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Abstract

α,α-Difluoroketones possess unique physicochemical properties that are useful for developing 

therapeutics and probes for chemical biology. In order to access the α-allyl-α,α-difluoroketone 

substructure, complementary Pd-catalyzed decarboxylative allylation reactions were developed to 

provide linear and branched α-allyl-α,α-difluoroketones. For these orthogonal processes, the 

regioselectivity was uniquely controlled by fluorination of the substrate and the structure of 

ligand.
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Decarboxylative coupling is a powerful method for the construction of C—C bonds that 

generates reactive organometallic intermediates under mild conditions and releases CO2 as 

the only byproduct.[1] Moreover, this strategy enables the formation of reactive 

intermediates and regioselective coupling to provide products that might be difficult to 

access otherwise.[2] While Pd-catalyzed decarboxylative allylation reactions of soft C-based 

(e.g. malonates, β -diketones, β -ketoestsers) and heteroatom-based nucleophiles can provide 

both branched[3] and linear[4] products, Pd-catalyzed allylation reactions of hard enolate-

nucleophiles with monosubstituted allylic substrates almost exclusively provide linear 

products.[1b,5] In a rare example, a Pd-catalyzed allylation of a ketone enolate employed 

stoichiometric Li additives to provide this uncommon branched product.[6, 7] However, the 

ability of a ligand to control the regioselectivity for Pd-catalyzed allylation reactions of 

ketone enolates has not been demonstrated. Herein, we report complementary Pd-catalyzed 

decarboxylative allylation reactions of hard α,α-difluoroketones that generate both linear 

and branched products. Notably in these reactions, the fluorination pattern of the substrate 

enables the ligands to dictate the regioselectivity of the transformations.
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α,α-Difluoroketones represent a unique substructure in medicinal chemistry that inhibits 

serine and aspartyl proteases via interaction with the nucleophilic residue of a protease or a 

water molecule in the active site of the protease to form stable tetrahedral adducts.[8,9] In 

addition, this substructure can enhance bioactivities for alternate therapeutic targets,[10] and 

can serve as an intermediate for further functionalization (Figure 1).[11] Thus, strategies for 

accessing α,α-difluoroketones should be useful for the development of biological probes.

Based on our ongoing studies aimed at accessing privileged fluorinated functional groups 

using decarboxylative strategies,[12] we envisioned that a decarboxylative strategy should 

afford α-allyl-α,α-difluoroketones from allylic alcohols. Decarboxylative allylation 

reactions of F-containing of nucleophiles are restricted to α-fluoroketones,[13] and 

decarboxylative reactions of α,α-difluoroketones have not been realized. Additionally, even 

simple allylation reactions of α,α-difluoroketone enolates remain restricted to a single 

reaction that uses stoichiometric Cu,[14] and no catalytic allylation reactions generate this 

substructure.

(1)

Initial attempts to develop a catalytic decarboxylative allylation reaction to generate α-allyl-

α,α-difluoroketones revealed that a Pd-based catalyst could promote the desired 

transformation (eq. 1). A broad screen of P-based ligands identified 

biarylmonophosphines[15] as privileged ligands for the present reaction, and in fact, these 

ligands enabled access to both linear and branched products with high regioselectivity 

(Table 1, entry 1). Specifically, t-BuBrettPhos,[16] an electron-rich and bulky ligand 

generated linear product 2a in good yield and regioselectivity, and PhXPhos,[17] a smaller 

and more electron-deficient ligand, provided an uncommon branched product (3a) in 

excellent selectivity and yield (entry 1).[18] In the present reaction, the ligand-controlled 

regioselectivity was only observed for the α,α-difluorinated substrate, and the analogous 

mono- and non-fluorinated substrates did not provide branched products in good yield and 

regioselectivity (entries 2–3). Thus, the physicochemical perturbation resulting from 

fluorination of the substrate facilitated formation of the branched product.

Based on classical reactivity patterns, the ability of α,α-difluoracetophenone to provide both 

branched and linear products is unexpected. Traditionally for Pd-catalyzed allylation 

reactions, “hard” and “soft” nucleophiles have been identified by pKa, with hard 

nucleophiles (pKa > 25) being less acidic than soft nucleophiles (pKa < 25).[19] However for 

most pronucleophiles, the presence of a resonance-stabilizing group lowers the pKa and 

increases polarizability of molecular orbitals (e.g. ketone vs. β-ketoester or β-

diketone).[1b, 20] In contrast for α,α-difluoroketones (pKa = 20.2),[21] the lower pKa results 

from an inductive effect that makes anions harder (negative fluorine effect).[22] Thus for the 

present allylation reaction, the α,α-difluoroketone enolates should be harder than 

acetophenone (pKa = 24.7),[21] which typically provides linear products.[1b,5] Thus based on 
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classic hard/soft reactivity trends, the α,α-difluoroketones would not provide the uniquely 

observed branched product.

Utilizing the optimized conditions, a variety of substrates bearing electron-donating and -

withdrawing functional groups on the cinnamyl component underwent regioselective 

coupling to provide both linear and branched products (Table 2). Notably, with catalyst 

system A [Pd(OAc)2/t-BuBrettPhos/1,4-dioxane/60 °C], electron-deficient allylic moieties 

(5a–c) provided better selectivity than neutral (5d–e) and electron-rich (5f–g) substrates. In 

addition, an ortho-substituted cinnamyl substrate provided linear product (5h) in excellent 

yield and selectivity. In contrast, catalyst system B [Pd(OAc)2/PhXPhos/1,4-dioxane/90 °C] 

showed excellent selectivity for branched products (generally > 49 : 1), regardless of 

electronic properties of the cinnamyl fragment (6a–h). Both catalyst systems tolerated 

substitution at the C-2 position of the allyl fragment (5i and 6i). However, the reaction of t-

butyl-derived substrate (4j) provided low-to-modest yields of both linear and branched 

products (5j and 6j). Moreover, substrates bearing β-hydrogens on the allyl fragment 

underwent elimination to generate dienes instead of coupling products.

Both catalyst systems also transformed substrates bearing distinct aryl and alkyl α,α-

difluoroketone moieties (Table 3). Reactions of electron-rich and neutral aryl α,α-

difluoroketone substrates afforded good selectivities and yields for linear (8a–8c) and 

branched (9a–9c) products under both conditions. Even heteroaryl α,α-difluoroketone 

substrates (7d–7e) generated linear (8d–8e) and branched (9d–9e) products in good 

selectivities and yields. Using the standard reaction conditions, an aliphatic α,α-

difluoroketone was less reactive; however, improved yields and high selectivities were 

obtained by increasing the catalyst loading [5 mol% Pd(OAc)2, 10 mol% ligands] and 

reaction time (8f and 9f). Thus, both catalyst systems enabled access to a variety of unique 

α,α-difluoroketone products that would be challenging to prepare otherwise.

The complementary products may derive from a common Ln–Pd(π-allyl)(enolate) 

intermediate (11) via distinct ligand-controlled regioselective C–C bond-forming events 

(Figure 2A). To establish the intermediacy of a π-allyl complex, secondary ester 15 was 

subjected to both conditions A and B (Figure 2B), and the results were compared to 

reactions of the corresponding linear substrates (Table 2). System A transformed both linear 

and branched substrates (4a, 15) into linear product 5a in comparable selectivity (br/lin = 1 : 

23 vs. 1 : 21), while system B transformed both linear and branched substrates (4a, 15) into 

branched product 6a in high selectivity (br/lin = 99 : 1). Combined, these data: 1) implicate 

the existence of π-allyl 11 in both reaction pathways; 2) discount memory effects controlling 

the regioselecivity for either system; 3) confirm that ligands ultimately control the 

regiochemical fate of the reaction.

Evaluation of the relationship between the electronic structures of cinnamyl-derived 

substrates and regioselectivities of catalytic reactions suggests that the branched and linear 

products derive from distinct pathways. For outer-sphere processes, the electronic structure 

of cinnamyl-derived substrates can perturb the regiochemical outcome of the reaction. 

Specifically, electron-rich substrates provide linear products in lower selectivity than 

electron-deficient substrates,[3a, 23] because SN1-like attack at the stabilized 2° position of 
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the π-allyl intermediates (path ii) competes with SN2-like the attack at the unhindered 1° 

position (path i). For system A, a similar trend was observed, as confirmed by a linear free-

energy correlation (Figure 3). Thus, system A may proceed predominantly via an analogous 

outer-sphere mechanism (path i).

In contrast, system B notably generates branched products that are less commonly observed 

in Pd-catalyzed allylation reactions of hard ketone enolates.[1b,5] If SN1-like attack of 

intermediate 10 would predominantly occur at the 2° position (path ii), the electronic 

properties of cinnamyl-derived substrates (1a, 4a–4c, 4e and 4g) would likely allow path i to 

compete and influence the regioselectivity of the reactions.[3a,23] However for system B, 

substrates bearing electron-rich, -neutral, and -deficient cinnamyl moieties all underwent 

coupling to afford branched products in high selectivities (3a, 6a–6c, 6e and 6g). This lack 

of a correlation between the electronic properties of cinnamyl-derived substrates and 

regioselectivity may discount outer-sphere path ii.

An alternate explanation for the unique regioselectivity involves the sigmatropic 

rearrangement of an η1-allyl intermediate (path iii).[24,25] Although this mechanism has been 

computationally predicted, experimental evidence for palladacyclic transition state 12 has 

not been established. In support of this rearrangement mechanism, non-metal-catalyzed 3,3-

sigmatropic rearrangements of allyl α,α-difluoroenolethers similarly react more rapidly than 

the non-fluorinated counterparts.[26] Thus in the present case, the fluorine atoms might also 

provide unique physical properties that facilitate an analogous Pd-catalyzed rearrangement 

to provide the branched product.

In conclusion, both fluorination of a substrate and the selection of appropriate ligands 

facilitated a pair of orthogonal Pd-catalyzed regioselective decarboxylative allylation 

reactions to afford α,α-difluoroketone products. Computational studies should provide 

insight into the physicochemical basis by which fluorination enables formation of the 

branched product, and the relationship the between structures of the ligands and 

regioselectivities of the transformations. Ongoing work aims to exploit this reaction pathway 

to generate other unique fluorinated substructures, including enantioenriched products. We 

envision that these strategies should be useful for accessing α,α-difluoroketone-based 

probes that would otherwise be challenging to prepare.
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Figure 1. 
α,α-Difluoroketones serve as drugs, biological probes, and synthetic intermediates.
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Figure 2. 
Formation of Linear and Branched Products May Involve a Common π-Allyl Intermediate.
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Figure 3. 
Catalyst System A: Improved Linear Selectivity for Electron-deficient Substrates.
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Table 1

Fluorination and Ligands Enable Regioselective Allylation Reactions.[a]

[a]
Catalyst System A: substrate (1.0 equiv), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos (6.0 mol%), 1,4-dioxane (0.50 M), 60 °C, 20 h; Catalyst System 

B: substrate (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%), 1,4-dioxane (0.10 M), 90 °C, 20 h. For fluorinated products, yields and 
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selectivities were determined by 19F NMR using PhCF3 or PhF as an internal standard, respectively. For non-fluorinated products, yields and 

selectivities were determined by 1H NMR using CH2Br2 as an internal standard.

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2016 February 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 12

Table 2

Reactions of Substrates Bearing Distinct Allyl Moieties.[a]

[a]
Catalyst System A: 4a–j (1.0 equiv), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos (6.0 mol%), 1,4-dioxane (0.50 M), 60 °C, 24 h; Catalyst System B: 

4a–j (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%), 1,4-dioxane (0.10 M), 90 °C, 24 h. 19F NMR yields for the major isomers were 
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determined using PhCF3 as an internal standard (average of two runs). The values in parentheses represent the yields of the major products. The 

regioselectivities were determined by 1H NMR analysis of the crude reaction mixtures.

[b]
70 °C.

[c]
Pd(OAc)2 (5 mol%), t-BuBrettPhos (10 mol%).

[d]
100 °C.

[e]
130 °C, o-Xylene, the regioselectivities were determined by GC and 19F NMR of the crude reaction mixtures.
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Table 3

Reactions of Substrates Bearing Distinct Ketone Moieties.[a]

[a]
Catalyst System A: 7a–f (1.0 equiv), Pd(OAc)2 (3.0 mol%), t-BuBrettPhos (6.0 mol%), 1,4-dioxane (0.50 M), 60 °C, 24 h; Catalyst System B: 

7a–f (1.0 equiv), Pd(OAc)2 (2.5 mol%), PhXPhos (5.0 mol%), 1,4-dioxane (0.10 M), 90 °C, 24 h. 19F NMR yields for the major isomers were 
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determined by using PhCF3 as an internal standard (average of two runs). The values in parentheses represent the yields of the major products. The 

regioselectivities were determined by 1H NMR analysis of the crude reaction mixtures.

[b]
Pd(OAc)2 (5.0 mol%), t-BuBrettPhos (10 mol%).

[c]
70 °C, 36 h.

[d]
Pd(OAc)2 (3.5 mol%), PhXPhos (7.0 mol%).

[e]
18 h.

[f]
Pd(OAc)2 (5.0 mol%), PhXPhos (10 mol%).

[g]
90 °C, 36 h.
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