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Abstract

In order to quantitatively analyze biological images and study underlying mechanisms of the 

cellular and subcellular processes, it is often required to track a large number of particles involved 

in these processes. Manual tracking can be performed by the biologists, but the workload is very 

heavy. In this paper, we present an automatic particle tracking method for analyzing an essential 

subcellular process, namely clathrin mediated endocytosis. The framework of the tracking method 

is an extension of the classical multiple hypothesis tracking (MHT), and it is designed to manage 

trajectories, solve data association problems, and handle pseudo-splitting/merging events. In the 

extended MHT framework, particle tracking becomes evaluating two types of hypotheses. The 

first one is the trajectory-related hypothesis, to test whether a recovered trajectory is correct, and 

the second one is the observation-related hypothesis, to test whether an observation from an image 

belongs to a real particle. Here, an observation refers to a detected particle and its feature vector. 

To detect the particles in 2D fluorescence images taken using total internal reflection microscopy, 

the images are segmented into regions, and the features of the particles are obtained by fitting 

Gaussian mixture models into each of the image regions. Specific models are developed according 

to the properties of the particles. The proposed tracking method is demonstrated on synthetic data 

under different scenarios and applied to real data.
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I. Introduction

With the rapid development in fluorescence microscopy, biologists can observe the 

dynamics of individual particles and investigate the molecular mechanisms underlying the 

cellular and subcellular processes. Total Internal Reflection Fluorescence (TIRF) 

microscopy [1], in particular, allows observing events that occur near the cell cortex such as 

endocytosis, exocytosis and the associated remodeling of the surrounding cytoskeleton. 

Studies of these processes can lead to better mechanistic understanding of related diseases. 

We are particularly interested in clathrin mediated endocytosis (CME) [2]–[4], an essential 

subcellular process. CME has house-keeping functions in almost all types of cells. It is used 

to take up nutrients and other extracellular material, to internalize plasma membrane 

proteins such as receptors and transporters, and to compensate the increase in surface area 

resulting from fusion of secretory vesicles with the plasma membrane. CME also plays 

specialized functions in specific cell types. For instance, CME is a major route for synaptic 

vesicle recycling at neuronal synapses, a process essential for synaptic transmission [2], [5], 

and dysfunction of the process may be implicated in several neurological and psychiatric 

diseases including Alzheimer disease [6]–[8]. Abnormal function of CME can be involved 

in cancer [9] and diabetes [10]. Also, CME is one of the pathways through which viruses 

enter cells [11].

The CME process [2] is illustrated in Fig. 1: Adapter binds to cell plasma membrane and 

recruits clathrin, a type of protein. The outer layer of a particle is assembled from clathrin, 

which is called clathrin-coat. A small portion of the cell membrane invaginates to form the 

inner layer of the particle. Then the particle matures and remains stable for a while. In the 

final stage, the neck of the particle, which links to the cell membrane, is cut off, which is 

called fission, and then the clathrin coat is dissociated, which is called uncoating. The entire 

process can be monitored by fluorescence microscopy if a component of the clathrin coat is 

labeled with a fluorescent tag in the living cell. The particle is called clathrin coated pit 

(CCP) before fission, and after fission it is renamed as clathrin coated vesicle (CCV) until 

uncoating. For the sake of simplicity, we call it as CCP particle in the rest of this paper. 

During the process, the fluorescence intensity of the particle increases as new clathrin 

comes, and remains at a relatively stable level after the particle matures, and then decreases 

rapidly after fission due to dissociation/shedding of clathrin units (uncoating) and exiting 

from the TIRF illumination field. The movement of each particle is mainly caused and 

constrained by two factors. First, tiny molecules in cytosol randomly hit each particle during 

the whole process. Second, the neck of each particle prevents it from going far away from its 

connection point on the cell membrane.

For quantitative studies of CME, biological parameters need to be calculated from the 

features of the CCP particles. However, since image datasets from an experiment typically 

consist of several thousand image frames, manual processing is very painful. Due to the 

importance and complexity of CME, it is very useful to develop an automatic tracking 

method.

To design a particle tracking method, there are two major challenges. The first one is to 

design appropriate models according to the properties of the particles. Different types of 
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particles may look similar but have significantly different dynamics (e.g., different types of 

motions). In the literature, particle appearance models [12] are well studied, e.g., Gaussian 

model, and directly applicable to many applications, but different dynamic/motion models 

need to be designed for different types of particles. There are many particle tracking 

methods for different biological applications [13]–[19]. For example, in [18] a method is 

proposed to track microtubule tips moving at nearly constant velocity, which can be well 

described by a linear motion model. In [13], a method is presented to track quantum dots 

which can rapidly switch between acceleration mode and steady speed mode. Equipped with 

multiple motion models and an interacting multiple model (IMM) filter, that method [13] is 

able to track the targets with the switching modes. The properties of the CCP particles are 

different from those of the other particles: CCP motion is constrained as compared to the 

relatively free motions of the others; new CCP particles can appear near the positions where 

matured CCP particles disappear, and as a result, independent trajectories may be 

erroneously linked together without using proper models. Therefore, those methods are not 

directly applicable for our application.

The second challenge is to manage trajectories and handle data associations effectively 

when the number of particles is large, which requires good tracking frameworks. A particle 

tracking method can be as simple as tracking each particle independently by calculating 

image correlations [20], but it can not handle complex scenarios. To track multiple particles 

together, most of the particle tracking methods in the literature consider tracking as 

statistical inference with different criteria such as MAP (maximum a posteriori) and MMSE 

(minimum mean squared error) [20]–[23], and try to solve it in various ways. Some methods 

use stochastic sampling based frameworks [24], e.g., particle filter [18], [25] or Markov 

chain Monte Carlo (MCMC) [26]–[28], to numerically approximate the posterior probability 

function by a set of weighted samples when the tracking problem is nonlinear and non-

Gaussian. The nonlinearity is mainly induced in the imaging process, in which the observed 

bright spots are the results of convolutions between the optical system function and the 

fluorophore distributions of the particles. The non-Gaussian property mainly arises from 

image noises, e.g., photon shot noise in CCD cameras, which follows Poisson distribution. 

The motion of the particles can always be modeled using linear models, even when the type 

of the motion is nonlinear, and therefore, its contribution to nonlinearity can be ignored. 

Similarly, image noise distributions can be well approximated by Gaussian distributions 

when image signal is high enough [29], [30]. Based on those properties, many other methods 

tailor the classical multiple hypothesis tracking (MHT) method [31] to fit into different 

applications [13], [19], [23], [32], [33], in which particle detection is separated from the 

other tasks as an independent module and stochastic sampling is no longer needed.

In the MHT framework [24], target (e.g., particle) tracking can be decomposed into three 

tasks: detection, state estimation and prediction, and linking. Detection is to find the 

positions of the targets and estimate some other features in a single image, i.e., at each time. 

By assembling these estimated features of a target into a vector at each time, we get the 

observation/measurement of the target at each time. State estimation is to recover some 

features that are not directly observable in a single image (e.g., intensity variation), or refine 

some features that contain noises (e.g., intensity). By assembling all the features of a target 

into a vector at each time, we get the state vector of the target at each time. State prediction 
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is to predict the state of a target in the near future based on current and past information. 

Filters may be used for state estimation and prediction, such as Kalman filter if only one 

linear model is used, or interactive multiple model (IMM) filter if multiple linear models are 

used. Linking is to find the most probable trajectories by considering the observations from 

multiple image frames. In another point of view, linking is to find the correspondences 

between the trajectory tags and the observations which is the so-called data association 

problem. Therefore, linking is just a combinatorial optimization problem, and can be solved 

by using a variety of algorithms [23], [34]–[37]: graph based algorithms, or dynamic 

programming, or integer programming. The objective functions used in the linking task are 

related to particle models, observations, estimated states and predicted states. The MHT 

framework is more straightforward compared to the stochastic sampling based approach, 

and tracking results are strictly reproducible which is required in our application.

The known issue of the MHT framework is the solution space will expand exponentially fast 

as the number of image frames used for linking increases, which may require an 

unaffordable amount of computer memory. Many methods are proposed to overcome the 

issue. The most straightforward and effective one [34] is to use a sliding time window to 

restrict the number of image frames used for linking. Since computer memory and CPU 

speed have significantly increased in recent years, methods based on MHT and sliding time 

window have become practical in real biological applications [23], [32].

The MHT framework has an implicit assumption that the observations of the targets are 

already given by the detection module except that it is not known which observation 

corresponds to which target, and vice versa. The assumption can be violated in two 

situations as explained in the following two paragraphs.

Firstly, if the images have very low signal to noise ratios (SNRs), e.g., SNR = 1, then the 

signals of the particles will be buried in the background noise and almost cannot be detected. 

In our application, when a CCP particle is at the very beginning of the assembly stage or at 

the very end of the uncoating stage, its signal is below the detection limit and therefore can 

not be detected, but that does not matter as long as we can observe its majority activities. 

Since TIRF microscopy is used in our application, image SNR is relative high (much higher 

than 4 usually), and therefore this situation is not our concern.

Secondly, if particle density is high, then pseudo- splitting and merging events will occur 

frequently. The size of each particle is usually smaller than the spatial resolution of the 

microscopy. As a result, if particles come too close to each other, they can not be 

distinguished clearly. In extreme cases, some particles actually move very close to each 

other at some time t such that the local intensity profile can be well described by a single 

Gaussian function. Although it looks like a merging event happens, particles do not merge 

physically. Due to such events, detection may be imperfect, that is, there are no strict 

correspondences between observations (i.e., detected particles) and particles (i.e., real 

particles). For example, two observations in an image region may be related to three 

particles or more. In our application, some CCP particles may temporarily crowd together 

(pseudo-merging) and then move apart (pseudo-splitting). As a result, there may be many 

suspicious observations, each of which may correspond to several particles, and the number 
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of corresponding real particles and their states are all unknowns. To solve this kind of 

problem, a direct approach is to fit more than one Gaussian function around every suspicious 

observation. Since the number of particles corresponding to each suspicious observation is 

unknown, the optimal number of Gaussian functions to be fitted is also unknown. As a 

result, either the total number of particles needs to be known or fixed which is unrealistic, or 

some thresholds [38] need to be specified by the user, but it is difficult to find good 

thresholds manually. There are some indirect approaches worth trying such as pixel 

clustering [39] and finite mixture model learning [40]. A method in [41] uses k-means based 

functions to cut the suspicious observations into pieces, and find the best result. That 

concept is not applicable for our application because when more than one particles move 

close, the local intensity profile will be a mixture of Gaussian functions intersecting with 

each other, and small segments of the profile are meaningless. By considering the image 

intensity profile as the joint probability distribution function of spatial points, finite 

Gaussian mixture model learning is another candidate method [40]. However, when the 

particles are very close, the local intensity profile tends to be unimodal, and as a result, the 

exact number of the particles can not be extracted by that method. If some prior information 

of the particles in the local regions, including their number, is provided, the direct approach 

of Gaussian function fitting [38] can work well, no matter how close the particles are. If we 

analyze not only the image at time t but also before and after time t, we will get additional 

information to guide the Gaussian function fitting process at time t, and then it will be easy 

to tell that some particles come to the same region and then move apart. The key idea is to 

integrate information from trajectories, observations, and images all together, which will be 

used in the proposed method.

This paper is an extension of our previous works [42]–[44]. It presents a multiple hypothesis 

based particle tracking framework, and describes how to model CCP properties, and shows 

how to apply the tracking framework with the models. Compared to our previous papers, 

here we present many new enhancements which make the tracking method robust and 

efficient, and provide more validation results. The key idea of our tracking method is to 

generate and evaluate many observation candidates and trajectory candidates, and only keep 

the best subset of them as the tracking result. To generate the candidates, an exhaustive 

search based method is straightforward and easy to be implemented, as we did previously, 

but it requires a long processing time which is undesired by the users, i.e., the biologists. In 

this paper, we present new candidate generation algorithms which can significantly reduce 

the search space. We also present a strategy to automatically determine the parameters of the 

state models, which previously are obtained by analyzing manually tracked trajectories. We 

test the method extensively in simulation with different particle densities and signal to noise 

ratios. We also test the method on image datasets from real biological experiments, which 

consist of images from not only normal cells but also altered cells, and provide more 

information about the biological application.

The remainder of the paper is organized as follows. In section II, we introduce the tracking 

framework which is an extension of the classical MHT framework, and allows different 

types of hypotheses. It has the build-in capability to handle the pseudo- splitting/merging 

events effectively without user intervention, and prevent independent trajectories from 
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linking together. In section III, we describe the CCP models including dynamic state models 

and appearance models, provide the detection method, describe the method for multiple 

candidate generation, and discuss some implementation issues. In section IV, we show the 

evaluation results on synthetic data and real data. We conclude this paper in section V.

II. Tracking Framework

In this section, we present the particle tracking framework. We first show the classical MHT 

framework, and then present the extensions. We call the extended framework as E-MHT.

We make the following notations. Let It be the image acquired at time t (frame index), 

which can be a 2D image or a 3D image volume. Let Xt be the set of the states of all the 

targets (i.e., particles) at time t, assembled from each target's state , i.e., 

 and k is the index (i.e., unique identifier) of a target and its 

trajectory. Let Dt be the set of all the observations at time t, assembled from each 

observation , i.e., , and j is the index of an observation at 

time t. Each observation also has a global index (i.e., unique identifier) l. Let Let 

denote the observation that corresponds to the target k at time t. For the sake of convenience, 

the two words, particle and target, are used interchangeably in this section.

A. The MHT Framework

The goal is to find the target states  that maximize the posterior probability (MAP) 

given the image dataset , i.e., maximize the energy E:

(1)

Here, . Since it is difficult to find the optimal solution directly, 

we try to maximize the lower bound Ê of the above energy (the proof is in the appendix). 

Assuming the targets are statistically independent of each other and applying Bayes' rule, 

then we obtain

(2)

(3)

(4)

Each trajectory  is a candidate and has an indicator α(k) ∈ {0, 1}. If α(k) = 1, the 

trajectory candidate k is selected as a true trajectory, and if α(k) = 0, it is discarded as a false 
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trajectory. By considering different correspondences between the targets and the 

observations, multiple trajectory candidates can be generated. One to one correspondences 

between trajectories and observations are assumed, which is the constraint of the 

maximization problem.

If we only use the above equations as the framework, then it will just be equivalent to the 

classical MHT. We further extend the framework as described in the following subsections.

B. Multiple Observation Candidate Generation

Not only multiple trajectory candidates but also multiple observation candidates are 

generated. In most cases, each image It can be segmented into small regions . 

Each sub-image I(t, Ωm) many contain one or more observations. In each image region Ωm, 

we try to generate many observation-sets, and each of them  indexed by n, can 

explain the sub-image I(t, Ωm) independently. Then, we extend Eq.(4) to

(5)

(6)

(7)

Each observation  is a candidate and has an indicator . If , the 

observation is selected as being true, and if , then it is rejected as a false one. Each 

observation-set  also has an indicator . If , the observation-

set is selected, and if , then it is rejected. Since the individual observations in each 

observation-set  should be true or false all together, then the indicator of an 

observation-set is equal to the indicator of each observation in the set. If there is only one 

observation in the set, then the indicator is 1. For CCP tracking, Eq.(6) will be defined in 

section III-B.

The method for generating good observation-sets is not defined here, we leave it to be 

implemented in different applications using different strategies. By generating multiple 

observation candidates and finding the best candidates, the number of particles in each 

segmented region can be determined. Fig. 2 shows the observation candidates generated in a 

simple scenario, and Fig. 3 shows the relations among the indicators.

C. Solving the Optimization Problem

After obtaining the candidates of trajectories and observations, the only task left is to find a 

set of candidates as a solution that is feasible and maximizes the energy in Eq.(2). In a 
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feasible solution, there must not exist any observation which is shared by more than one 

trajectory, and there must not exist any pair of observation-sets, each of which explains the 

same image region. The feasibility constraint on the solution ensures one to one 

correspondences between the selected trajectories and the selected observations at each time. 

Eq.(2) and its constraints can be rewritten to the matrix forms, given by

(8)

(9)

(10)

After integer programming is applied, the binary vector γ is obtained as the solution. γ is 

defined as γ = [α′, β′]′. Here ′ is vector transpose operator, and all the vectors in this paper 

are column-shaped. α and β are two binary vectors assembled from every unknown α(k) and 

every unknown  respectively.

In Eq.(8), E is a vector assembled from all the corresponding  and . In Eq.(9), β̃ is 

a vector assembled from every individual observation indicator . A is a sparse binary 

matrix. If the trajectory candidate k passes the observation candidate indexed by l, then A (l, 

k) = 1. The summation of the indicators of the trajectories that have the same observation 

(e.g., the one indexed by l) is equal to the indicator of that observation, which is the one-to-

one mapping constraint described by Eq.(9). In Eq.(10), B is a sparse binary matrix, and 1 is 

a vector and all its elements are equal to 1. Eq.(10) is just the matrix form of Eq.(7). 

Examples of Eq.(9)&(10) are given in Fig. 3. In the implementation, only one set of binary 

variables is needed to represent the two types of observation indicators  and .

Here, the trajectory-related hypothesis is whether a recovered trajectory is a real one, and the 

observation-related hypothesis is whether an observation belongs to a real particle, which is 

the reason the method is called multiple hypothesis based. Compared to the classical MHT 

framework, the extended MHT framework tests not only multiple trajectory-related 

hypotheses but also multiple observation-related hypotheses.

III. Applying the Framework for Tracking CCP Particles

To use the tracking framework, we need to model the properties of the CCP Particles, design 

particle detection methods and candidate generation methods, and define relevant energy 

terms. The energy  is related to the dynamic models (i.e., state space models), and the 

energy  is related to the appearance model. Since in most biological experiments only 

2D imaging is performed, we restrict our discussion in 2D throughout the rest of the paper, 

although 3D extension is straightforward. For the sake of convenience, the two words, 

particle and target, are used interchangeably in this section.
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A. State Space Models and Filters

We assume particle dynamics can be modeled using linear state space models [45], [46] with 

a certain probability distribution at each time. π(i1, i2) is the model transition probability for 

each particle to switch from mode (model) i1 to i2 when the current mode (model) is i1, and 

Σi2 π(i1, i2) = 1. Each model i has a posterior probability  for each particle k, and 

. Each model is given as

(11)

(12)

Here, F(k) is the state transition matrix.  is the external input that we use to impose 

constraints. W(i) is the process noise with covariance matrix Q(i) estimated from training 

data. H is a constant observation matrix.  is the observation noise with covariance 

matrix  provided by the detection module. Each of these noise sources is assumed to 

be Gaussian and independent.

We define the state of each particle k at time t as . 

 is its position.  is its intensity, and  is the rate of intensity change over 

time.  is its relative radius. We propose to use two linear state space models. For particle 

motion, the first model describes it as free Brownian motion because the motion is indeed 

random, and the second model describes it as confined motion because each particle is 

linked to the cell plasma membrane through its neck and can only move within a restricted 

region before fission [2]. For intensity variation of each particle, both models describe it as a 

linear process.

The matrices are given by

 is a zero vector, and  is related to the force that keeps the particle staying near 

the connection point on cell membrane (see Fig. 1) which is estimated to be the time-

average position , and t1 is the starting-time of the 

trajectory. And, let t2 be the ending-time of the trajectory, then the lifetime of the particle is 

t2 − t1 + 1.
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In Eq.(3) the lifetime of each particle is extended to be equal to the number of images, which 

is a common trick [47] to deal with target appearing and disappearing. Since the process is 

assumed to be Markovian, we obtain

(13)

To deal with particle appearing and disappearing, we set 

 and 

 according to particle properties. Δ is 

the maximum particle displacement. aap is the average intensity of the particles shortly after 

they appear. adp is the average intensity of the particles shortly before they disappear. Those 

parameters can be learned from training data. We define  for t 

< t1 − 1, and  for t > t2 + 1, which means the states are 

irrelevant before the particle is created and after it disappears.

To simplify the computation of the energy , we make several approximations. In the 

right side of Eq.(3), the second term can be ignored because observation noise level is much 

smaller than process noise level in our application. The element in Eq.(13) can be 

approximated as

(14)

 is the estimated state given the observations up to time t.  is the predicted state 

given the observations up to time t − 1. Q̂(i*) = HQ(i*)H′ where i* is the index of the most 

probable model at time t. The vector norm is defined as . We insert the H 

matrix in the norm to ensure that only observable features are used to evaluate the goodness 

of each trajectory.

For state estimation and prediction, we use the well known IMM filter [13], [23], [46], [48]. 

For the details of the filter we refer the reader to [46], [48]. In addition, the feasible region of 

the predicted observation of a particle is also estimated, which is realized by using the gating 

technique [23].

For model parameter estimation, labeled training data is preferred if it is available. However, 

since in real situations cell to cell variation is large, it is risky to use the parameters trained 

on previous labeled data for new data. Instead, parameters are estimated in an iterative 

fashion similar to the approach in [49], directly from the datasets to be analyzed: After the 

tracking algorithm is performed on the selected regions, parameters can be estimated from 

the recovered trajectories; then with the estimated parameters, tracking is performed to 

Liang et al. Page 10

IEEE Trans Image Process. Author manuscript; available in PMC 2015 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



update the trajectories. In our application, two iterations are sufficient, and the image 

regions with high particle density (e.g., around cell center) are excluded before parameter 

estimation. In experiments, the model transition probability is set as π(1, 1) = 0.8, π(1, 2) = 

0.2, π(2,1) = 0.2, π(2,2) = 0.8 for all cases. The observation noise covariance matrix  is 

assumed to be a diagonal matrix, and each component/variance is estimated from the 

performance curves of the detection method obtained from simulation [43].

B. Appearance Model

To observe the particles, proteins of interest are fluorescently labeled. Particle diameter is 

comparable to the lateral pixel size, and the light from each particle is blurred by point 

spread function (PSF). As a result, the spatial distribution of the fluorescence intensities of a 

single particle in the xy-plane can be well modeled using a Gaussian function, which is 

widely studied in the literature [12], [50]. The fluorescence lights emitted from individual 

particles are captured by CCD camera. EM-CCD [29], [30] is widely used in high 

performance microscopes because it can detect light with very low intensity and almost 

eliminate readout noise.

Therefore, before it is captured by the camera, the 2D fluorescence signal ft(x, y) can be 

modeled as the sum of Gaussian mixture Gt(x, y) and background bt(x, y), given by

(15)

The Gaussian mixture Gt(x, y) has multiple components, i.e., . Each 

component corresponds to a feature/observation vector , given by

(16)

The image It(x, y) from the EMCCD camera is determined by the input fluorescence signal 

ft(x, y) and the noise sources [30]. We can approximate it as

(17)

(18)

Nt is zero-mean Gaussian noise with variance . The 

approximation in Eq.(17) is only used for feature estimation not for simulation. Let's assume 

we have obtained an observation-set  in the region 
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Ωm. Then we can calculate the energy term  in Eq.(6) by using Eq.(18) and restricting 

(x, y) in the region.

C. Initial Particle Detection

We have developed a particle detection method [43]. Initial positions of the particles are 

identified in each image by using Laplacian of Gaussian (LoG) based filters. Then, image 

background is estimated and Gaussian mixture models are fitted to obtain the full 

observation vectors. For the details we refer the reader to [43]. Since the sizes of the CCP 

particles do not differ much and the background is almost homogeneous, and therefore the 

image filter based detection method is appropriate for our application [12]. We further 

extend the method to segment each image into regions containing particles by thresholding 

the filtered images. In the resulting binary images, the skeleton of each region [51] is 

calculated and will be used for generating observation candidates. Fig. 4 shows the detection 

result on a real image region.

D. Multiple Candidate Generation

The initial observations are obtained by using the method in section III-C. Once temporal 

information is available, in every image region, we try to generate multiple observation 

candidates. Let's suppose that target trajectory candidates up to time t − 1 have been 

obtained. In the image It, each segmented region Ωm intersects the predicted observation 

regions of some targets/particles {X(k1), X(k2), …} which is called the feasible target set. If 

the set has more than one targets, then we start to generate multiple observation candidates 

in the region Ωm.

There are two possible approaches to generate observation candidates with temporal 

information. The first approach is to fit Gaussian functions to the image region with 

different numbers. The second approach is to treat the image intensity as spatial probability 

distribution at each pixel, and fit probabilistic Gaussian mixture models in the image region. 

The second approach usually uses expectation-maximization (EM) style algorithms to do 

optimization, and it is relatively slow compared to the first approach. Therefore we use the 

first approach.

For each subset {X(kh1), X(kh2), …} of the feasible target set, if these targets do not conflict 

with each other, i.e., not sharing the same observation in each of the past image frames, then 

we find their optimal observation-set  which maximizes the energy:

(19)

subject to (for each kh)

(20)
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(21)

The first term in Eq.(19) is just  calculated by using Eq.(18) and considering the 

pixels only in the region. The second term in Eq.(19) ensures that each estimated intensity 

 will be close to its predicted value . Eq.(20) assumes that each radius  almost 

does not change in a short time, i.e., equal to its predicted value . Eq.(21) ensures that 

each estimated position  is located within a circle centered at its predicted 

position .

For each subset in which the targets do not conflict with each other, we find its optimal 

observation-set . We may get more observation candidates by keeping more than one 

suboptimal observation-set. For our application, the optimal observation-set is sufficient.

The candidate generation process starts with 2-element subsets of the feasible targets, and 

then subsets with more elements are considered. If we use exhaustive search based methods 

to generate candidates, the number of candidates will go up exponentially fast, but most of 

them will be rejected later, which is a waste of time and computation. To reduce the search 

space and speed up the computation, firstly, the x-y positions of the observations are 

restricted to be on the skeleton and the local intensity maxima of each region, and the coarse 

estimation is obtained. And then each observation is allowed to vary within 1 pixel to get 

refined result. The rationale is the observations are located with high probability on the local 

maxima or the skeletons. To control the process, if the energy  decreases when the 

number of elements in the subset increases, then the process stops. The details are described 

in Algorithm 1.

Generating trajectory candidates is relatively straightforward, and we use four types of 

trajectory candidates. Let's assume that target trajectory candidates up to time t − 1 and 

observation candidates at time t have been obtained. A target trajectory is extended if an 

observation is feasible (i.e. within the predicted range) for the target. A target trajectory is 

terminated if there is no feasible observation for the target, or if all the feasible observations 

of the target are also feasible for some other targets. A candidate of new trajectory starting 

with an observation is created if the observation is infeasible for every target, or if the 

observation is feasible for some target which has other feasible observations. New 

candidates are also created by breaking a terminated target trajectory into several parts, if the 

smoothed time-intensity curve of the trajectory has some local minima that are not located at 

the beginning or the end. The breaking points are located at these local minima. The last 

type of candidates are used to prevent independent trajectories from jointing together, which 

is not considered in the classical MHT.

Algorithm 1 Observation Candidate Generation in a Region

Input:
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Ωm: the image region

Sm: the set of positions on the skeleton of the region

Pm: the set of positions of the local maxima in the region {X(k1), X(k2), …, X(kN)}: the set of feasible targets

Start:

n = l

Emax = 0

For i = 2 to N

 k = 0

 Step 1: try to get a new subset {X(kh1), X(kh2), …, X(khi)

  If a new subset is available, then go to Step 2

  Else, go to Step 5

 Step 2: check the subset

  If the subset is feasible, then go to Step 3

  Else, go to Step 1

 Step 3: n = n + 1, find the observation-set , which maximizes Eq.(19)

  (1) Search on Sm and Pm to get initial result

  (2) Alow the observations to vary within 1 pixel, get refined result and the energy 

 Step 4: check the observation-set 

  If , then keep it and k = k + 1

  Else, discard the observation-set and n = n − 1

 Go to Step 1

 Step 5: If k > 0, then  Else, break the For loop

End

Output:

observation-sets and associated subsets of the targets

E. Implementation of the Tracking System

The tracking system is illustrated in Fig. 5. It consists of a detection module, a trajectory 

module, and a decision module. The detection module generates observation candidates as 

described in section III-C and III-D. The trajectory module generates trajectory candidates 

and estimates the states of the particles. The decision module evaluates all the candidates by 

calculating the energy terms in Eq.(2) and selects the best set of candidates by solving the 

integer programing problem Eq.(8)–Eq.(10). After the initial detection results on all the 

images are obtained by using the detection module, the other two modules start. Once the 

tracking is finished, the order of the image sequence is reversed and the tracking system runs 

again to provide the final result. As the reader may notice, it is not mentioned how to solve 

the pseudo-splitting problem in section III-D. However, by tracking in the backward time 

direction, the problem can be solved, because a splitting event in the forward timeline is 

equivalent to a merging event in the reversed timeline.
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To make the tracking process efficient, we use the sliding time window technique as shown 

in Fig. 6. Let's assume we have a set of candidates generated in a window with length L 

ending at time t. The window slides with M steps (M < L), and new candidates are 

generated. Then, all the candidates generated in the interval [t − L + 1, t + M] are evaluated, 

i.e., performing integer programming to find the optimal candidates. If the window has not 

reached the end of the image sequence, only the candidates in the interval [t − L + 1, t − L + 

M] that conflict with the optimal candidates, will be discarded. If the window reaches or 

exceeds the end of the image sequence, only the optimal candidates will be kept.

IV. Experimental Results of CCP Tracking

A. Evaluation on Synthetic Data

The proposed method is evaluated using simulation with different signal to noise ratios 

(SNRs) and particle densities. The models in section III-A are not used in simulation 

because they are just linear approximations. Instead, a set of CCP trajectories are obtained 

from very low particle-density regions of real image data, and confirmed by expert 

biologists. In order to control SNRs, these trajectories are adjusted by smoothing and 

rescaling their time-intensity curves. To simulate a trajectory, one trajectory record is 

randomly chosen from that set, and then it is randomly placed on the image planes. Images 

are simulated by following the TIRF imaging theory [1], [52], [53], similar to the previous 

works [54], [55] in our group. Two major types of noises are considered in the simulation 

process: the Poisson (shot) noise of input photon and the excess noise generated in the 

EMCCD. The SNR of each dataset is defined as the average SNR of individual particles in 

the dataset. By varying the background noise level, the SNR of each dataset can be tuned in 

a large range. Since, in real images, particle density is very high around cell center and very 

low near cell boundary, in simulation we choose four particle densities: 0.005/pixel2, 0.006/

pixel2, 0.007/pixel2, and 0.008/pixel2 to represent the densities of different regions.

We first create noise-free datasets with different particle densities, and then we add noises at 

different levels to the noise-free datasets to create the final datasets. Each dataset contains 

200 image frames, and the size of each image is 128 × 128 pixels (1 pixel=160nm). Particle 

appearing and disappearing occur almost on every frame. Examples of simulated images are 

shown in Fig. 7. The feature estimation accuracies of the detection module have been 

reported in [43] and [55]. The absolute position estimation accuracy is not very important in 

our application as long as the localization error is within one pixel which has been achieved 

by the detection module. Here, we focus on evaluating the overall performance of the 

tracking method.

To measure tracking performance, we use Jaccard similarity to measure the goodness of the 

tracking result on each dataset. It is a general measurement of detection and data association 

accuracy, given by

(22)
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Before the calculations, the best correspondences between the recovered trajectories and the 

ground truth trajectories are found by using the method in [56]. The recovered trajectories 

refer to the trajectories produced by a tracking algorithm. The ground truth trajectories are 

just the simulated trajectories. The distance threshold of matching is set to be 3 pixels, which 

means if the distance between two positions in two trajectories (recovered vs. ground truth) 

is greater than the threshold, then the two positions do not match each other. If a position 

(e.g., ) in a recovered trajectory corresponds to a position (e.g., ) in a 

ground truth trajectory, then there is a matched position in the recovered trajectory. If a 

position in a recovered trajectory does not correspond to any position in the ground truth 

trajectories, then there is an unmatched position in the recovered trajectory. If a position in a 

ground truth trajectory does not correspond to any position in the recovered trajectories, then 

there is an unmatched position in the ground truth trajectory. T P (true positive) is the 

number of matched positions in the recovered trajectories, and F P (false positive) is the 

number of unmatched positions in the recovered trajectories. F N (false negative) is the 

number of unmatched positions in the ground truth trajectories.

In order to calculate bio-parameters in our application, e.g., lifetime, the tracking result 

should contain less false trajectories and more correctly recovered trajectories, and cover the 

ground truth trajectories as many as possible. Therefore, Jaccard similarity is the most 

relevant metric for our application. In fact, Jaccard similarity is not only a general 

measurement of tracking accuracy, but also an approximation of the lifetime estimation 

accuracy:

(23)

Here, LT means lifetime, and GT means ground truth. If a trajectory starts at time t1 (image 

index) and ends at time t2, then its lifetime is t2 − t1 + 1, or (t2 −t1 + 1) × sampling interval. 

If the number of unmatched positions in a recovered trajectory is equal to its lifetime, then it 

is a false trajectory.

To evaluate the proposed method, we may compare it to some tracking methods in the 

literature. However, since different models and detection methods are used in different 

tracking methods for different applications, direct comparisons are very difficult and unfair. 

Instead, we choose three representative MHT-based methods [13], [19], [23] and equip them 

with the detection method described in section III-C, and particle models related to our 

application. The first method is based on the one in [19], and we equip it with the Brownian 

motion model, and we name it as 1M-s-MHT where 1M refers to the Brownian motion 

model, and s means simplified because it uses frame-by-frame linking. The second method 

is based on the one in [13], and we equip it with the CCP state models and the IMM filter 

described in section III-A, and we name it as 2M-s-MHT where 2M refers to the two CCP 

state models and s also means simplified for the same reason. The third method is based on 

the one in [23] which uses the same type of sliding time window, and we equip it with the 

CCP state models and the IMM filter, and name it as 2M-MHT. We call the proposed 

method as 2M-E-MHT where E means extended.
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The performance curves of the methods, 2M-E-MHT, 2M-s-MHT and 1M-s-MHT, are 

shown in Fig. 8. To make a fair comparison, we set the size of the sliding time window in 

the proposed method as L = 2 and M = 1. Since the method 1M-s-MHT uses the least 

amount of information, it has the lowest performance. By using the CCP state models, the 

method 2M-s-MHT does better than the method 1M-s-MHT in some scenarios. By applying 

the extended MHT framework with the CCP state models, the proposed method 2M-E-MHT 

performs consistently better than the other two methods. As the SNR decreases, the 

performance of the proposed method deteriorates. Fortunately, the SNR of real data is often 

much higher than 4, and if some real data has very low SNR, it will be discarded as being 

unreliable. Examples of the recovered trajectories are illustrated in Fig. 9, which shows that 

wrong links and wrong detections can be prevented by using the CCP state models and the 

extended MHT framework. The result also implies that both the particle state models and the 

tracking frameworks determine the tracking accuracy.

To evaluate the performance with a larger sliding time window, we set L = 5 and M = 1. We 

compare the proposed method 2M-E-MHT to the method 2M-MHT. The performance 

curves are shown in Fig. 10, and we re-plot those curves of the method 1M-s-MHT. The 

result shows that, by using the extended MHT framework, the proposed method does better 

than the method 2M-MHT when SNR is greater than 4.

To study the effect of the sliding time window in the proposed method, we vary the 

parameter L while keeping M = 1. The performance curves are shown in Fig. 11. The result 

shows that a longer window does not bring any significant benefit mostly because of the 

stochastic nature of the particle motion. Therefore, we use L = 2 and M = 1 as the default 

setting to process real data.

B. Evaluation on Real Data

The goal is to study the effect of the molecular compound, methyl-β-cyclodextrin (MbCD) 

in clathrin mediated endocytosis. The plasma membrane is highly enriched in cholesterol. 

Plasma membrane cholesterol regulates biological processes occurring in this membrane, 

including endocytic events like clathrin mediated endocytosis. Indeed, clathrin mediated 

endocytosis was shown to be inhibited upon cholesterol extraction by methyl-β-cyclodextrin 

(MbCD) treatment [57], [58]. While CCPs are present after MbCD addition, as detected 

both by immunofluorescence for coat proteins on fixed cells and by electron microscopy, 

they are arrested at a shallow stage, suggesting a defect in maturation [57], which indicates 

that particle lifetimes should be longer after MbCD addition.

We have obtained TIRF movies of clathrin mediated endocytosis before and after MbCD 

addition. Wild type mouse fibroblasts were transiently transfected with GFP-tagged μ2 

subunit of the clathrin adaptor protein 2 complex [59] by electroporation to visualize 

endocytic clathrin coats, and immediately plated at subconfluent densities onto fibronectin-

coated 35mm glass bottom culture dishes (MatTek, Ashland, MA, USA). They were ready 

to be imaged after 24 hours. In each dish, a cell was randomly chosen as a sample of the 

group and then imaged. Images were acquired using a Nikon TiE inverted microscope 

equipped with 100 × oil objective lens (NA = 1.49). Excitation light was provided by 488nm 

diode-pumped solid-state lasers, coupled to the TIRF illuminator through an optical fiber. 
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The output from the lasers was controlled by an acousto-optic tunable filter, and 

fluorescence signaling was acquired with an EM-CCD camera (DU-887; Andor). 

Acquisition was controlled by Andor iQ software. Images were sampled at 0.25 Hz with 

exposure times in the range of 100- to 500-ms. Cells were imaged at 37 °C for 10 minutes 

before the addition of MbCD to a final concentration of 10mM, and imaged for another 10 

minutes.

We test the method on eight image datasets obtained by imaging four cells in four culture 

dishes before and after MbCD addition. Each dataset consists of about 150 image frames, 

and the size of an image is 512 × 512 pixels (1 pixel = 160nm), and the TIRF resolution in 

the xy-plane is about 200nm. After tracking, trajectories that start from the first image frame 

or end at the last image frame are considered to be incomplete, and discarded.

Examples of the detected particles and the recovered trajectories in an image region are 

shown in Fig. 12(a) and (b), respectively. As shown in Fig. 12(c), the mean lifetimes of the 

particles are significantly longer upon MbCD treatment (t-test: p-value < 0.001 in all the 

cases) which implies that MbCD significantly affected CME by prolonging particle 

lifetimes. On average, lifetime is increased by 82% after the treatment. To perform a 

subpopulation analysis as explained in [60], we plot the lifetime histograms before and after 

MbCD addition, and by using expectation-maximization algorithms, Gaussian mixture 

distribution functions are fitted to the histograms. As shown in Fig. 12(d) and (e), before the 

treatment, three particle subpopulations are identified with the average lifetimes of 93, 199 

and 406 seconds, and after the treatment, three corresponding subpopulations are identified 

with the average lifetimes of 106, 248 and 474 seconds. The percentages of the three 

subpopulations changed from {48%, 42%, 10%} to {15%, 43%, 42%} after MbCD addition. 

The result suggests that different subpopulations may react differently upon the treatment 

which is a biological hypothesis [60].

Although detailed biological analysis based on the tracking results is out of the scope of this 

paper, here we would like to present another type of biological analysis which is related to a 

kind of biological event that is not fully understood yet. It is known that during the CME 

process, some particles are generated almost at the same location, and such locations are 

called hotspots [61] in the literature. If two or more particles are created almost at the same 

location and coexist for a while, then their trajectories appear to be entangled on the image 

plane. As a result, the individual lifetimes of the particles can not be measured reliably. This 

uncertainty about individual lifetimes is caused by the inherent uncertainty of the data, and 

can not be solved by any algorithm currently, because biologists are still unable to label 

individual particles with different types of fluorophores. To perform lifetime analysis, the 

particles entangled at hotspots should be separated from the other particles. If a particle is 

created near another existing particle (set to be 3 pixels), and their trajectories are entangled 

over a few frames (set to be 2 frames), then the two particles are identified as being 

entangled at a hotspot. The lifetime of a hotspot can be defined to be the duration of a set of 

particles entangled at the same location, i.e., the duration from the time the first particle 

appears to the time the last particle disappears. Then we can analyze the lifetimes of 

hotspots in cells.
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Our proposed method can automatically identify particles entangled at hotspots due to the 

advantage of the proposed E-MHT framework. However, since particle detection in MHT-

based tracking methods is usually designed to be a completely independent module, these 

methods are unable to automatically identify such events. The mean lifetimes of hotspots in 

the cells before and after MbCD treatment are shown in Fig. 13. An example of a pair of 

particles entangled at a hotspot is shown in Fig. 14.

V. Conclusion

We have proposed a particle tracking method for clathrin mediated endocytosis analysis. 

The classical MHT framework is extended by considering multiple observation candidates 

and more types of trajectory candidates, and the related optimization problem is solved by 

using integer programming. For CCP tracking, properties of the particles are considered in 

the models, and special strategies are designed for multiple candidate generation. The 

accuracy and robustness of the proposed method has been demonstrated by using synthetic 

datasets with different SNRs and particle densities. The method has been applied to analyze 

the real image data from the experiments to study the effect of the molecular compound, 

methyl-β-cyclodextrin (MbCD) in clathrin mediated exocytosis. The method can be 

extended for other applications by using appropriate models and detectors as suggested in 

[44]. We expect the method to be a good assistant for the biologists to investigate the 

mechanisms of clathrin mediated endocytosis and some other biological processes.
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Appendix A

The Proof

Here, we show Ê in Eq.(2) is the lower bound of the energy E in Eq.(1). For simplicity, the 

indicators are ignored here. We make a general assumption that  is the true value of 

 for each k. Firstly,  is bounded because it can only reach its maximum 

when . Since the total number of targets/particles is finite, the second term in 

the right hand side of Eq.(3), i.e.,  has an upper bound ℳ. 

Secondly, it is obviously that log p(It|Dt) ≤ log p(It|Xt) with equality if Dt = HXt. Then:
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Fig. 1. 
(a) A TIRF image of a cell expressing GFP- clathrin light chain shows CCP particles. 

Fluorescence appears white, and each bright spot represents a particle. (b) Cartoons and a 

real image sequence (smoothed) show different stages of CME. The three-legged structures 

of pinwheel shape represent clathrin (blue color). The red dots indicate center positions and 

the green lines represent trajectories. The particle has a neck connected to cell membrane 

until fission.
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Fig. 2. 
(a) Two observation candidates at time t−1. (b) Two observation candidates at time t. (c) 

Three observation candidates at time t. By linking the observation candidates between image 

frames with different combinations, we can get many trajectory candidates.
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Fig. 3. 
The relations among the indicators.
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Fig. 4. 
Particle detection and image segmentation result. (a) 6 observations of particles indicated by 

green circles. (b) 5 segmented regions. (c) The skeletons of the regions.
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Fig. 5. 
The diagram of the tracking system.
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Fig. 6. 
An example to show the sliding time window technique.
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Fig. 7. 
Examples of synthetic images (128 × 128 pixel, and 1 pixel = 160 nm): (a) Density = 0.005/

pixel2 and SNR = 8. (b) Density = 0.006/pixel2 and SNR = 6. (c) Density = 0.007/pixel2 and 

SNR = 5. (d) Density = 0.008/pixel2 and SNR = 5.
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Fig. 8. 
Jaccard similarity scores of the three methods in all the scenarios.
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Fig. 9. 
Trajectories obtained by the three methods (6 successive image frames are shown from left 

to right). Circles indicate center positions, and colored lines represent trajectories up to the 

current frame. (a1)–(a6) The ground truth trajectories on the images without noise. (b1)–(b6) 

Result from the proposed method 2M-E-MHT. (c1)–(c6) Result from the method 2M-s-

MHT-b: trajectory 1 and 3 contain wrong links, and trajectory 2, 5, 6 and 7 are incomplete. 

(d1)–(d6) Result from the method 1M-s-MHT-a: trajectory 1, 2, 3 and 5 contain wrong 

links, and trajectory 4 and 6 are incomplete.
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Fig. 10. 
Jaccard similarity scores of the three methods in all the scenarios.
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Fig. 11. 
Jaccard similarity scores of the proposed method with different parameter L (window 

length).
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Fig. 12. 
(a) Detected particles in an image region, and colors are randomly assigned. (b) Trajectories 

over time, and colors are randomly assigned. (c) Mean lifetimes before and after MbCD 

treatment. (d) Lifetime distributions from cell #1 before MbCD treatment. (e) Lifetime 

distributions from cell #1 after MbCD treatment.
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Fig. 13. 
Mean lifetimes of hotspots in the cells before and after MbCD treatment, which are obtained 

by using our proposed method. The MHT-based methods with independent detection 

modules can not support such automatic analysis.
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Fig. 14. 
An example of a hotspot. The top sequence shows the result from our proposed method. The 

bottom sequence shows the result from the method 2M-MHT, and the results from the three 

representative MHT-based methods evaluated in section IV-A, are almost the same. The 

individual trajectories of the particles are unreliable due to the uncertainty of the data. Our 

proposed method can identify the hotspot where the two particles appear to be entangled. 

The MHT-based methods just find two independent particles/trajectories, and therefore can 

not identify them as being entangled at the hotspot.
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