantage of ImmTAC 
is that it can be formulated as an ‘off-the-shelf ’ drug 
for administration to patients with the relevant HLA 
allele and antigen-positive cancer, whereas drawbacks 
include the need for repeated injections and the lack 
of persistence of cancer-specific memory T cells in the 
body. The ImmTAC drug IMCgp100 is currently in 
clinical trials in melanoma patients.

An obstacle to cancer immunotherapy is that the 
binding affinity of natural TCRs for cancer antigens 
expressed in tumors is generally low. Thus, modified 
high-affinity TCRs are being evaluated in various clin-
ical trials. However, lessons from these clinical trials 
suggest that a TCR with intermediate and not high 
affinity might be a better choice to avoid the occur-
rence of unacceptable SAE due to cross-reactivity with 
cancer antigens expressed at low levels in vital organs. 
In addition, it is of great importance to identify ideal 
cancer antigen targets with tumor-restricted expres-
sion (e.g., NY-ESO-1). In summary, these clinical tri-
als have demonstrated the considerable effector func-

tions of affinity-enhanced TCR-transduced T cells 
in vivo and highlight the potential safety concerns 
for TCR-engineered T cells. Strategies to minimize 
the risk of developing SAEs due to cross-activity or 
‘on-target/off-tumor’ effects should be included in 
future clinical trials.

CAR-transduced T cells
The concept of CAR was firstly introduced by Eshhar 
et al. in 1989 [94]. The current CAR structure is com-
posed of an extracellular single-chain variable frag-
ment of an antibody, an extracellular hinge and spacer 
element, a transmembrane domain, and intracellular 
signaling domains derived from molecules involved 
in T-cell signaling. The ectodomain can specifically 
recognize and bind to cancer cell surface antigens 
(e.g., CD19) and deliver activating signals to T cells 
through CD3ξ or the Fc receptor-γ chain, which in 
turn trigger T-cell effector functions for cancer cell 
elimination. As shown in Figure 2, CAR is generally 
classified into three generations according to the num-
ber of signaling domains [10]. First-generation CARs 
only contain the CD3ζ chain signaling domain. Sec-
ond-generation CARs incorporate an additional sig-

First generation Second generation Third generation Fourth generation

ScFv
TM

Intracellular
signaling
domain CD3ζ

CD3ζ CD3ζ

CD3ζ

CD3ζ

CD28 4-IBB CD28
CD28 
or 4-1BB

4-IBB

Cytokines



1272 Immunotherapy (2014) 6(12) future science group

Review    Wang, Yin, Wang & Wang

naling domain from costimulatory or accessory mole-
cules, such as CD28, 4-1BB (CD137), OX-40, CD244, 
CD27, or ICOS. Second-generation CAR T cells have 
been shown to enhance T-cell expansion and antitumor 
activity compared with first-generation CARs. To fur-
ther improve T-cell expansion, cytotoxicity and in vivo 
persistence, third-generation CARs, which contain an 
additional costimulatory domain, have been devel-
oped. Recently, fourth-generation CARs have been 
described [14,95] in which the gene construct contains 
a vector encoding a CAR and a CAR-responsive pro-
moter, which responds upon successful signaling of the 
CAR by the transgenic production of cytokines such as 
IL-12 (Figure 2). Fourth-generation CAR T cells have 
shown enhanced in vivo anticancer efficacy in preclini-
cal studies [96,97]. CAR-transduced T cell therapy has 
the following advantages: use of autologous T cells to 
reduce the risk of rejection; the same CAR configura-
tion can be used for many patients; a variety of cell 
surface molecules including proteins with varying gly-
cosylation and nonprotein structures such as ganglio-
sides and carbohydrate antigens can be targeted; and 
CAR T cell function is unaffected by tumor escape 
mechanisms related to HLA downregulation and 
altered processing because antigen presentation is not 
MHC restricted.

First-generation CAR T cells targeting neuro-
blastoma, lymphoma, renal cancer and ovarian cancer 
have been evaluated in clinical trials; however, only 
limited clinical activity was achieved due to the lack 
of T cell expansion and long-term persistence in vivo. 
Currently, most clinical trials are using second- or 
third-generation CAR T cells, which lead to more pos-
itive clinical outcomes. Clinical evaluation of adoptive 
immunotherapy with second-generation GD2-specific 
CAR T cells showed that the long-term low-level pres-
ence of CAR-expressing T cells was associated with 
clinical benefits in 19 high-risk neuroblastoma patients, 
including CR in three patients [64]. CAR T-cell-based 
therapy is associated with the risk of developing SAEs 
because most targeted antigens are nonmutated self-
antigens. Indeed, clinical results obtained from sec-
ond-generation CAR T-cell-based therapy targeting 
carbonic anhydrase-9 (CAIX) induced liver toxicity in 
patients with renal carcinoma due to CAR T cell tar-
geting of CAIX-positive bile duct epithelial cells [65]. 
Third-generation ERBB2-specific CAR T cells caused 
fatal respiratory distress syndrome in a colon cancer 
patient, which was associated with CAR T-cell-medi-
ated cytokine release syndrome in response to ERBB2 
expression in the lung epithelium [66].

The most promising results from CAR-transduced 
T-cell therapy have been with CD19-based targeting 
of B cell malignancies. The first patient with a B cell 

malignancy (lymphoma) successfully treated using an 
anti-CD19 CAR was reported by Kochenderfer et al. 
at the National Cancer Institute [67]. This patient still 
has an ongoing response 4 years later. Subsequently, 
six of eight patients with B cell lymphoma or chronic 
lymphocytic leukemia (CLL) treated with anti-CD19 
CAR-transduced T cells achieved an objective clini-
cal response, including one patient with a complete 
response [3,67]. Furthermore, several recent trials have 
also demonstrated positive clinical outcomes with anti-
CD19 CAR T cell therapy in patients with B cell malig-
nancies. A group at the University of Pennsylvania dem-
onstrated that CD19 CAR T cells were able to eradicate 
large tumor burdens and mediate complete and ongo-
ing CRs with long-term persistence of functional CAR 
T cells beyond 3 years in two of three CLL patients 
and one of two acute lymphoblastic leukemia (ALL) 
patients [69–71]. Another group at Memorial Sloan-
Kettering Cancer Center reported that five relapsed B 
cell ALL patients with persistent morphological disease 
or minimal residual disease positive (MRD+) status 
treated with anti-CD19 CAR T cells achieved MRD− 
status, and four of five patients went on to receive allo-
geneic hematopoietic stem cell transplantation [72], 
subsequently they treated an additional 11 patients 
with relapsed or refractory ALL, further confirming 
that anti-CD19 CAR T cells induced CRs in the vast 
majority of patients [73], thus leading to the overall com-
plete response in 88% of 16 patients. It should be noted 
that the former group used a second-generation CAR 
with 4-1BB and CD3ζ costimulatory domains, whereas 
the latter group used a second-generation CAR with 
CD28 and CD3ζ costimulatory domains. Although, 
both complete tumor responses and B cell aplasia have 
been observed in patients treated with T cells trans-
duced with CARs containing either CD28 or 4-1BB, 
it is unclear whether both CAR configurations have the 
same anticancer efficacy in the clinical setting. There-
fore, to identify the optimal CAR configuration, a direct 
comparison of T cells transduced with CARs contain-
ing different costimulatory endodomains should be 
performed in future clinical trials. In addition to B cell 
aplasia caused by infusion of anti-CD19 CAR T cells, 
the other associated toxicity is described as a cytokine 
release syndrome including high-grade fevers, hypoten-
sion, hypoxia as well as neurologic disturbances, which 
may require supportive treatment [68,71,72].

Despite the great success to date with anti-CD19 
CAR T cells in the treatment of patients with B cell 
malignancies, clinical trials targeting solid cancers have 
achieved limited efficacy and observed ‘on-target, off-
tumor responses’ with serious consequences [65,66]. The 
failure of CAR-transduced T cells to treat solid cancers 
may be due to several reasons including lack of ideal 
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cancer antigens, short-term persistence of CAR T cells, 
and inefficient trafficking of sufficient numbers of CAR 
T cells to tumor sites. Furthermore, an immunosuppres-
sive tumor environment also inhibits the functions of 
CAR T cells at tumor sites [98,99]. In addition, another 
potential hurdle for the successful use of CAR T cells 
is emergence of cancer cells that no longer express the 
target due to clonal evolution of cancer cells [71]. Strat-
egies to overcome these barriers should be taken into 
consideration to construct CAR T cells capable of 
treating solid cancers as well as hematopoietic malig-
nancies in future clinical trials. Since it is challenging 
to identify ideal targets allowing for specifically target-
ing cancer cells while avoiding damage to normal cells 
that express the same target, two novel approaches have 
been described to resolve this challenge [100]: one is to 
improve tumor targeting based on combinatorial anti-
gen recognition [101], and the other is to use receptors 
that provide antigen-specific inhibition to divert T cells 
from the normal cells [102]. Another solution is to use 
suicide genes in the T-cell therapy to abort a threatening 
undesirable response [103–105], although this may impair 
subsequent therapeutical effects of the infused T cells.

Conclusion & future perspective
Although ACT-based cancer immunotherapy has 
exhibited encouraging results in clinical trials, this 
success has only been observed in a few types of can-
cer, predominantly in hematological cancers. There-
fore, development of ACT-based immunotherapeutic 
approaches for the efficient and safe treatment of solid 
cancers is a major task in the near future. Identifica-
tion of ideal cancer antigens, in vivo persistency and 
survival of adoptively transferred T cells, cancer bio-
markers for ACT-based therapy, and combinational 
immunotherapy will also be major focuses of future 
research in ACT-based cancer immunotherapy.

Identification of ideal cancer antigens
Currently, most clinical trials of ACT–based immuno-
therapy have used self-antigens that are overexpressed 
in malignant cells compared with normal cells. Thus, 
infused antigen-specific T cells can target not only 
antigen-positive cancer cells in vivo but also normal 
tissues expressing the shared cancer antigen. The big-
gest challenge to overcome remains the identification of 
antigens with a strictly cancer cell-restricted expression, 
such as NY-ESO-1, to achieve selective tumor targeting 
while sparing normal tissues.

In vivo persistence & survival of adoptively 
transferred T cells
Results from clinical trials have suggested that cancer 
regression is positively associated with the long-term 

survival and persistence of adoptively transferred 
T cells in vivo. Strategies to enhance in vivo persis-
tence and survival of transferred T cells can lead to 
improved anticancer efficacy. A recent report suggests 
that exposure to IL-21 during in vitro culture may 
improve the persistence and expansion efficiency of 
T cells in vivo [88]. Naive CD8+ T cells or human stem 
cell-like memory T cells may be the superior subset for 
use in adoptive immunotherapy, because they have a 
higher replicative potential and longer survival in vivo 
[106,107]. The proliferation and survival of adoptively 
transferred T cells may also be enhanced by shRNA-
mediated silencing of genes that inhibit T cell function 
in the tumor microenvironment [108], thus leading to 
enhanced antitumor immunity. Another alternative 
is to generate rejuvenated antigen-specific T cells that 
have a high proliferative capacity by reprogramming to 
pluripotency and redifferentiation [109,110].

Cancer biomarkers for ACT-based therapy
Cancer biomarkers can support and guide clinical 
cancer treatment and development of the candidate 
products [111]. A recent study showed that expression 
of PD-L1 on tumor cells and/or other immune cells 
is positively correlated with anti-PD-1 monoclonal 
antibody-mediated therapy. Thus, identification of 
biological correlates of response, either TILs or tumor 
characteristics, will help not only to select the most 
efficacious cell types for infusion but also patients who 
are most likely to respond to ACT-based therapy.

Combinational immunotherapy
Although emerging techniques allow for the genera-
tion of high affinity antigen-specific T cells capable 
of targeting cancer cells in vitro, immune suppression 
and negative regulation at tumor sites can impede the 
induction of effective anticancer immune responses 
in vivo. Suppressive cytokines/agents such as IL-10, 
transforming growth factor-b, and indoleamine 
2,3-dioxygenase and cell populations such as MDSCs 
and Treg cells present in the tumor microenvironment 
induce immunosuppression, thereby blocking T cell 
function [45,46] and leading to poor antitumor effi-
cacy of immunotherapy. Therefore, combining ACT 
therapy with other strategies that block negative regu-
lators such as PD-1, reverse Treg cell/MDSC-mediated 
immunosuppression, or inhibit tumor cell proliferative 
and metabolic signaling pathways may induce poten-
tially profound immune antitumor responses. In addi-
tion, our group has recently identified several coin-
hibitory molecules including NLRC5, NLRX1 and 
NLRP4 [112–114], which can negatively regulate NF-kB 
and type I interferon signaling pathways. Inhibition of 
these negative regulators can enhance DC functions 
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and reverse immune suppression. Thus, combinational 
therapies of ACT with blockade of NLRC5, NLRX1 
or NLRP4 signaling for cancer treatment merit further 
investigation.

In summary, ACT-based cancer immunotherapy 
has achieved encouraging results in clinical trials and 
has curative potential in some cancer patients. Further 
research is required to develop safe and efficient ACT-
based immunotherapies with broad efficacy against a 
wide range of cancer types. We believe that the increas-
ing interest and investments from pharmaceutical 
industries will accelerate research and development of 
ACT-based cancer immunotherapy to benefit patients 
with various types of cancers.
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Executive summary

Cancer antigen-specific T cells & activation
•	 The success of cancer immunotherapy relies largely on the identification of suitable cancer antigens for the 

generation of effective cancer vaccines and antigen-specific T cells.
•	 The key points in cancer immunotherapy are ‘one activation and two inhibitions’ where cancer-reactive T-cell 

activation by cancer antigen represents the one activation and blockade of coinhibitory molecules on T cells 
and reversal of Treg cell-mediated immunosuppression represent the two inhibitions.

Adoptive cell transfer-based cancer immunotherapy
•	 Tumor-infiltrating lymphocyte based adoptive cell transfer (ACT) has resulted in objective response rates of 

49–72% in patients with metastatic melanoma refractory to standard therapies.
•	 Cancer antigen-induced specific T cells have been used for adoptive therapy to treat metastatic melanoma 

with little or no side effects.
•	 Antigen-specific T-cell receptor-transduced T cells against several tumor antigens have been tested in clinical 

trials and have shown great promise in treating various types of cancers.
•	 Chimeric antigen receptor transduced T cells have shown great success to treat patients with B cell 

malignancies, while clinical trials targeting solid cancers have achieved limited efficacy.
Conclusion
•	 ACT-based cancer immunotherapy has achieved encouraging results in clinical trials and has curative potential 

in some cancer patients.
•	 Further research is required to develop safe and efficient ACT-based immunotherapies with broad efficacy 

against a wide range of cancer types.
•	 Future directions of cancer immunotherapy may include:

 – Identification of ideal cancer antigens.
 – Enhancing in vivo persistency and survival of adoptively transferred T cells.
 – Identification of cancer biomarkers for ACT-based therapy.
 – Combinational immunotherapy.
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