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Abstract

Purpose—Diagnosis and characterization of brain neoplasms appears of utmost importance for 

therapeutic management. The emerging of imaging techniques, such as Magnetic Resonance (MR) 

imaging, gives insight into pathology, while the combination of several sequences from 

conventional and advanced protocols (such as perfusion imaging) increases the diagnostic 

information. To optimally combine the multiple sources and summarize the information into a 

distinctive set of variables however remains difficult. The purpose of this study is to investigate 

machine learning algorithms that automatically identify the relevant attributes and are optimal for 

brain tumor differentiation.

Methods—Different machine learning techniques are studied for brain tumor classification based 

on attributes extracted from conventional and perfusion MRI. The attributes, calculated from 

neoplastic, necrotic, and edematous regions of interest, include shape and intensity characteristics. 

Attributes subset selection is performed aiming to remove redundant attributes using two filtering 

methods and a wrapper approach, in combination with three different search algorithms (Best 

First, Greedy Stepwise and Scatter). The classification frameworks are implemented using the 

WEKA software.

Results—The highest average classification accuracy assessed by leave-one-out (LOO) cross-

validation on 101 brain neoplasms was achieved using the wrapper evaluator in combination with 

the Best First search algorithm and the KNN classifier and reached 96.9% when discriminating 

metastases from gliomas and 94.5% when discriminating high-grade from low-grade neoplasms.

Conclusions—A computer-assisted classification framework is developed and used for 

differential diagnosis of brain neoplasms based on MRI. The framework can achieve higher 

accuracy than most reported studies using MRI.
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Introduction

Brain cancer is a serious and usually life-threatening medical condition. Brain tumors can be 

either benign (non-cancerous) or malignant which are characterized by uncontrolled 

proliferation. The malignancy of brain neoplasms is measured by the tumor grade which is 

determined by visually examining tissue sections (biopsies), based on guidelines determined 

by the World Health Organization (WHO). The classification of brain neoplasms is of 

critical clinical importance in making decisions regarding initial and evolving treatment 

strategies, for example high-grade gliomas are usually treated with adjuvant radio—or 

chemotherapy after resection, whereas low-grade gliomas are not. The objective of this 

study is to provide an automated tool that integrates advanced MR with conventional MR 

imaging findings in order to assist in the radiological diagnosis of brain neoplasms by 

determining the glioma grade and differentiating between types, such as primary neoplasms 

(gliomas) from secondary neoplasms (metastases). Automated tools, if proven accurate, can 

ultimately be applied to (1) provide more reliable differentiation, especially when the 

neoplasm is heterogeneous and therefore cannot be adequately sampled by localized needle 

biopsy, (2) circumvent invasive procedures such as biopsy, especially in cases where the 

risks outweigh the benefits, (3) expedite or anticipate the diagnosis (histological 

examination is usually time consuming), and (4) avoid the inter and intra observer 

variability observed when pathologists give different relative importance to each of the 

grading criteria [1]. Moreover, in contrast to the standard procedure of radiological 

diagnosis based on visual inspection of cross-sectional medical images, a computer-based 

approach can optimally combine the multi-parametric diagnostic data. The focus of this 

study is to investigate machine learning techniques, including attribute selection and 

classification. Attribute selection aims at retaining only the most relevant attributes and thus 

improve the generalization ability and the performance of the classifier.

Related works

Significant efforts on differentiating brain neoplasms have been made by incorporating MR 

(or CT) imaging features into pattern classification frameworks. These efforts include the 

application of Linear discriminant analysis (LDA) [2,3] and Independent component 

analysis (ICA) [4] on spectral intensities. In another study, variable selection and 

classification using Bayesian least squares Support vector machines (SVMs) and Relevance 

vector machines were applied on microarray and spectroscopy data [5]. The previous studies 

used a single MR sequence and did not investigate the contribution of multiple imaging 

parameters. Multi-parametric features were explored by non-linear classification techniques 

in [6,7]. Li et al. [6] classified gliomas according to their clinical grade using linear SVMs 

trained on a maximum of 15 descriptive features (such as amount of mass effect or blood 

supply), which were estimated quantitatively by domain experts. The definition of such 

features was based on expert knowledge and therefore is not completely automated and 
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reproducible. Devos et al. [7] combined standard MR intensities with spectroscopy imaging 

to improve classification performance using three classification techniques (LDA and linear 

and nonlinear least squares SVMs). Rajendran et al. [8] proposed a method which makes use 

of association rule mining technique to classify the CT scan brain images into three 

categories (normal, benign, and malign).

Contributions

In this study, we explore the heterogeneous regions of brain tumors by combining imaging 

attributes from several sequences, extract morphological characteristics, and assess the 

significance of each attribute in classification. This approach incorporates imaging data 

which are acquired in a routine clinical protocol, such as multi-parametric conventional MRI 

and perfusion. MR spectroscopy was not incorporated because it is not always acquired in 

general clinical practice.

The method is applied for pairwise classification, but also the multi-class classification 

problem is investigated for differentiating between the most common brain tumors: 

metastasis, meningioma (usually grade I), and gliomas (grade II, III, and IV) 

histopathologically diagnosed and graded according to the WHO system.

The extraction of attributes is based on prior work [9] whereas the purpose here is to focus 

on the attribute selection and classification. We want to asses several feature selection 

methods and classifiers and compare against the SVM-based criteria used in [9] in order to 

improve classification accuracy. The machine learning schemes are implemented in the 

WEKA platform [10] and assessed with LOO cross-validation. Results showed that 

accuracy was not significantly improved when textural characteristics were used, as in [9]. 

Thus, the current analysis is based only on shape and intensity characteristics.

The paper is organized as follows. First the methods are presented including the description 

of the data, the definition of ROIs, and the attribute extraction. Then the implemented 

methods of attribute selection and classification are presented and the experiments 

performed in this study are described. Specifically, we first examine each pairwise 

classification problem and subsequently we assess the classification accuracy into one of 4 

classes (multiclass problem). Subsequently, the experimental results for several schemes are 

presented and the optimal method for the problem under consideration is highlighted. The 

final section is devoted to some discussion and concluding remarks.

Methods

We propose a multi-parametric framework for brain tumor classification and prediction of 

degree of malignancy by integrating shape and intensity-based attributes into pattern 

classification methods. The attributes are first normalized to have zero mean and unit 

variance. Several attribute selection methods are then applied to select a small set of 

effective attributes in order to improve generalization ability and classification performance. 

The data are provided by the University of Pennsylvania and preprocessed as described with 

details in [9]. The preprocessing steps and the definition of ROIs are briefly repeated here 

for completeness.
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Data description, definition of ROIs, and attribute extraction

Ninety-seven patients (age 17–83 years) with a diagnosis of brain neoplasm were examined 

who had not been treated at the time of MRI acquisition. Four patients had multiple (2), not 

related to each other, tumors which were regarded as independent masses. All patients 

underwent biopsy or surgical resection of the neoplasm with histopathological diagnosis. 

The total of 101 brain masses were graded based on WHO criteria as metastasis (24), 

meningiomas grade I (4), gliomas grade II (22) including ependymomas (2) and gliomatosis 

cerebri (2), gliomas grade III (17), and glioblastomas grade IV (34).

The MR sequences used in this study were the following: axial 3D T1-weighted (T1), 

sagittal 3D T2-weighted (T2), Fluid-Attenuated Inversion Recovery (FLAIR), axial 3D 

contrast-enhanced T1-weighted (T1ce) images, and relative cerebral blood volume (rCBV) 

maps generated offline based on T2*-weighted dynamic susceptibility perfusion MRI.

The images were preprocessed following a number of steps including noise reduction, bias-

field correction, co-registration of all sequences (T1, T2, T1ce, FLAIR, rCBV), skull 

stripping, and histogram matching. Histogram matching was not applied to the rCBV maps.

Attributes were extracted from the following ROIs, which were manually traced by an 

expert neuroradiologist:

• ROI1 (neoplastic, enhancing), ROI2 (neoplastic, non-enhancing): includes all non-

necrotic enhancing neoplastic tissue, or, if the lesion did not show enhancement, 

the whole non-necrotic T1-hypointense neoplastic tissue avoiding peritumoral 

edema by tracing the FLAIR image.

• ROI3 (necrotic): this ROI was delineated only in cases including necrotic tumor 

tissue.

• ROI4 (edematous): FLAIR and T2 images were used to depict the peritumoral 

edema (possibly including neoplastic infiltration), drawing the ROI surrounding the 

high signal intensity seen on these sequences.

We chose a large number of features (152) for investigation which included age, tumor 

shape characteristics, image intensity characteristics within several regions of interest, as 

explained next.

1. Shape characteristics (evaluated in ROI1∪ROI2∪ROI3) tumor circularity, 

irregularity, rectangularity, entropy of radial length distribution of the boundary 

voxels, surface-to-volume ratio. The shape of the tumor as well as its intensity 

profile in the tumor boundary are important characteristics. For example, 

menigiomas are well defined with sharp boundaries and quite regular shape, while 

the infiltrative GBMs have a more convoluted shape and diffusive boundaries. 

Similarly, the edema in the case of meningiomas is usually pure vasogenic and lies 

only in the white matter, thus the edematous ROI has a very irregular shape. On the 

contrary, in the case of high grade tumors, edema is mixed with tumor infiltration 

making the boundaries smoother and more blurry. The tumor case examples in Fig. 

1 illustrate these concepts.
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2. Relative volumes of ROIs ratio of tumor volume being enhancing, necrotic, and 

edematous versus total tumor volume. The presence and amount of the different 

histological tissue, such as enhancing tumor and necrosis, is an important criterion 

for tumor classification [27,28].

3. Image intensity characteristics The histogram of the MR images is calculated 

(using 10 bins) and five main components are used as attributes. Moreover, the 

mean, variance, skewness, and kurtosis of image intensities of different sequences 

are calculated in the central area of several ROIs. Also, the mean and variance of 

the gradient image in the margin of the ROIs are included. All intensity related 

attributes sum up to 143 in total. The marginal area is extracted from the ROIs in 

order to capture possible differences in imaging profiles in the boundaries, which 

might be related to either tumor infiltration or mass effect. These two factors are 

usually being explored during radiological diagnosis. The histogram and the other 

statistical characteristics are included in order to investigate whether there are 

informative differences in the intensities across different tumor types.

Attribute selection

The attribute selection is a widely known process, during which a subset of the most 

informative attributes is chosen, so that the highest accuracy is achieved using the least 

number of variables. Attribute selection involves searching through all possible 

combinations of attributes in the data to find which subset of them works best for prediction. 

To this end, the attribute selection algorithms are characterized by two components: (i) the 

method used to define the predictive value of each subset of attributes, denoted as feature 

evaluator, and (ii) the method determining the search over the attributes, denoted as search 

method.

In our study, three evaluators are used: a correlation-based feature selection (CFS) method 

[12], a method evaluating consistency in the class values [13], and an approach based on 

wrappers [14], as explained next. The CFS [12] algorithm evaluates the worth or merit of a 

subset of attributes by considering the individual predictive ability of each attribute along 

with the degree of redundancy between them. The equation below [15] formalizes the 

heuristic:

where Merits is the heuristic “merit” of a feature subset S containing k features, r̄cf the 

average feature class correlation, and r̄ff the average feature-to-feature intercorrelation. This 

equation is, in fact, Pearson’s correlation, where all variables have been standardized. The 

consistency measure [13] evaluates the predictive value of a subset of attributes by the level 

of consistency in the class values when the training instances are projected onto the subset of 

attributes. The consistency of any subset can never be lower than that of the full set of 

attributes. In the case of the wrapper approach [14], an induction learning algorithm is 

applied repeatedly on a distinct portion of the dataset using various feature subsets. A 
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classifier is built on each feature subset using a set aside distinct portion of the dataset, and 

the feature subset with the highest performance (measured by some criterion) is used as the 

final set.

Also, in this study three search methods are examined, the Best First [16], Greedy Stepwise 

[17], and Scatter Search [18]. The Best First method [16] searches the space of attribute 

subsets by greedy hill climbing augmented with a backtracking facility. It starts with the 

empty set of attributes and searches forward. The Greedy Stepwise [17] method performs a 

greedy forward or backward search through the space of attribute subsets. It starts with a 

population of many significant and diverse subsets and stops when the accuracy is higher 

than a given threshold or there is no more improvement. Scatter Search [18] is an 

evolutionary method that combines solution vectors by linear combinations to produce new 

ones through successive generations.

Classification

In this study, several classifiers are examined: J48 tree [19], K-nearest neighbor (KNN) [20], 

VFI [21], SVMs [22], and Naïve Bayes [23]. J48 [19] is an implementation of C4.5 

algorithm that produces decision trees from a set of labeled training data using the concept 

of information entropy. It examines the normalized information gain (difference in entropy) 

that results from choosing an attribute for splitting the data into smaller subsets. To make the 

decision, the attribute with the highest normalized information gain is used. The KNN 

algorithm [20] compares the test sample with the available training samples and finds the 

ones that are more similar (“nearest”) to it. When the k-nearest training samples are found, 

the class label in majority is assigned to the new sample. Learning in the VFI algorithm [21] 

is achieved by constructing feature intervals around each class for each attribute (basically 

discretization) on each feature dimension. Class counts are recorded for each interval on 

each attribute and classification is performed by a voting scheme. The Naïve Bayesian 

Classifier [23] assumes that features are independent. Given the observed feature values for 

an instance and the prior probabilities of classes, the a posteriori probability that an instance 

belongs to a class is estimated. The class prediction is the class with the highest estimated 

probability. The SVMs [22] first map the attribute vectors into a feature space (possibly with 

higher dimensions), either linearly or nonlinearly, according to the selected kernel function. 

Then, within this feature space, an optimized linear division is sought; i.e., a hyperplane is 

constructed which separates two classes (this can be extended to multiple classes).

Experiments

First, we examined all 10 pairwise problems between meningioma, glioma grade II, grade 

III, grade IV, and metastasis, using all the combinations of the above-mentioned methods. 

Examples of these tumor types are shown in Fig. 1. The purpose of this step is to choose the 

evaluators and the search methods, which provide high average accuracy, e.g., more than 

90%. The multiclass problem is studied using the methods for attribute selection and 

classification that performed best in the pairwise classification problems.

Classification is performed by following a LOO strategy on the training samples.
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Results

Pairwise classification

Table 1 shows the average accuracy (percentage of correctly classified samples) over all 

pairwise problems and the average area under the receiver operating characteristic curve 

(AUC), respectively, for the combinations that achieved accuracy greater than 90%. The 

results are sorted from the highest to lowest accuracy. It can be seen that the wrapper 

evaluator in combination with Best First and Greedy Stepwise search algorithms has the 

highest accuracy.

Among the pairwise problems the lowest accuracy (89.7%) is observed for the classification 

of gliomas grade II versus grade III and the highest accuracy (100%) for the classification of 

metastases versus meningiomas, metastasis versus gliomas grade II, meningiomas versus 

grade II or grade III or grade IV gliomas, and gliomas grade II versus gliomas grade IV.

Moreover, two additional pairwise problems were examined: primary neoplasms (gliomas) 

versus secondary neoplasms (metastases) and low versus high-grade gliomas. Meningiomas 

were not included in these combined classification problems because they differ from the 

glial tumors and metastases in both origin and behavior. The average LOO accuracy of the 

applied methods for these pairwise problems is displayed in Figs. 2 and 3, respectively. The 

wrapper evaluator in combination with the Best First search algorithm exhibits again the 

highest accuracy.

When the presented attribute selection methods were used in combination with an SVM 

classifier, the results were similar or worse than those in previous work [9] using weighted 

SVMs [25]; however, the accuracy increased when a VFI or KNN (k = 3) classifier was 

applied instead of the SVMs. The good performance of the KNN classifier here might be 

attributed to the significantly small number of retained attributes, N = 2.4 and N = 2.7 on the 

average for all pairwise classification problems when the Best First and the Greedy Stepwise 

search algorithms were used, respectively.

Finally, the proposed attribute selection method was compared against a popular 

dimensionality reduction method, the Principal Component Analysis (PCA) [26]. PCA, also 

named Karhunen–Loève transform, applies an orthogonal linear transformation that 

transforms the data to a new coordinate system of uncorrelated variables called principal 

components. The principal components are sorted such that the first components describe 

the direction of maximum variance of the data. We have applied PCA to reduce the number 

of variables and plotted the classification accuracy versus the number of retained 

components. As shown in Fig. 4, the classification accuracy is smaller than the accuracy of 

the proposed scheme for both classification problems, low versus high-grade gliomas and 

primary versus secondary neoplasms.

Multiclass classification

The accuracy of LOO cross-validation of the multiclass problem is shown in Fig. 5. The 

highest accuracy (76.29%) is achieved when using the wrapper approach as evaluator, the 

Best First search algorithm and the VFI as classifier. The results in Fig. 5 illustrate that the 
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wrapper approach outperforms the CFS evaluation method for the same classifier. The 

application of the Greedy Stepwise search method did not increase the accuracy.

The confusion matrix for the best method is displayed in Table 2. Metastases get classified 

with very high sensitivity (95.8%) and glioblastomas and grade II gliomas with relatively 

high sensitivity (82.4 and 81.8% correspondingly). Grade III gliomas get classified with 

very low sensitivity; the largest portion is classified as grade II and the rest is assigned 

equally to GBMs and to metastases. The prediction of glioma grade is inherently difficult 

since brain neoplasms are often heterogeneous, meaning that different histopathologic 

features can be present throughout an individual neoplasm. The failure of the method to 

classify grade III gliomas possibly indicates that the extracted attributes do not form a 

separate cluster, but are rather similar to the attributes of the nearby classes (grade II and 

grade IV). The highest specificity is observed for grade III gliomas.

For both pairwise and multiclass problems, the genetic algorithms and the neural networks 

were also investigated. However, the performance of the classification system did not 

improve.

Evaluation of attributes

The attributes of the final set are different for each classification pair and each attribute 

selection method. Table 3 shows the most frequently selected attributes over all pairwise 

problems. The 1st column shows the quantity being calculated, the 2nd column the MRI 

sequence exploited (when imaging characteristics are extracted), and the 3rd column shows 

the involved ROI. The most important attribute was the enhancing portion in T1 contrast-

enhanced images; it was selected almost 3 times more often compared with the next most 

important attribute. This result is in accordance with other studies [9,27,28] and is justified 

by the fact that the presence of enhancing tumor is a decisive criterion in determining tumor 

malignancy during radiological diagnosis. Overall the attribute selection and ranking 

showed that parameters extracted from T1 contrast enhanced, FLAIR, and rCBV images 

were more informative than parameters from T1 and T2 images.

Conclusions

In this study, several machine learning techniques for attribute selection and classification 

were examined with the purpose of brain tumor classification. The potential of attributes 

extracted from conventional and perfusion MRI was exploited and the diagnostic value of 

each attribute was investigated.

The highest accuracy was achieved by the wrapper evaluator in combination with the Best 

First search method for both the pairwise and the multiclass problems. The classifier 

achieving the highest accuracy was the KNN (k = 3) or the VFI depending on the 

classification problem, but the KNN is preferred due to its simplicity and overall more stable 

performance.

Concluding, the proposed classification scheme (consisting of the wrapper evaluator, Best 

First search method and KNN classifier) achieved overall high accuracy considering the fact 
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that MR spectroscopy was not incorporated in the analysis. More extensive training using 

larger datasets is expected to further improve generalization ability of the scheme and also 

increase the performance of the whole classification system.
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Fig. 1. 
Examples of preprocessed axial T1 contrast-enhanced images (1st row) and FLAIR images 

(2nd row) with brain neoplasms. From left to right: meningioma, glioma grade II, III, IV, 

and metastasis
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Fig. 2. 
Average classification accuracy of primary neoplasms (gliomas) versus metastases
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Fig. 3. 
Average classification accuracy of low versus high-grade gliomas
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Fig. 4. 
Attribute selection via PCA. The accuracy of a KNN (k = 3) classifier is shown versus the 

number of retained components for the classification of low versus high-grade gliomas and 

gliomas versus metastasis
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Fig. 5. 
Accuracy for the multiclass problem
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Table 2

Confusion matrix for the multiclass problem

Metastasis Grade2 Grade3 Grade4 ← classified as

23 0 0 1 Metastasis

1 18 1 2 Grade2

3 6 5 3 Grade3

5 1 0 28 Grade4
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Table 3

The most frequently selected attributes over all pairwise problems and the corresponding frequency (f)

Most frequently selected attributes characteristic MRI ROI* f

Percentage enh. tumor T1ce 1 55

Mean T1ce 1 (margin) 20

Mean T1ce 2 (central) 20

Variance FLAIR 4 (margin) 13

Mean FLAIR 4 (central) 13

Skewness FLAIR 1 ∪ 2 ∪ 3 13

Circularity – 1 ∪ 2 ∪ 3 13

Variance FLAIR 4 (central) 12

Percentage necrosis T1ce 3 12

Variance rCBV 2 (central) 11

Irregularity – 1 ∪ 2 ∪ 3 11

Percentage edema FLAIR 4 10

Variance T1ce 2 (central) 9

Mean rCBV 1 (margin) 9

Variance rCBV 4 (margin) 7

Attributes are extracted from ROIs (1 neoplastic enhancing, 2 neoplastic non-enhancing, 3 necrotic, 4 edematous)
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