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Abstract

Caveolins are scaffolding proteins that play a pivotal role in numerous processes, including caveolae biogenesis, vesicular transport,
cholesterol homeostasis and regulation of signal transduction. There are three different isoforms (Cav-1, -2 and -3) that form homo-
and hetero-aggregates at the plasma membrane and modulate the activity of a number of intracellular binding proteins. Cav-1 and Cav-3,
in particular, are respectively expressed in the reserve elements (e.g. satellite cells) and in mature myofibres of skeletal muscle and their
expression interplay characterizes the switch from muscle precursors to differentiated elements. Recent findings have shown that 
caveolins are also expressed in rhabdomyosarcoma, a group of heterogeneous childhood soft-tissue sarcomas in which the cancer cells
seem to derive from progenitors that resemble myogenic cells. In this review, we will focus on the role of caveolins in rhabdomyosar-
comas and on their potential use as markers of the degree of differentiation in these paediatric tumours. Given that the function of Cav-1
as tumour conditional gene in cancer has been well-established, we will also discuss the relationship between Cav-1 and the progression
of rhabdomyosarcoma.
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Introduction

Caveolins (Cav-1, -2 and -3) are membrane scaffolding proteins
that regulate numerous processes in a variety of tissues and cell
types [1, 2]. They participate in the biogenesis of caveolae, flask-
shaped invaginations of the plasma membrane where several mol-
ecules involved in the regulation of transduction pathways are
specifically and highly enriched [3–5]. Caveolins are anchored at
the inner leaflet of caveolae through a short hairpin hydrophobic
domain and protrude towards the cytoplasm, where they can bind
and influence the activity of several protein partners via a caveolin

scaffolding domain (CSD) [6, 7]. In skeletal muscle, in particular,
Cav-1 expression is restricted to satellite cells [8–10], whereas
Cav-3 plays a pivotal role in the mature myofibres [11–13], as
demonstrated by the fact that its deficiency is associated to a set
of genetic muscular disorders, known as caveolinopathies
[14–17]. Rhabdomyosarcoma (RMS) is the most frequent soft 
tissue sarcoma occurring in childhood and sharing features of
myogenic cells [18–20]. Hence, cancerous RMS cells can be uni-
vocally identified by means of muscle markers [21]. Two different
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works have shown that caveolins are expressed in a cell
stage–dependent manner in RMS [22, 23]. This review will sum-
marize these findings and highlight the relevance of caveolins as
diagnostic markers for the detection of RMS with a different grad-
ing. In addition, the potential contribution of caveolins to the pro-
gression of RMS is discussed, particularly for Cav-1.

Caveolae and caveolins

Caveolae are characteristic flask-shaped invaginations of the plasma
membrane that configure as specialized microdomains involved in
numerous functions, including cell signalling, lipid regulation and
endocytosis [1–7]. Cav-1, Cav-2 and Cav-3 are the main structural
proteins of caveolae and are codified by three different genes that
have a high degree of homology [1, 2] (Table 1). In particular, cave-
olins are anchored to the inner leaflet of the plasma membrane via
a short hydrophobic loop, which allow them to assume a unique
hairpin structure, characterized by the presence of both N- and C-
terminal portions facing towards the cytoplasm [1, 2]. Cav-1 and
Cav-2 form hetero-oligomers and are ubiquitously co-expressed
[24], whereas Cav-3 forms homo-oligomers that are predominantly
expressed in skeletal and cardiac muscle [11, 12] (Table 1). Cav-1
and Cav-3 are unequivocally required for the biogenesis of caveolae
[25], as corroborated by the lack of caveolae in Cav-1 null animals
[26] and in muscle and cardiac tissues of Cav-3 null animals 
[27, 28], despite other key protein molecules, such as PTRF-Cavin
[29, 30] and ARAF-1 [31], seem to have a role in the formation of
these membranous structures. Although caveolins are predomi-
nantly recovered at the plasma membrane and in Golgi apparatus of
cells [32–34], their subcellular localization may change upon post-
translational modifications, as occurs for Cav-1, which may be tar-
geted to cytoplasm or secretory vesicles upon phosphorylation on
Tyr14 or Ser80 residues, respectively [35,36].

Caveolins as scaffolding proteins

The most important feature of caveolins relies on their ability to
bind and modulate the biological activity of a multitude of intracel-
lular protein partners through the so-called CSD, which recognises
motifs enriched of aromatic residues [6, 37]. Although the CSD
sequence results highly conserved in both Cav-1 and Cav-3, it is
slightly different for Cav-2, which in fact seems to be clearly less
prone to bind proteins. To date, more than 90 proteins are known
to be bound and regulated by caveolins, including G-protein–coupled
receptors and G-proteins, different membrane receptorial (insulin
receptor, PDGFR, TGF-� receptors, etc.) and non-receptorial 
proteins (Src, Fyn, PKA, etc.), enzymes (adenylyl cyclase, e- and
nNOS, phospholipases, etc.), GTPases (H-RAS, RhoA, etc.), pro-
tein adaptors (Shc), nuclear proteins (estrogen and androgen
receptors) as well as a miscellaneous of other proteins involved in
disparate processes (E-cadherin, �- and �-catenin, calsequestrin,

calreticulin, etc.) [1–7]. Cav-1, furthermore, is a cholesterol-bind-
ing protein and contributes to regulate its homeostasis [38].

Impact of the lack of caveolins in the whole body
physiology

Mice deficient in Cav-1, Cav-2 or Cav-3 are viable and fertile but
display several alterations in the whole body physiology [15, 39]
(Table 1). In particular, Cav-1 null mice develop a complex spectrum
of diseases, such as diabetes [40, 41], impaired lung [26, 42, 43]
and heart [42, 44] functionality and cerebral ischaemia [45–47].
Moreover, Cav-1 null mice are predisposed to certain tumours
whereas are protected from others [15, 39] (for a more detailed 
discussion please refer to section ‘Relevance of Cav-1 as tumour
conditional gene’). Cav-2 null mice show exercise intolerance 
associated to impaired pulmonary functionality [48] and peculiar
abnormalities in skeletal muscle, such as tubular aggregate forma-
tion, mitochondrial proliferation/aggregation and increased number
of satellite cells [49]. On the other hand, because of the restricted
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Table 1 The family of caveolins: genomic localization, cell- and tissue-
specific expression and principal knockout mouse phenotypes

Human
gene

Chromosomal
localization

Expression
patterns

Knockout mouse 
phenotypes

Cav-1 7q31.1 Adipocytes Diabetes [40, 41]

Cardiac fibrob-
lasts

Lung diseases [26, 42, 43]

Endothelia Heart diseases [42, 44]

Macrophages Cerebral ischaemia [45–47]

Neural cells Predisposition to skin and
breast cancer [54, 75–79]

Pneumocytes Protection from prostate 
cancer [80]

Smooth 
muscle cells

Striated 
muscle cells

Cav-2 7q31.1 Same as Cav-1 Impaired pulmonary 
functionality [48]

Abnormalities in skeletal 
muscle [49]

Cav-3 3p25 Striated 
muscle cells

Mild myopathic changes
[27, 28]

Smooth 
muscle cells

Cardiomyopathy [50]

Cardiac
myocytes

Insulin resistance and
increased adiposity [51]
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tissue-specificity of Cav-3 expression within mature myofibres and
cardiac myocytes, Cav-3 null mice exhibit mild myopathic changes,
such as mononuclear cell infiltration, variable fibre size and pres-
ence of necrosis [27, 28], as well as a progressive cardiomyopathy
due to extracellular regulated kinases (ERK) pathway hyperactiva-
tion [50]. In addition, Cav-3 null mice develop insulin resistance and
increased adiposity [51], suggesting an involvement of Cav-3 in the
regulation of the whole body glucose metabolism.

Relevance of Cav-1 as tumour conditional gene

The human Cav-1 gene is localized on a suspected tumour sup-
pressor locus of chromosome 7q31.1 [52]. Targeted down-
regulation of Cav-1, indeed, promotes cell transformation of
NIH3T3 fibroblasts, anchorage-independent growth in vitro [53] and
tumour growth in vivo [54, 55]. In addition, Cav-1 overexpression
blocks mouse embryonic fibroblasts in the G0/G1 phase of the cell
cycle [56] and abrogates the transformed cell phenotype [57, 58],
suggesting that Cav-1 acts as a tumour-suppressor in non-neoplastic
tissues by mainly limiting the ERK signalling pathway [53, 59].
Accordingly, Cav-1 is down-regulated in different tumours, such as
ovarian [60], lung [61] and breast carcinomas [57, 62–64], mes-
enchymal sarcomas [65] as well as in cell lines derived from human
tumours or transformed by oncogenes [66]. Paradoxically, Cav-1 is
up-regulated in many other malignancies, such as colon adenocarci-
noma [67], bladder carcinoma [68], oesophageal squamous cell car-
cinoma [69] and prostate cancer [70], suggesting that Cav-1 plays a
dual role in cancer progression depending on the different type and
stage of cancer [71–74]. The complex relationship between Cav-1
and cancer has been particularly outlined by the employment of Cav-1
null mice (Table 1). In particular, although ablation of Cav-1 seems to
be not sufficient to induce spontaneous tumour formation, it signifi-
cantly predisposes mice to skin and breast tumours by stimulating
cellular hyperplasia [54, 75–79]. In striking contrast, genetic loss of
Cav-1 in the TRAMP model (transgenic adenocarcinoma of mouse
prostate) decreases incidence of prostate tumours and metastasis
[80]. Collectively, a growing body of evidence derived from different
models suggests that loss of Cav-1 cooperates to cell transformation
in the early phases of tumour growth, whereas a later Cav-1 re-
expression favours tumour metastases and multi-drug resistance
[81–84]. A possible explanation to this ambiguous behaviour could
be referred to the presence of multiple alterations in the cellular envi-
ronment, such as the expression of different subsets of caveolin
partners during tumour progression or the occurrence of inactivat-
ing mutations [85, 86] or post-translational modifications of Cav-1
[87, 88], which may promote a shift of Cav-1 activity from tumour-
suppressor to proto-oncogene. In this sense, Cav-1 should be con-
sidered a tumour-conditional gene [71–74].

Role of caveolins in skeletal muscle

In skeletal muscle, Cav-1 and Cav-3 reside in satellite cells [8–10]
and myofibres [11–13], respectively. Interposed among the fibres,

satellite cells represent a pool of reserve elements which are
recruited in different processes, such as the repair of damaged
fibres [89], stretch [90] and fibre hypertrophy [91]. In particular,
Cav-1 has been shown to play an important role in maintaining 
the quiescence of satellite cells by antagonizing the RAS/ERK 
signalling [10]. On muscle injury, Cav-1 is transcriptionally down-
regulated through an HGF/cMET axis pathway, allowing the satellite
cells to escape quiescence, migrate and repair the injured site [10].
On the other side, in mature myofibres Cav-3 regulates the activity
of different signalling proteins [14–16], associates with the T-
tubules structures [27] and stabilizes the dystrophin–glycoprotein
complex through a WW-like binding domain [92, 93]. In this
regard, a deficit of Cav-3 expression due to inherited Cav-3 gene
mutations is responsible of a set of distinct neuromuscular and
cardiac disorders [14–17]. For instance, the missense Cav-3
(P104L) substitution, which has been predominantly associated to
the Limb Girdle Muscular Dystrophy 1-C (LGMD1-C) [94], affects
the integrity of skeletal muscle in vivo [95, 96] and the myogenic
program in vitro [97]. Remarkably, the homeostasis of skeletal
muscle is even compromised by an excess of Cav-3, as observed
in muscles derived from patients affected by Duchenne’s muscular
dystrophy [98, 99] and confirmed by studies of Cav-3 overexpres-
sion [97, 100]. Collectively, these observations suggest that the
switch from Cav-1 to Cav-3 expression represents a pivotal step for
the overall myogenic program, leading the muscle precursors from
quiescence towards differentiation.

Histopathological, genetical 
and molecular signatures of RMS

Soft tissue sarcomas arise from primitive mesenchymal cells
located throughout the body and make up to approximately 7% of
all cancer cases in patients under the age of 20 [101, 102]. These
tumours can be subdivided into two major groups: RMS and non-
RMS soft tissue sarcomas, the latter including a miscellaneous of
tumours, such as the synovial sarcoma, malignant fibrous histiocy-
toma, malignant peripheral nerve sheath tumour and fibrosarcoma
[101]. The immunohistochemical or molecular detection of myo-
genic regulatory factors, such as MyoD and myogenin [103–106],
allows an RMS diagnosis, whereas the detection of myosin and
other contractile proteins identifies more mature RMS phenotypes
[107]. The current classification of RMS into two major histological
variants, termed embryonal (ERMS) and alveolar (ARMS), is sup-
ported by histopathological criteria and genetic signatures (Fig. 1).

Embryonal RMS

ERMS accounts for up to 80% of RMS in children of less than 
10 years of age and is the most common and more treatable 
subtype. ERMS can occur at any site, including nasopharynx and
biliary tract, but they are most commonly observed in the head and
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neck or genitourinary region [108]. On histologic examination,
ERMS are highly heterogeneous, ranging from poorly differentiated
lesions with immature tumour cells to highly differentiated lesions
containing rhabdomyoblasts with large eosinophilic cytoplasm.
ERMS also comprise different histological subtypes formed by

botryoid and spindle cells. A severe genomic instability generally
characterizes ERMS subsets (Fig. 1): loss of heterozygosis (LOH)
and the loss of imprinting (LOI) on chromosome region 11p15.5 are
the most frequent signatures that retrieve the inactive allele and
cause the loss of the active one [109–113]. This genetical signature

© 2011 The Authors
Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Fig. 1 Molecular alterations, animal models and human syndromes associated to RMS. MIM ID numbers linked to each syndrome can be used to retrieve
further informations at the following site: http://www.ncbi.nlm.nih.gov/omim.
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impairs the expression of different putative tumour suppressor
genes on chromosome 11, including H19 [114], CDKN1C
(p57/KIP2) [115] and SLC22AIL (BWR1A) [116]; in contrast, the
gene encoding for IGF-2, imprinted in the opposite direction, is over-
expressed [110,117]. In accordance, the tumourigenesis of the RMS
RD cell line is suppressed by transferring a normal human chromo-
some 11 [118]. Interestingly, inherited alterations of the 11p15.5
locus are retrieved in patients affected by the Beckwith–Wiedemann
syndrome, an overgrowth syndrome associated to an increased risk
of developing Wilms tumour, hepatoblastoma, adrenocortical carci-
noma, neuroblastoma and also RMS [119]. LOH is also frequently
observed on chromosome 9q22 (Fig. 1), causing deficiency in
Patched (PTCH) gene [120] and predisposing to high incidence of
medulloblastoma and ERMS [121]. In addition, even activating
mutations in RAS gene, which is intriguingly localized within the
11p15.5 locus, are associated to ERMS [122–124].

Alveolar RMS

ARMS mainly affect adolescents and adults and are characterized
by a poorer prognosis. ARMS cells resemble lung alveoli, with
clusters of eosinophilic tumour cells arranged loosely and dis-
posed in an alveolar pattern. ARMS typically occur in the trunk and
body extremities [108] and frequently harbour non-random chro-
mosomal translocations [125] (Fig. 1). In particular, translocations
t(2;13)(q35;q14) and t(1;13)(p36;q14) account respectively for
about 70% and 10% of ARMS and give rise to chimeric proteins
that are formed by the fusion of the paired and homeo-DNA bind-
ing domain of PAX3 or PAX7 factors with the transactivation
domain of FKHR (FOXO1) [126–128]. The so-called PAX3-FKHR
and PAX7-FKHR transcription factors enable an aberrant transcrip-
tional program and significantly contribute to RMS progression
through multiple mechanisms. In particular, PAX3-FKHR and
PAX7-FKHR are frequently overexpressed in ARMS [129], display
incremented accessibility to chromatin due to localization exclu-
sively nuclear [130–132] and reach a 10- to 100-fold increase in
the transcriptional activation of downstream target genes in com-
parison to wild-type PAX3 and PAX7 proteins [133, 134]. Ectopic
expression of PAX3-FKHR triggers a transformed phenotype in
chicken embryo [134] and NIH3T3 fibroblasts [135] and increases
the tumourigenicity of two ERMS cell lines [136]. Moreover, PAX3-
FKHR prevents apoptosis [137, 138] and even abrogates myoblast
terminal differentiation [139, 140]. Transgenic mice carrying PAX3-
FKHR develop defects in hindlimb skeletal muscle formation and
neural crest migration [140], but do not undergo tumour forma-
tion, supporting the idea that PAX3-FKHR expression is required
but is per se not sufficient to cause oncogenic transformation.

Principal pathways and targets deregulated in RMS

The network of pathways deregulated in RMS is rather complex
(Fig. 1). The loss of p53 seems to be central for RMS development
[141–145], in addition to the deregulation of components for

receptorial signalling pathways, including HGF [146, 147], IGF1-R
[148–150], EGFR/HER-1, HER-2 and HER-3 [151,152], PDGFR
[150, 153], VEGF [154–156], FGFR4 [157] and IL-4R [158, 159].
The overactivation of the RAS pathway occurs rather frequently
[122–124]. In addition to the peculiar PAX3/7-FKHR expression
[126–128], there are other molecular signatures that are com-
monly retrieved in RMS, such as the overexpression of cMET/HGF
receptor [160], IGF-2 [110, 117], IGF-2–binding protein (IGFBP5)
[161], N- and C-MYC [162–164], MDM2 [144,165] and some
mutations in the cyclin-dependent kinases (CDKs) genes [166].
Moreover, as previously mentioned (section ‘Embryonal RMS’),
loss of expression of H19 [114], CDKN1C [115], SLC22AIL [116]
and PTCH [120,121] may occur. It is worth remembering that
RMS cells are committed to myogenic lineage and therefore express
muscle markers. In this regard, a paradoxical feature of RMS cells
is that the expression of MyoD does not overlap with its full func-
tionality because of multiple altered mechanisms [167], such as the
inactivation of the mitogen-activated protein kinase (MAPK) p38
[168], whose function is required to enable MyoD transcriptional
activity [169], or the presence of E-proteins complexes that 
compete for the generation of active full-length E-protein/MyoD 
heterodimers [170]. Moreover, PAX3-FKHR factor has been shown
to increment the transcriptional levels of MyoD, but then abrogates
its activity through protein phosphorylation [171, 172].

Animal models and human syndromes associated
to RMS

A growing body of evidence derived from different animal models
suggests that the development of RMS frequently occurs upon
suppression of p53 pathway in conjunction with deregulated activ-
ities of receptorial systems along the RAS axis and/or the expres-
sion of PAX3/7-FKHR gene products (Fig. 1). In particular, RMS
development occurs in p53-mutant mice [173, 174] and tumour
incidence increases in conjunction with loss of FOS [175], activa-
tion of HER-2/neu [176], RAS [177] or the expression of PAX3/7-
FKHR proteins [178]. In addition, mice with ablated PTCH
gene [179] or with aberrant HGF signalling [146, 147] and non-
transgenic dystrophin-deficient mdx mice [180] are prone to
develop RMS. In zebrafish, transgenic expression of oncogenic 
K-RAS in activated satellite cells predisposes to RMS and simulta-
neous p53 inactivation accelerates tumour formation [181]. Finally,
important clues on the risk factors predisposing to RMS came also
from the evidence of a significant RMS incidence in certain familial
cancer syndromes [145], including the Li–Fraumeni syndrome
[141], Beckwith–Wiedemann syndrome [119], neurofibromatosis-1
[182], Costello syndrome [183], Gorlin syndrome [184],
retinoblastoma [185], mosaic variegated aneuploidy syndrome
[186] and mismatch repair deficiency syndrome [187] (Fig. 1).

Origins of RMS

Despite great efforts have been made to understand the molecular
signatures of RMS, the identity of the tumour-initiating cell

© 2011 The Authors
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remains to be clarified. Satellite cells and multipotent mesenchy-
mal stem cells (MSCs) are thought to be the most credited source
for ERMS and ARMS, respectively [188–190]. In particular, inacti-
vation of p53 cooperates with oncogenic RAS in muscle precur-
sors and satellite cells to induce ERMS in mice [191] and zebrafish
models [181]. On the other side, despite the delivery of PAX3-
FKHR or PAX7-FKHR in MSCs derived from mouse bone marrow
is effective to induce expression of MyoD and myogenin, ARMS
tumours form only in conjunction with the expression of a domi-
nant-negative p53, SV40 early region or a constitutively activated
H-RAS [192, 193]. These findings strongly support the notion that
PAX3/7-FKHR factors may confer the myogenic identity to MSCs
elements [188], but then secondary deregulated mechanisms are
required to induce tumour formation.

Expression of caveolins in RMS
tumours and cell lines

Validation of caveolins expression in RMS has drawn the attention
only recently. In a large screening of different tumours, including
RMS, malignant mullerian tumour and a spectrum of different
neoplasms, Cav-3 was indicated as specific marker for the detec-
tion of mature RMS, being particularly expressed in those cell ele-
ments with abundant eosinophilic cytoplasm and striation [22]. In
a recent study, we have confirmed this evidence by means of
immunohistochemical analyses [23]. In particular, Cav-3 and 
Cav-1 were predominantly associated to mature or immature RMS
tumours, respectively (Fig. 2). Given the heterogeneity in degree
of maturation present in the RMS cell components, the expression
of Cav-1 or Cav-3 cannot be univocally associated to a certain
RMS histotype. Nevertheless, a simplified model would indicate
such a relationship between the expression of Cav-1 or Cav-3 and
a status of poor or advanced cell differentiation, respectively, as
analogously observed in skeletal muscle (Fig. 2) [10]. To further
substantiate the in vivo findings, the expression of caveolins has
been analysed in vitro [23]. In particular, Cav-1 expression was
retrieved in the majority of the human ERMS cell lines analysed
(Fig. 3A), except for TE671 cells (personal unpublished results),
which intriguingly displayed low expression of MyoD. This evi-
dence should deserve attention as might suggest an unappreci-
ated relationship between MyoD levels and the expression of Cav-
1 in immature muscle precursors, as much as a relationship
between myogenin and the levels of Cav-3 has been already
shown in differentiating myoblasts [194, 195]. The analysis of
Cav-1 behaviour was then particularly characterized by employing
RD cells, an RMS model line in which RAS mutations are long
known to counteract the myogenic differentiation via hyperactiva-
tion of the ERK pathway [196]. In RD cells, Cav-1 was found to be
properly localized at the plasma membrane (Fig. 3B), thus exclud-
ing the presence of inactivating gene mutations leading to protein
mislocalization, as occurs in some cancer types [62, 85, 86]. In
particular, high levels of Cav-1 were associated to proliferation of

RD cells, whereas pharmacological inhibition of the ERK pathway,
eliciting block of cell growth and subsequent differentiation, lead
to Cav-1 down-regulation and increase of Cav-3, myogenin and
MHC (Fig. 3C). Although it remains to be established if the
decrease in Cav-1 might be related to growth arrest alone or to
both withdrawal from cell cycle and subsequent myogenic differ-
entiation, Cav-1 and Cav-3 seem to be associated to an immature
and mature RMS cell phenotype, respectively, thereby confirming
the previous in vivo observations. Keeping in mind that activating
RAS mutations are frequently detectable in ERMS cells lines
[122–124] and are critically involved in RMS tumour formation
[177, 181, 183, 190–193], the relationship between Cav-1 expres-
sion and the RAS/ERK pathway deserves current attention. In fact,
although Cav-1 is a marker of quiescence in muscle satellite cells
[10], it configures as a marker of proliferation in RMS cells, sug-
gesting that deregulated mechanisms in RMS cells might impair
the ability of Cav-1 to overcome the RAS/ERK pathway. In this

© 2011 The Authors
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Fig. 2 Expression of caveolins in RMS tumours. Double immunostain
showing that in skeletal muscle Cav-1 and Cav-3 mark satellite cells and
the plasmalemma of myofibres, respectively. In RMS, Cav-1 and Cav-3 are
predominantly associated to immature and mature tumours, respectively.
Bars � 50 �m.
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perspective, it is crucial to assess how targeted silencing of 
Cav-1 might influence RMS cell growth. Importantly, expression
of Cav-2 has been also observed in RMS (personal unpublished
data). Cav-2, indeed, is almost always co-expressed with Cav-1
and its phosphorylation can regulate the formation of caveolae
and mitosis [197, 198]. Thus, the presumed impaired ability of
Cav-1 to control cell proliferation in RMS cells needs to be ascer-
tained also in relation to Cav-2 functionality.

Future perspectives: assessing the role
of caveolins in RMS tumour progression

At the plasma membrane caveolins control the activity of several
proteins involved in pathways transduction, thereby representing
a checkpoint of cellular signalling. As such, in the following 
paragraphs the potential relationship between caveolins and 
different pathways which are central to RMS development will be
discussed (Table 2).

Cav-1 and p53 signalling

Inactivation of p53 pathway, as occurs for spontaneous p53 germline
mutations [141] or overexpression of MDM2 [144, 165], plays a crit-
ical role for RMS development. As effect of p53 loss of function, can-
cerous cells elude senescence and divide indefinitely. In this context,
cellular senescence may represent a tumour-suppressor mecha-
nism. In fibroblasts subjected to oxidative stress, Cav-1 has emerged
as promoter of cell senescence [199–201] in virtue of its ability to
sequester MDM2 [202], a negative regulator of p53 activity, or inhibit
the activity of anti-oxidant enzymes, such as thioredoxin reductase 1
[203]. These findings suggest an investigation on the potential role
of Cav-1 in controlling the p53 pathway in RMS cells.

Cav-1 and multiple control of receptorial systems
for growth factors

Different receptorial systems for growth factors have been shown to
signal aberrantly in RMS cells, including those for IGF-1R [148–150],
EGFR [151, 152], PDGFR [150, 153] and VEGFR [154–156].

© 2011 The Authors
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Fig. 3 Expression of caveolins in RMS cell lines. (A) Western blot analyses
showing the expression of Cav-1 in several MyoD-positive ERMS cell lines.
Tubulin was used as loading control. (B) As shown by confocal microscopy
analysis, Cav-1 localizes at the plasma membrane or in intracellular vesicles
of embryonal RD cells. GM130 marker was employed to stain the Golgi
apparatus. Bars � 100 �m. (C) Ten microliters of PD98059 administration
attenuates the ERK phosphorylation in RD cells and allows the transition
from proliferation to differentiation, leading to Cav-1 down-regulation 
and increase of myogenin, MHC and Cav-3. Tubulin was used as loading
control.
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Remarkably, Cav-1 exerts a multiple physiological control on several
components of these pathways through multiple mechanisms, such
as physical interaction, regulation of receptor phosphorylation and
internalization. In particular, Cav-1 configures as a positive regulator
of IGF-1R pathways [204–207], although it is a negative regulator of
EGFR [208], PDGFR [209] and VEGFR-2 activities [210]. Therefore,
the ability of these receptorial systems to generate downstream sig-
nalling may be influenced, at least in part, by deregulated expression
and/or localization of Cav-1, leading to a significant change in the
biological outcome promoted by each pathway.

Cav-1 and RAS/ERK signalling

Overactivation of RAS/ERK signalling is one of the factors predis-
posing to RMS [122–124, 177, 181, 106]. Historically, Cav-1 con-
figures as a strong inhibitor of this pathway in several cell types
and tissues [10, 53, 59, 211]. Actually, the elevated Cav-1 expres-
sion detected in human RMS embryonal RD cells has been corre-
lated to hyperactivation of the ERK pathway (Fig. 3C) [23]. These 
findings indicate that, at least in RD cells, Cav-1 seems to be 
aberrantly converted to a downstream target of the ERK pathway,

giving rise to an ambiguous situation, in which cell proliferation is
associated to persistent Cav-1 expression, suggesting that Cav-1
has lost the ability to antagonize the RAS/ERK signalling. The main
hypotheses explaining this behaviour could be referred to an
impaired activity of additional proteins which might cooperate
with Cav-1 in the inhibition of the RAS/ERK pathway; alternatively,
the antagonistic role of Cav-1 on the ERK pathway might occur
upstream RAS, thus rendering ineffective its inhibition in the pres-
ence of activating RAS mutations. In this regard, it is known that
hyperactivation of the ERK pathway cooperates to shift the func-
tion of some proteins, as occurs for Sprouty-1, which changes its
function from antagonist to agonist of the RAS/ERK pathway in
ERMS tumours harbouring activating RAS mutations [212]. Thus,
it is important to establish how the association between high Cav-
1 expression and elevated RAS/ERK pathway might influence RMS
cell behaviour.

Caveolins and TGF-�/myostatin signalling

Caveolins are long known to limit the TGF-� pathway [213], which
is supposed to play a not less important role in RMS [214–218].
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Table 2 The table summarizes the physiological role exerted by Cav-1 on different pathways which are involved in RMS

Pathway Physiological role of Cav-1 Alterations linked to RMS

p53
Cav-1 may positively regulate p53 tumour suppressor function 
by sequestering MDM2 [202].

Germline p53 mutations predispose to different tumours
(Li–Fraumeni syndrome), including RMS [141].

Overexpression of MDM2, a p53 binding protein, is associated 
to ARMS tumours and cell lines [144, 165].

IGF1-R
Cav-1 is a positive regulator of IGF-IR signalling pathway
[204–207].

Alterations in IGF1-R signalling are involved in RMS [148–150].

EGFR
Cav-1 inhibits the autophosphorylation of the EGF-R kinase 
in vitro [208].

HER1/EGFR is mainly expressed in ERMS, HER-2/EGFR in ARMS
[151, 152].

PDGFR
Cav-1 inhibits the autophosphorylation of PDGF receptors in 
a dose-dependent manner [209].

Both ERMS and ARMS overexpress PDGFR-A and its ligands
PDGF-C and PDGF-A [150, 153].

VEGFR
Cav-1 acts as a negative regulator of VEGFR-2 activity in
endothelial caveolae [210].

Autocrine VEGF secretion stimulates RMS cell growth [154–156].

RAS/ERK
Cav-1 limits the RAS/ERK pathway activation in several cell types
[53, 59, 211], including muscle satellite cells [10].

Activating RAS mutations are detected in ERMS cell lines [122–124,
196] and favour ERMS tumours [177, 181, 183, 190–193].

TGF-�/
myostatin

Cav-1 interacts with TGF-� type I receptors (ALK receptors) 
to limit the activation of TGF-� pathways [213].

TGF-� superfamily members, such as TGF-� and myostatin, may
impair RMS differentiation [214–218].

HGF/cMET
Cav-1 is a downstream target of the HGF/cMET signalling axis 
in muscle satellite cells [10].

Transgenic mice overexpressing HGF develop cancer, including
RMS [146, 147].

cMET is frequently overexpressed in RMS [160].

RAGE
Cav-1 is a downstream target of RAGE-mediated Src activation 
in Schwann cells [227] and endothelial smooth muscle cells
[228].

Low RAGE expression in myoblasts and RMS cells correlates
with increased proliferation, migration, invasiveness and tumour
growth [229, 230].
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Transforming growth factor-� (TGF-�) signalling pathways regu-
late numerous physiological and pathological processes [219–221]
and proceed from the cell membrane to the nucleus through the
cooperation of the types I and II serine/threonine kinase receptors
(T�R-I and -II) and their downstream SMAD effectors [222].
Different TGF-� ligands, such as TGF-� [214] and myostatin [223],
have been implicated in poor differentiation of RD cells [214–218].
Remarkably, either Cav-1 or Cav-3 interacts with and inhibits the
activity of T�R-I receptors at the membrane [97, 213, 224],
thereby limiting the downstream signalling. In view of these find-
ings, the expression of caveolins may influence the cell behaviour
of RMS cells in response to TGF-�/myostatin ligands.

Cav-1 and HGF/cMET signalling

Elevated HGF/cMET signalling has been implicated in RMS [146,
147, 160] as well as in different tumours [225]. In particular, cMET
overexpression plays a significant role in RMS maintenance, as its
silencing reduces cell invasiveness and tumour growth in a model
of RMS xenograft [160]. In muscle satellite cells, HGF/cMET 
signalling axis plays a major role to elicit the transcriptional sup-
pression of Cav-1 during muscle regeneration, a mechanism
which is supposed to be central for the repair of the injured site
[10]. Hence, these findings suggest that the aberrant HGF/cMET
signalling observed in RMS cells might possibly reflect on the
expression levels of Cav-1.

Caveolins and RAGE signalling

Receptor for advanced glycation end-products (RAGE) is a multi-
ligand receptor of the immunoglobulin superfamily with a positive
or negative role in cancer progression and metastasis depending
on the tumour type [226]. A role of RAGE in regulating Cav-1 and
Cav-3 expression/phosphorylation has been reported in several
cell types. Indeed, (i) RAGE-mediated Src activation induces Cav-
1 phosphorylation in Schwann cells [227] and endothelial smooth
muscle cells [228]; and (ii) RAGE engagement induces Cav-3
expression in a myoblast cell line, whereas functional inactivation
of RAGE in normal myoblasts results in the acquisition of a
tumour behaviour with concomitant reduced expression of Cav-3
[229]. In RMS cells, RAGE activity is predictive of reduced prolif-
eration, invasiveness and increased differentiation [230]. These

findings suggest that RAGE signalling might have a role in regu-
lating caveolins expression in RMS cells.

Conclusions

This review outlines the great amount of data indicating that cave-
olins play an important role in tumour development and progres-
sion. In RMS, the most frequent childhood soft-tissue sarcomas
sharing myogenic features, Cav-1 and Cav-3 configure as markers
of immature or mature tumours, respectively. Hence, immunohisto-
chemical detection of caveolins in conjunction with strengthened
myogenic markers may provide a useful diagnostic tool for estab-
lishing more accurately the grading in tumour samples. In this
regard, the availability of novel molecular signatures may be critical
to discriminate particular RMS variants and implement the current
classification. Two major criteria support the demand to establish
the role of caveolins in RMS tumour progression. First, caveolins
are scaffolding proteins regulating several targets and pathways
which are central to RMS development, and therefore loss or gain
of caveolins function may generate multiple effects on the tumour
behaviour. Finally, Cav-1 represents a tumour conditional gene in
cancer and, thereby, recognizing its precise role in RMS progression
will be crucial to elaborate targeted therapies. In summary, this
review open up new interesting perspectives for investigating the
role of caveolins in a large variety of pathological mechanisms pre-
disposing to RMS.
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