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Abstract

We investigate several approaches to coarse grained normal mode analysis on protein residual-

level structural fluctuations by choosing different ways of representing the residues and the forces 

among them. Single-atom representations using the backbone atoms Cα, C, N, and Cβ are 

considered. Combinations of some of these atoms are also tested. The force constants between the 

representative atoms are extracted from the Hessian matrix of the energy function and served as 

the force constants between the corresponding residues. The residue mean-square-fluctuations and 

their correlations with the experimental B-factors are calculated for a large set of proteins. The 

results are compared with all-atom normal mode analysis and the residue-level Gaussian Network 

Model. The coarse-grained methods perform more efficiently than all-atom normal mode analysis, 

while their B-factor correlations are also higher. Their B-factor correlations are comparable with 

those estimated by the Gaussian Network Model and in many cases better. The extracted force 

constants are surveyed for different pairs of residues with different numbers of separation residues 

in sequence. The statistical averages are used to build a refined Gaussian Network Model, which is 

able to predict residue-level structural fluctuations significantly better than the conventional 

Gaussian Network Model in many test cases.
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1 Introduction

Proteins are biomolecules, each formed by a chain of small molecules called amino acids. 

There are total 20 different amino acids. They can make many different chains of amino 

acids, and hence different proteins. There are hundreds of thousands of different proteins, 

with distinct biological functions supporting diverse biological forms and processes. They 

are key molecular elements of life and are fundamental research subjects of life sciences 

(Berg et al. 2006).
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The biological function of a protein is determined by the protein’s 3D structure. The 3D 

structure is determined by the protein’s amino acid sequence. In other words, a given 

protein, with a given amino acid sequence, always assumes a certain 3D structure, which 

then helps to perform certain functions. Therefore, the 3D structure carries important 

information for the understanding of the protein and in particular, its sequence-structure-

function relations (Berg et al. 2006).

While a protein folds to an unique structure, it also fluctuates and makes thermodynamic 

movements. The movements can be different for different atoms or residues or fragments of 

the protein, and may correspond to certain functional differences. Therefore, the 

determination of the structural fluctuation is an equally important issue as the determination 

of the structure itself in protein modeling. In X-ray crystallography, the structural fluctuation 

is measured by the so-called atomic B-factors, which are proportional to the atomic mean-

square-fluctuations (Drenth 2006).

In contrast to structural determination, which is mainly through physical experiments, such 

as X-ray crystallography and NMR, the structural fluctuation can be analyzed theoretically 

for a given structure. For example, it can be traced by molecular dynamics simulation in the 

force field of the protein. It can in particular be determined in an analytical form using the 

so-called normal mode analysis (NMA) (Brooks et al. 1989; Schlick 2002).

The normal mode analysis usually requires a singular-value-decomposition of the Hessian 

matrix of the energy function, which is costly for an all-atom model, yet the estimation on 

the fluctuation may not necessarily always accurate, because of the errors in the force field 

approximation. A simplified residue-level model called the Gaussian Network Model 

(GNM) has been proposed in recent years and proved to be more efficient as well as 

accurate than NMA (Micheletti et al. 2004; Cui and Bahar 2006).

In this paper, we investigate several new approaches to residue-level normal mode analysis. 

Similar to GNM, we take the residues as the basic units in a protein and use a single 

backbone atom (or a combination of several backbone atoms) to represent each residue. 

Different from GNM, the force constants for pairs of representative atoms are not the same 

and are instead extracted from the Hessian matrix of the energy function. Therefore, the 

models can be considered as coarse-grained NMA.

Using the new models, we calculate the mean-square-fluctuations of the residues and their 

correlations with the experimental B-factors (called the B-factor correlations) for a large set 

of proteins. We compare them with the all-atom normal mode analysis and the residue-level 

Gaussian Network Model. We show that our models perform more efficiently than the all-

atom normal mode analysis, and the B-factor correlations are also higher. The B-factor 

correlations are comparable with those estimated by the Gaussian Network Model and in 

some cases better.

Following the development of the coarse-grained NMA, we conduct a statistical survey on 

the extracted force constants, for different pairs of residues with different numbers of 

separation residues in sequence. We then base on their statistical averages to build a refined 

Gaussian Network Model. We show that the force constants for the neighboring residue 
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pairs are always about one-magnitude larger than other pairs in contact. Therefore, in the 

refined GNM, the entries of the contact matrix can be defined in the same way as the 

conventional GNM except that the bi-diagonal entries have large magnitudes. We show that 

such a simply refined GNM can predict residue-level structural fluctuations significantly 

better than the conventional GNM in many test cases.

The paper is organized as follows. In Section 2, we provide a general background on normal 

mode analysis. We describe the system of equations of motion and its linear approximation, 

and derive the solution to the linear system for normal mode analysis. In Section 3, we 

introduce the Gaussian Network Model, and discuss its relationship with normal mode 

analysis. In Section 4, we describe the coarse-grained NMA and present the test results. In 

Section 5, we discuss the statistics of the force constants. We then describe the refined GNM 

and show the test results. We make concluding remarks in Sect. 6. Sections 2 and 3 are 

expository sections. They do not contain new insights into NMA or GNM. However, they do 

provide a more rigorous mathematical description on these topics than most in current 

literature, and show mathematically the relationship between the two approaches. Sections 4 

and 5 describe the methods of coarse-grained NMA and refined GNM and the test results, 

and are the sections with new contributions.

2 Normal Mode Analysis

A normal mode is a pattern of motion of an oscillating system in which all parts of system 

move sinusoidally with the same frequency and a fixed phase relation. An oscillating system 

may have multiple normal modes. The motion of the system is then a collecting result of all 

its normal mode motions (Morin 2008). For example, a mass-spring system, i.e., a set of 

objects connected with springs, would vibrate with different modes corresponding to 

different amplitudes and frequencies, even when the masses of the objects and the force 

constants of the springs are all the same.

A protein structure fluctuates around its native state. In other words, the atoms in the protein 

vibrate around their equilibrium positions, as if they all are connected by some sort of 

springs. Therefore, protein structural fluctuations can be estimated approximately via normal 

mode analysis as well. Brooks and Karplus (1983) and Go et al. (1983) are among the first 

who applied the normal mode analysis to study the structural fluctuations of a small protein 

bovine pancreatic trypsin inhibitor (BPTI). Levitt et al. (1985) later performed a detailed 

analysis on larger proteins including BPTI, Crambin, Ribonuclease, Lysozyme. Ever since, 

the method has been used widely for routine structural analysis in protein modeling 

(Micheletti et al. 2004; Cui and Bahar 2006).

NMA assumes the protein in a stable state, where the potential energy has reached an energy 

minimum. Therefore, around this state, the potential energy can be approximated by a 

quadratic function. The system of equations of motion for the protein can then be solved in 

an analytical form, and the normal modes of the motion can be extracted from the solution 

for analysis of atomic vibrations as well as overall structural fluctuations. We provide a brief 

description on the system of equations of motion used in classical molecular dynamics 
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simulation, the closed form solution to the approximated system, and the formulas for 

computing the atomic vibrations.

Lemma 2.1

Suppose that a biological molecule has n atoms. Let r(t) be the collection of the coordinates 

of the atoms in the given molecule at time t such that r(t) = {ri(t) : i = 1,…, 3n}, where 

r3j−2(t), r3j−1(t), r3j(t) are the x, y, z coordinates of atom j at time t, j = 1,…, n. Let Ep(r) be 

the potential energy function. Then the molecular motion can be described as a collection of 

movements of the atoms in the molecule, as given in the following system of equations of 

motion:

(1)

where M is a diagonal matrix with the diagonal element mii being the mass of atom i. Proof 

Let the Lagrangian of the physical system for the molecule be defined as the following:

Then

and

Based on the Euler–Lagrange equation,

we then have

The potential energy function Ep(r) is usually given in a complicated nonlinear form. 

Therefore, the system of (1) can only be solved numerically. While many methods have 

been developed for the solution of the system, they all are computationally costly even for 

the calculation of very short period trajectories (say in nanoseconds), because they have to 

use very small time steps (in femtoseconds) to match the fast atomic motions so they can 

keep the accuracy of the calculations (Brooks et al. 1989; Schlick 2002).
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For normal mode analysis, the potential energy function is approximated by a quadratic 

function at its energy minimum. Let r0 be the minimum energy state, and assume without 

loss of generality that E(r0) = 0. Then

Let Δr = r − r0. The function can also be written as

(2)

By using this approximation, the system of (1) becomes

That is,

(3)

The above equation can be solved analytically via the singular-value-decomposition of the 

Hessian matrix ▿2Ep(r0). Suppose that the molecule has n atoms. Then the dimension of the 

Hessian matrix is 3n by 3n and has 3n singular-value and singular-vector pairs. Among 

them, the first 6 values corresponding to 3 translational and 3 rotational motions are equal to 

zeros, while the remaining 3n − 6 defines 3n − 6 normal modes. The detailed formulas for 

obtaining the normal modes are given in the following lemma.

Lemma 2.2

Suppose that the singular-value-decomposition of the mass-weighted Hessian matrix, H = 

M−1▿2Ep(r0), is given by UʌUT . Then the solution of the system of (3) is given by the 

following functions:

(4)

where αj and βj can be determined by the given conditions of the system. Proof Let H = 

M−1▿2Ep(r0). Then

and
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Let . Then

and

proving that

is a solution to the system of (3), where αj is called the amplitude, ωj the angular frequency, 

and βj the phase of the jth normal-mode of motion.

Now let qj = αj cos(ωjt + βj). Then

Also,

Then the time-averaged potential energy for each mode is
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Since at the thermal equilibrium, the averaged potential energy should be equal to the kinetic 

energy kBT/2 for each mode, we then have

(5)

Once the solution f’:r(t) for the system of (3) is obtained, the average fluctuation of r(t) from 

its equilibrium position r0(t) can be calculated using a simple formula, as given in the 

following theorem.

Theorem 2.3

Let the solution to the system of (3) be given by 

. Let UʌUT be 

the singular-value-decomposition of the mass-weighted Hessian matrix H = M−1▿2Ep(r0). 

Then the mean-square-fluctuation of the ith mode motion of the molecule is

(6)

Proof

If we use νj(t) to represent the position vector of atom j at time t, then νj(t) = (r3j−2(t), 

r3j−1(t), r3j(t))T, and the mean-square-fluctuation of atom j can be calculated as

(7)

Note that if the singular value ʌjj is small, then the frequency ωj is small and, therefore the 

corresponding mode is slow. Thus, the smaller the singular value, the slower the 

corresponding mode; and the slower a mode is, the larger mean-square-fluctuation it makes. 

Also, the atomic mean-square-fluctuation is usually related to the experimentally detected 

average atomic fluctuation, which, in X-ray crystallography, is represented by the so-called 

temperature factor or B-factor. Let the B-factor for atomj be denoted by Bj. Then

(8)
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From equations (6), (7), and (8) above, we see that the B-factors are proportional to the 

atomic mean-square-fluctuations, and thus inversely proportional to all the singular values 

ʌjj (or square frequency ωj
2). Therefore, the largest contributions to the atomic 

displacements come from the lowest frequency normal modes (small ʌjj or ωj
2). In addition, 

the singular vectors corresponding to the lowest frequency normal modes represent the most 

globally distributed or collective motions. For these reasons, studies on NMA usually focus 

on only a few low frequency normal modes, and in real applications, only several terms in 

(6) corresponding to the smallest singular values are used for the evaluation of the atomic 

mean-square-fluctuations.

3 Gaussian Network Model

NMA requires the availability of the potential energy function and the computation of the 

Hessian matrix of the function. Tirion (1996) demonstrated that an approximation to the 

Hessian can be obtained by using a single parameter for all the atomic pairs in a close 

distance. The analysis with such an approximation can be as accurate as using the exact 

Hessian. Along this line, Bahar et al. (1997, 1998), Haliloglu et al. (1997) later made further 

simplification on conventional normal mode analysis using the Gaussian Network Model 

(GNM). In this model, a protein structure is described at a coarse level with the amino acid 

residues as the basic units and is considered as an elastic network with the residues as nodes 

and the contact connections among them as springs. Each residue can be represented by one 

of its backbone atoms, say Cα, or a selected point in the residue, say the geometric center of 

the side-chain. Two residues are said to be in contact if they are close in distance (usually, in 

a 7 Å cutoff distance). All the springs are assumed to be the same, i.e., have the same force 

constant. Figure 1 shows an example elastic network model for a protein structure 1HEL.

Once an elastic network is constructed, the energy function for the protein can be defined 

without referring to the protein’s atomic level potentials: Assume that the protein has m 

residues. Let r be the collection of the coordinates of the residues in the protein such that r = 

{ri : i = 1,…, 3m}, where r3i−2, r3i−1, r3i are the x, y, z coordinates of residue i. 

Correspondingly, let ν be the collection of the coordinate vectors of the residues such that ν 

= {νi = (νi1, νi2, νi3)T = (r3i−2, r3i−1, r3i)T : i = 1,…, m}. Let Δνi = νi - ν0 be the displacement 

of residue i from its equilibrium position ν0 and kij be the force constant for the spring 

between residues i and j. Then the total force on residue i would be

and the potential energy contributed from residue i would be

we then have the total potential energy of the protein to be
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(9)

Since in GNM, the spring forces are kept constant and are zeros if the distances between any 

pairs of residues are larger than 7 Å, we can define kij = kΓij for some constant k and

(10)

Here, Γ = {Γij : i,j = 1,…, m} form a matrix called the contact matrix. Let Δνj = {Δνij : i = 1,

…, m}, j = 1, 2, 3. Then the energy function in (9) can be written as

(11)

An example contact matrix can be found in Fig. 2.

Based on the theory of statistical physics, at a given temperature, the probability of a 

physical state r to occur is subject to the Gibbs–Boltzmann distribution

(12)

where kB is the Boltzmann constant, T the temperature, and Z the partition function.

Given the energy function in (11) and the fact that ∫R3m p(r)dr = ∫R3m p(r)dΔr = 1, it follows 

that

By changing all the variables Δνl to Δu, we then have

Let Γ = UʌUT be the singular-value-decomposition of Γ. Then

(13)

where Δω = UT Δu. Then , with
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(14)

Note that given the probability distribution of a physical state, p(r), we can evaluate the 

expectation value of any property related to this physical state, f(r), using the integral ∫R3m 

f(r)p(r)dr It follows that if we consider the fluctuation of residue , as a function 

f(r) of state r, we can calculate the mean-square-fluctuation using the integral 

. We give a formula for the calculation of this integral in the following 

theorem.

Theorem 3.1

Let the potential energy function Ep(r) for a given protein be defined as (11). Let the 

singular-value-decomposition of Γ be given by UʌUT . Then the mean-square-fluctuation 

(Δνi, Δνi) can be calculated by the formula:

(15)

where k is a force constant, kB the Boltzmann constant, and T the absolute temperature. 

Proof Note that for any i = 1,…, m,

Since  and Z = Z’3 by (13),

By changing all the variables Δνl to Δu, we then have

Let Δu = UΔω. Then
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Note that if j ≠ k for ΔωjΔωk,

But if j = k for ΔωjΔωk,

It follows that for any i = 1,…, m

Note that the formula for calculating the mean-square-fluctuations of the residues in (15) is 

very similar to that for calculating the mean-square-fluctuations of the atoms in (6). It is not 

a coincident because GNM can indeed be considered as residue level NMA with the energy 

function approximated by using the contact matrix as the Hessian matrix. In other words, if 

we consider the function Ep(r) in (11) to be a harmonic approximation to the potential 

energy function for the protein at the residue level, we can perform NMA for the protein at 

its residue level in the same way as that at the atomic level. We provide some further 

justifications in the following.

Note that the energy function Ep(r) in (11) is symmetric with respect to Δνl, l = 1, 2, 3. 

Therefore, the system of equations of motion for the residues can be reduced to three 

independent and identical subsystems:

(16)

Theorem 3.2

Consider Ep(r) in (11) to be a harmonic approximation to the potential energy function of 

the protein at an equilibrium state r0. Let M be the mass matrix of the residues and H = 

M−1Γ. Then, the solution to the system of equations of motion for the residues in (16) is 

given by

(17)

where αj and βj can be determined by the given conditions of the system.
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Proof Since the system of equations of motion can be reduced to three independent and 

identical subsystems, we only need to solve any of them, which can be put into the 

following general form:

Let H = M−1Γ. Let UʌUT be the singular value decomposition of H. Then, by using a similar 

argument for Lemma 2.2, we can have

meaning that

Based on the argument that at the thermal equilibrium, the averaged potential energy should 

be equal to the kinetic energy kBT/2 for each mode, we then have

(18)

Therefore, we can have the following theorem for the calculation of the residue mean-

square-fluctuations.

Theorem 3.3

Let the solution to the system of (16) be given by 

. Let 

UʌUT be the singular-value-decomposition of the matrix H = M−1Γ. Then the mean-square-

fluctuations of the residues can be calculated by the formula,

(19)

Proof Based on the discussion in Theorem 3.2,

with . Then
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proving that

Note that if M is an identity matrix, then H = Γ and the formula in (19) for calculating the 

mean-square-fluctuations of the residues using NMA will be the same as that in (15) using 

GNM. In other words, GNM for calculating the residue mean-square-fluctuations is 

equivalent to NMA with the contact matrix used as the Hessian approximation and with all 

the residues assumed to have a unit mass.

4 Coarse-Grained Normal Mode Analysis

As described in Sect. 2, in classical NMA, the system of equations of motion is solved with 

a quadratic approximation to the potential energy function. This approximation is accurate 

enough only in a small neighborhood of the energy minimum state (or structure). It also 

depends on the original potential energy function, which itself is an approximation obtained 

semi-empirically (Brooks et al. 1989; Schlick 2002). In addition, the classical NMA is 

usually conducted at the atomic level, which is subject to all the atomic level errors induced 

in energy calculations. As a result, the structural fluctuations predicted by NMA are often 

even worse than those by GNM, which is in fact a coarser model than NMA (Micheletti et 

al. 2004; Cui and Bahar 2006).

As analyzed in Sect. 3, the GNM method can be considered as a type of residue level NMA. 

In GNM, a residue contact matrix is defined using the distances between the residues (the 

distances between the representative atoms Cα, N, C, or Cβ). If the distance between two 

different residues is less or greater than the given cutoff value, say 7 Å, then a constant, −1 

or 0 (or more accurately, −k or 0), is allocated for the entry in the matrix, respectively. In 

other words, constants are assigned to the entries throughout the matrix according to the 

contact distances. The advantage of using GNM is that the model is simple and easy to 

construct, the dimension of the model is much smaller (proportional to the number of 

residues) than atomic level NMA, and the computation is efficient. In addition, GNM does 

not require the exact potential energy and the Hessian, reducing not only computational cost 

but also possible errors in atomic energy calculations.
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Physically speaking, in GNM, the protein is viewed as an elastic network with the residues 

as nodes and the contact distances as the links. The links are approximated by springs and 

assigned with some spring constants. In other words, the forces between the residues in 

contact are approximated by some harmonic forces. Mathematically speaking, this is 

equivalent to saying that a quadratic approximation is used to represent the potential energy 

for the residue interactions of the protein. As a first approximation, in GNM, a single spring 

constant is assigned to all the residue pairs in contact. However, different pairs of residues 

may interact differently with different force constants. A more accurate model may be built 

if these differences can be considered.

Here, we investigate an alternative approach to coarse-grained normal mode analysis. 

Instead of using a homogeneous force constant for all the interactions among the residues in 

contact, we assign different force constants for different types of interactions in terms of 

related residue types and distances. In a certain sense, it can also be considered as a refined, 

nonhomogeneous Gaussian Network Model. There have been several efforts made in the 

past to refine GNM: For example, Taner and Jernigan (2006) defined the force constants in 

terms of the residue contact distances, and Kondrashov et al. (2006) assigned different force 

constants for residue pairs of different sequence distances. We derive the force constants 

from the atomic level Hessian matrix of the potential energy function. Therefore, our 

approach can be considered to be more physics-based.

Much work has been done in the past on coarse-grained normal mode analysis at different 

coarse levels and with different calculation schemes. Early work includes using graph 

theoretical methods to estimate protein shapes and structural flexibility by Mitchell et al. 

(2001) and by Jacobs et al. (2001). Tama et al. (2000), and Li and Cui (2002) proposed an 

approach to use residue fragments as building blocks for computing low frequency normal 

modes. Approaches have been studied using rigid components of proteins as basic units for 

normal mode analysis (Schuyler and Chirikjian 2004; Ahmed and Gohlke 2006; Demerdash 

and Mitchell 2012). Work has also been done in Lu and Ma (2008, 2011) with the Hessian 

elements derived from all-atom normal mode analysis and some universal force constants. 

Our method differs from these approaches in using the Hessian matrix of the energy 

function to extract the force constants for residue interactions and further determine them 

based on their probability distributions in a large set of know protein structures.

For a given structure, we first perform sufficient steps of energy minimization in an atomic-

level force field. Once an energy minimum is reached, we save the Hessian matrix of the 

energy function and use it to derive the force constants for residue interactions. Let Ri and Rj 

be two residues represented by two atoms Ai and Aj, where Ai and Aj must have two position 

vectors (νi1, νi2, νi3)T and (νj1, νj2, νj3)T and correspond to a 3 by 3 submatrix S(ij) of the 

Hessian H. We then define the force constant for residues Ri and Rj to be the average value 

of the entries in S(ij). In other words, if kij is the force constant for residues Ri and Rj, then kij 

= − ∥ S(ij) ∥ F, where ∥ · ∥ F is the matrix Frobenius norm. More precisely,

Park et al. Page 14

Bull Math Biol. Author manuscript; available in PMC 2015 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where m is the number of residues in the protein. Then, the matrix Γ = {kij : i,j = 1,…, m} 

can serve as a reduced Hessian matrix for coarse-grained NMA.

We have applied this new model to a set of protein structures downloaded from the PDB 

(Berman et al. 2010). The resolutions of the structures are 1.5 Å or higher and the sequence 

similarity is 30 % or lower. The sizes of the structures are from small to large, with the 

numbers of atoms ranging from 35 to 2387. We have employed the CHARMM version 27b2 

(Brooks et al. 2009) for energy minimization and implemented a Matlab NMA code for 

residue normal mode calculations. For each structure, we have used different representative 

atoms Cα, N, C, or Cβ for residues, to obtain the reduced Hessian. We have computed the 

residue mean-square-fluctuations and their correlations with the B-factors of the 

corresponding representative atoms of the residues (B-factor correlations). We call our 

model the coarse-grained NMA or cgNMA for short. A cgNMA with Cα, N, C, or Cβ as the 

representative atoms for the residues is denoted as cgNMA(Cα), cgNMA(N), cgNMA(C), 

cgNMA(Cβ), respectively.

For comparison, we have also computed the residue mean-square-fluctuations and their B-

factor correlations for each structure, using GNM with Cα, N, C, Cβ as the representative 

atoms for the residues. A GNM with Cα, N, C, or Cβ as the representative atoms for the 

residues is denoted as GNM(Cα), GNM(N), GNM(C), GNM(Cβ), respectively. An atomic 

level NMA has also been performed for each structure with the CHARMM NMA routine. 

The mean-square-fluctuations of Cα atoms are recorded and compared with their 

experimental B-factors as well.

A more sophisticated cgNMA is to use a set of atoms to represent each residue. Let two 

residues Ri and Rj be represented by the same types of N atoms, Ai1,…, AiN and Aj1 …, AjN, 

respectively. Let S(ij) be the 3N by 3N submatrix of the Hessian matrix H corresponding to 

the representative atoms of Ri and Rj. Wereduce S(ij) to a 3 by 3 matrix T(ij), with

We then define the force constant kij for residues Ri and Rj to be the average value of the 

entries in T(ij), i.e.,

where m is the number of residues in the protein. We denote this model by cgNMA(M), 

meaning the coarse-grained NMA with multiple representative atoms. In particular, we have 

used Cα, N, C for cgNMA(M) in our test.

We have divided the test structures into three groups of relatively small-,medium-, and 

large-sized structures. We then summarize the test results for each of them separately. 

Tables 1, 2, and 3 show the test results on small, medium, and large structures, respectively. 
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In these tables, we have listed the names of the proteins (ID), the numbers of the atoms and 

residues in the proteins (TA and TR), and the B-factor correlations of the computed residue 

mean-square-fluctuations for the structures using different methods. The methods include 

GNM with different representative atoms, GNM(Cα), GNM(N), GNM(C), GNM(Cβ), the 

coarse-grained NMA with different representative atoms, cgNMA(Cα), cgNMA(N), 

cgNMA(C), cgNMA(Cβ), cgNMA(M), and classical NMA using CHARMM. The B-factor 

correlations are calculated against the B-factors of the representative atoms except for NMA 

for which the B-factors of Cα atoms are compared with. For cgNMA(M), the averages of 

fluctuations of representative atoms of residues are compared with the averages of B-factors 

of representative atoms of residues.

In Tables 1, 2, and 3, we see consistently that the results from cgNMA methods are 

comparable with GNM except when Cβ atoms are used as the representative atoms. Both 

types of methods performed much better than NMA. Among all these methods, it seems that 

cgNMA(M) performed the best for all three categories of structures. Tables 4, 5, and 6 

compare the test results for different pairs of methods for small, medium, and large 

structures, respectively. In these tables, we compare the B-factor correlations of the residue 

mean-square-fluctuations of the structures produced by each pair of methods, method A vs. 

method B, denoted as A-B. We list the numbers of B-factor correlations of method A that 

are significantly higher (or lower (−) than that of method B. If the difference of two B-factor 

correlations is within 1.0e–02, we consider them to be comparable (=). From these tables, 

we see more clearly how different methods performed and compared to each other. It seems 

that GNM using Cα as the representative atom performed the best among all GNM methods; 

cgNMA using N or C as the representative atom performed better than using Cα or Cβ; 

cgNMA(M) performed better than GNM(Cα) and NMA consistently.

Figures 3, 4, and 5 demonstrate the test results on three example structures, 1HJE, 2BF9, 

and 2HQK, each representing a small, medium, and large structure. For each structure, the 

residue mean-square-fluctuations calculated by GNM(Cα), cgNMA(M), and NMA are 

shown in red curves. The experimental B-factors of the representative atoms are shown in 

black curves. In Fig. 3, the B-factor correlations of the residue mean-square-fluctuations of 

the structure calculated by GNM(Cα), cgNMA(M), and NMA are 0.616, 0.838, and 0.209, 

respectively. In Fig. 4, the B- factor correlations of the residue mean-square-fluctuations of 

the structure calculated by GNM(Cα), cgNMA(M), and NMA are 0.419, 0.762, and 0.367, 

respectively. In Fig. 5, the B-factor correlations of the residue mean-square-fluctuations of 

the structure calculated by GNM(Cα), cgNMA(M), and NMA are 0.365, 0.716, and 0.715, 

respectively.

5 Refined Gaussian Network Model

In this section, we present a new Gaussian Network Model based on our study on coarse-

grained NMA as described in Sect. 4. We consider the requirement on an energy function as 

a key distinction between GNM and NMA. Indeed, the coarse-grained NMA in Sect. 4 still 

requires the availability of an energy function to obtain the Hessian matrix, although it 

conducts the same analysis as GNM at the residue level. However, we do see that with 

nonhomogeneous force constants extracted from the Hessian matrix, the coarse-grained 
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NMA such as cgNMA(M) performs better than GNM. The question then is whether or not 

GNM can be improved by introducing some nonhomogeneous force constants, yet without 

requiring the Hessian matrix from an energy function.

In order to answer this question, we have examined the Hessian matrices of our downloaded 

structures. We collected all the force constants (the entries in the Hessian matrices) defined 

in cgNMA(M). For each structure, we have a matrix of force constants {kij : i,j = 1,…, m} 

where m is the number of residues in the structures. We then grouped the constants for all 

the residue pairs in contact but separated by s residues in sequence, where s = 0, 1, 2, 3, etc. 

For a fixed s, different residue pairs do not have significantly different force constants. 

However, for different s, the force constants are different, especially between the directly 

connected pairs (s = 0) and other types of pairs (s > 0). Figure 6 shows the distributions of 

the force constants for residue pairs in contact but separated by 0, 1, 2, 3 residues in 

sequence. Clearly, the constants are around 12 units when s = 0, and are all around 1 unit 

when s > 0. Based on the above survey, we have a reason to suggest that the forces between 

the residue pairs in contact should not be treated as the same. At the very least, the forces 

between directly connected residue pairs should be stronger than others in a magnitude. In 

other words, the force constants for directly connected residue pairs should be at least one 

magnitude larger than others. These constants correspond exactly to the bidiagonal elements 

of the contact matrices. Therefore, a simple way to build a new Gaussian Network Model 

that incorporates this nonhomogeneity of the force constants is to define all the entries of the 

contact matrix in the same way as the conventional GNM except for the bidiagonal entries 

set to a number of larger mag nitude, say −10. Such a model may reflect more accurately the 

real residue interactions in proteins. We call it a GNM model with nonhomogeneous force 

constants or nhGNM for short. An example nhGNM contact matrix can be found in Fig. 7. 

We have tested the nhGNM model on a large set of protein structures, each time with the 

force constants for directly connected residue pairs set to −8, −9, −10, −11, −12, −13, −14, 

or −15, to see if the results vary with varying these constants. Again, we divide the 

structures into three groups corresponding to relatively small-, medium-, and large-sized 

structures. The test results on each group are shown in Tables 7, 8, and 9 separately. In each 

table, we show the B-factor correlations of the residue mean-square-fluctuations of the 

proteins calculated by nhGNM. For comparison, we have also listed the B-factor 

correlations obtained using GNM. For both types of models, Cα atoms were used as the 

representative atoms for the residues. We use “+” to mean that nhGNM with one of the 

selected force constants has a higher B-factor correlation than GNM,“−” to mean the 

opposite. We use “=” to mean that the difference in the B-factor correlations computed by 

GNM and nhGNM is small within 1.0e–02.

We see from Tables 7, 8, and 9 that in many test cases, the nhGNM performed significantly 

better than GNM. Out of total 33 relatively small-sized structures, nhGNM predicted the 

residue mean-square-fluctuations no worse than GNM for 23 cases (Table 7). nhGNM 

outperformed GNM significantly for 12 cases. Out of total 36 relatively medium-sized 

structures, nhGNM predicted the residue mean-square-fluctuations no worse than GNM for 

19 cases. nhGNM outperformed significantly GNM for 13 cases. Out of total 35 relatively 
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large-sized structures, nhGNM predicted the residue mean-square-fluctuations no worse 

than GNM for 23 cases. nhGNM out-performed GNM significantly for 20 cases.

Note that in general, nhGNM performed similarly for the tested force constants for directly 

connected residue pairs {−8, −9, −10, −11, −12, −13, −14, −15}. We were not able to 

identify an optimal value, but we would suggest just using −12 for such contact pairs while 

−1 for all other types. It is also possible to run nhGNM multiple times for this whole set of 

force constants, remove obvious outliers, and take the average results.

6 Concluding Remarks

In this paper, we have investigated several possible approaches to coarse-grained normal 

mode analysis. Similar to GNM, we take the residues as the basic units in a protein and use a 

single backbone atom (or a combination of several backbone atoms) to represent each 

residue. Different from GNM, the force constants for pairs of representative atoms are not 

the same and are instead extracted from the Hessian matrix of the energy function.

Using the new models, we have calculated the mean-square-fluctuations of the residues and 

their correlations with the experimental B-factors (called the B-factor correlations) for a 

large set of proteins. We have compared them with the all-atom normal mode analysis and 

the residue-level Gaussian Network Model. We have shown that our models performed 

more efficiently than the all-atom normal mode analysis, and the B-factor correlations are 

also higher. The B-factor correlations are comparable with those estimated by the Gaussian 

Network Model and in some cases better.

Following the development of the coarse-grained NMA, we have conducted a statistical 

survey on the extracted force constants, for different pairs of residues with different numbers 

of separation residues in sequence. We then based on their statistical averages to build a 

refined Gaussian Network Model. We have shown that the force constants for the 

neighboring residue pairs are always about one-magnitude larger than other pairs in contact. 

Therefore, in the refined GNM, the entries of the contact matrix could be defined in the 

same way as the conventional GNM except that the bidiagonal entries have large 

magnitudes. We have shown that such a simply refined GNM could predict residue-level 

structural fluctuations significantly better than the conventional GNM in many test cases.

The coarse-grained NMA and refined GNM do not always outperform conventional 

methods such GNM. In our future efforts, we would like to examine each of our test cases 

more carefully and find the causes for the disagreements between the predicted structural 

fluctuations and the experimental B-factors, and to further improve our predictions. We 

would also like to apply our methods to a few biologically interesting proteins such as the 

HIV-1 protease and the human telomerase and analyze the results in great details. The 

structures of these proteins have just been modeled in recent studies (Yang et al. 2008; 

Steczkiewicz et al. 2011). Accurate predictions on their structural fluctuations may provide 

great insights into how the dynamics of the structures relate to their functions.

Another direction to explore is to develop a relatively accurate residue-level energy function 

so that the residue-level NMA can be carried out exactly as the atomic-level NMA. This 
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could be difficult but challenging because of the lack of complete physical understanding of 

the residue interactions. Much work has been done for developing residue-level potentials 

using statistical approaches such as residue-residue contact potentials (Miyazawa and 

Jernigan 1985; Sippl 1990), residue distance or angle potentials (Kuszewski et al. 1996; Wu 

et al. 2007a, 2007b; Huang et al. 2011), and residue Cα only potentials (Wu et al. 2007a, 

2007b). These residue-level potentials may provide a basis for defining a complete residue-

level energy function, with which a residue-level NMA can be performed.

Note that the B-factor is a consequence of the dynamic disorder in the crystal caused by the 

temperature-dependent vibration of the atoms in the structure (Drenth 2006). This is the 

reason that we can compare the computed atomic or residue mean-square fluctuations with 

the B-factors detected by X-ray crystallography. However, protein crystals have also static 

disorder: molecules, or parts of molecules, in different unit cells do not occupy exactly the 

same position or have exactly the same orientation (Drenth 2006). With this static disorder 

also included, the B-factor may not always reflect the atomic fluctuations correctly. In future 

work, we will consider to compare the computed atomic or residue mean-square fluctuations 

with the atomic or residue fluctuations in NMR structural ensembles, for which a better 

correlation between theoretically computed and experimentally estimated structural 

fluctuations may be obtained.

Finally, we would like to point out that the phrase “coarse-grained NMA” can be confusing. 

In general, by “coarse-grained NMA” we mean the normal mode analysis beyond the atomic 

level. More specifically, we mean the residue-level normal mode analysis requiring the 

Hessian or partial Hessian of the energy function, which is different from the analysis via 

other nonenergy-based methods such as GNM. In this sense, the residue-level normal mode 

analysis we have conducted using the force constants extracted from the Hessian of the 

energy function is still called the coarse-grained NMA. So is the residue-level NMA to be 

explored using a residue-level energy function.
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Fig. 1. 
The picture on the left shows the Cα trace of 1HEL. The one on the right shows all 

connections between Cα nodes for 1HEL to indicate the nature of the elastic network 

analyzed by GNM (Cui and Bahar 2006).
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Fig. 2. 
This is an example of a contact matrix.
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Fig. 3. 
(a) The residue mean-square-fluctuations calculated by GNM(Cα) for 1HJE are compared 

with the experimental B-factors of Cα. (b) The residue mean-square-fluctuations calculated 

by cgNMA(M) for 1HJE are compared with the experimental B-factors of Cα. (c) The 

residue mean-square-fluctuations calculated by NMA for 1HJE are compared with the 

experimental B-factors of Cα
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Fig. 4. 
(a) The residue mean-square-fluctuations calculated by GNM(Cα) for 2BF9 are compared 

with the experimental B-factors of Cα. (b) The residue mean-square-fluctuations calculated 

by cgNMA(M) for 2BF9 are compared with the experimental B-factors of Cα. (c) The 

residue mean-square-fluctuations calculated by NMA for 2BF9 are compared with the 

experimental B-factors of Cα
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Fig. 5. 
(a) The residue mean-square-fluctuations calculated by GNM(Cα) for 2HQK are compared 

with the experimental B-factors of Cα. (b) The residue mean-square-fluctuations calculated 

by cgNMA(M) for 2HQK are compared with the experimental B-factors of Cα. (c) The 

residue mean-square-fluctuations calculated by NMA for 2HQK are compared with the 

experimental B-factors of Cα
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Fig. 6. 
The distributions of the force constants for pairs of residues separated by 0,1,2,3 residues in 

sequence.
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Fig. 7. 
An example of an nhGNM contact matrix.
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Table 4

Comparison of B-factor correlations for small structuresa

cgNMA(Cα)-GNM(Cα) cgNMA(N)-GNM(N) cgNMA(C)-GNM(C) cgNMA(M)-GNM(Cα)

+ 13 17 17 16

− 17 13 12 14

= 3 3 4 3

cgNMA(Cα)-NMA cgNMA(N)-NMA cgNMA(C)-NMA cgNMA(M)-NMA

+ 22 19 22 23

− 9 12 11 10

= 2 2 0 0

a
+: number of structures whose B-factor correlations for the two different models are positive; −: number of structures whose B-factor correlations 

for the two different models are negative; =: number of structures whose B-factor correlations for the two different models are comparable
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Table 5

Comparison of B-factor correlations for medium-sized structuresa

cgNMA(Cα)-GNM(Cα) cgNMA(N)-GNM(N) cgNMA(C)-GNM(C) cgNMA(M)-GNM(Cα)

+ 10 19 19 23

− 24 16 13 9

= 2 1 4 4

cgNMA(Cα)-NMA cgNMA(N)-NMA cgNMA(C)-NMA cgNMA(M)-NMA

+ 15 18 21 25

− 20 16 13 9

= 1 2 2 2

a
See descriptions in Table 4
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Table 6

Comparison of B-factor correlations for large-sized structuresa

cgNMA(Cα) -
GNM(Cα)

cgNMA(N) -
GNM(N)

cgNMA(C) -
GNM(C)

cgNMA(M) -
GNM(Cα)

+ 13 13 19 18

− 19 22 15 15

= 3 0 1 2

cgNMA(Cα)-NMA cgNMA(N)-NMA cgNMA(C)-NMA cgNMA(M)-NMA

+ 15 15 19 22

− 18 15 16 11

= 2 5 0 2

a
See descriptions in Table 4
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