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Abstract

We investigate several approaches to coarse grained normal mode analysis on protein residual-
level structural fluctuations by choosing different ways of representing the residues and the forces
among them. Single-atom representations using the backbone atoms C, C, N, and Czare
considered. Combinations of some of these atoms are also tested. The force constants between the
representative atoms are extracted from the Hessian matrix of the energy function and served as
the force constants between the corresponding residues. The residue mean-square-fluctuations and
their correlations with the experimental B-factors are calculated for a large set of proteins. The
results are compared with all-atom normal mode analysis and the residue-level Gaussian Network
Model. The coarse-grained methods perform more efficiently than all-atom normal mode analysis,
while their B-factor correlations are also higher. Their B-factor correlations are comparable with
those estimated by the Gaussian Network Model and in many cases better. The extracted force
constants are surveyed for different pairs of residues with different numbers of separation residues
in sequence. The statistical averages are used to build a refined Gaussian Network Model, which is
able to predict residue-level structural fluctuations significantly better than the conventional
Gaussian Network Model in many test cases.

Keywords

Protein structural fluctuation; Normal mode analysis; Gaussian Network Model; Atomic B-
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1 Introduction

Proteins are biomolecules, each formed by a chain of small molecules called amino acids.
There are total 20 different amino acids. They can make many different chains of amino
acids, and hence different proteins. There are hundreds of thousands of different proteins,
with distinct biological functions supporting diverse biological forms and processes. They
are key molecular elements of life and are fundamental research subjects of life sciences
(Berg et al. 2006).
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The biological function of a protein is determined by the protein’s 3D structure. The 3D
structure is determined by the protein’s amino acid sequence. In other words, a given
protein, with a given amino acid sequence, always assumes a certain 3D structure, which
then helps to perform certain functions. Therefore, the 3D structure carries important
information for the understanding of the protein and in particular, its sequence-structure-
function relations (Berg et al. 2006).

While a protein folds to an unique structure, it also fluctuates and makes thermodynamic
movements. The movements can be different for different atoms or residues or fragments of
the protein, and may correspond to certain functional differences. Therefore, the
determination of the structural fluctuation is an equally important issue as the determination
of the structure itself in protein modeling. In X-ray crystallography, the structural fluctuation
is measured by the so-called atomic B-factors, which are proportional to the atomic mean-
square-fluctuations (Drenth 2006).

In contrast to structural determination, which is mainly through physical experiments, such
as X-ray crystallography and NMR, the structural fluctuation can be analyzed theoretically
for a given structure. For example, it can be traced by molecular dynamics simulation in the
force field of the protein. It can in particular be determined in an analytical form using the
so-called normal mode analysis (NMA) (Brooks et al. 1989; Schlick 2002).

The normal mode analysis usually requires a singular-value-decomposition of the Hessian
matrix of the energy function, which is costly for an all-atom model, yet the estimation on
the fluctuation may not necessarily always accurate, because of the errors in the force field
approximation. A simplified residue-level model called the Gaussian Network Model
(GNM) has been proposed in recent years and proved to be more efficient as well as
accurate than NMA (Micheletti et al. 2004; Cui and Bahar 2006).

In this paper, we investigate several new approaches to residue-level normal mode analysis.
Similar to GNM, we take the residues as the basic units in a protein and use a single
backbone atom (or a combination of several backbone atoms) to represent each residue.
Different from GNM, the force constants for pairs of representative atoms are not the same
and are instead extracted from the Hessian matrix of the energy function. Therefore, the
models can be considered as coarse-grained NMA.

Using the new models, we calculate the mean-square-fluctuations of the residues and their
correlations with the experimental B-factors (called the B-factor correlations) for a large set
of proteins. We compare them with the all-atom normal mode analysis and the residue-level
Gaussian Network Model. We show that our models perform more efficiently than the all-
atom normal mode analysis, and the B-factor correlations are also higher. The B-factor
correlations are comparable with those estimated by the Gaussian Network Model and in
some cases better.

Following the development of the coarse-grained NMA, we conduct a statistical survey on
the extracted force constants, for different pairs of residues with different numbers of
separation residues in sequence. We then base on their statistical averages to build a refined
Gaussian Network Model. We show that the force constants for the neighboring residue
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pairs are always about one-magnitude larger than other pairs in contact. Therefore, in the
refined GNM, the entries of the contact matrix can be defined in the same way as the
conventional GNM except that the bi-diagonal entries have large magnitudes. We show that
such a simply refined GNM can predict residue-level structural fluctuations significantly
better than the conventional GNM in many test cases.

The paper is organized as follows. In Section 2, we provide a general background on normal
mode analysis. We describe the system of equations of motion and its linear approximation,
and derive the solution to the linear system for normal mode analysis. In Section 3, we
introduce the Gaussian Network Model, and discuss its relationship with normal mode
analysis. In Section 4, we describe the coarse-grained NMA and present the test results. In
Section 5, we discuss the statistics of the force constants. We then describe the refined GNM
and show the test results. We make concluding remarks in Sect. 6. Sections 2 and 3 are
expository sections. They do not contain new insights into NMA or GNM. However, they do
provide a more rigorous mathematical description on these topics than most in current
literature, and show mathematically the relationship between the two approaches. Sections 4
and 5 describe the methods of coarse-grained NMA and refined GNM and the test results,
and are the sections with new contributions.

2 Normal Mode Analysis

A normal mode is a pattern of motion of an oscillating system in which all parts of system
move sinusoidally with the same frequency and a fixed phase relation. An oscillating system
may have multiple normal modes. The motion of the system is then a collecting result of all
its normal mode motions (Morin 2008). For example, a mass-spring system, i.e., a set of
objects connected with springs, would vibrate with different modes corresponding to
different amplitudes and frequencies, even when the masses of the objects and the force
constants of the springs are all the same.

A protein structure fluctuates around its native state. In other words, the atoms in the protein
vibrate around their equilibrium positions, as if they all are connected by some sort of
springs. Therefore, protein structural fluctuations can be estimated approximately via normal
mode analysis as well. Brooks and Karplus (1983) and Go et al. (1983) are among the first
who applied the normal mode analysis to study the structural fluctuations of a small protein
bovine pancreatic trypsin inhibitor (BPTI). Levitt et al. (1985) later performed a detailed
analysis on larger proteins including BPTI, Crambin, Ribonuclease, Lysozyme. Ever since,
the method has been used widely for routine structural analysis in protein modeling
(Micheletti et al. 2004; Cui and Bahar 2006).

NMA assumes the protein in a stable state, where the potential energy has reached an energy
minimum. Therefore, around this state, the potential energy can be approximated by a
quadratic function. The system of equations of motion for the protein can then be solved in
an analytical form, and the normal modes of the motion can be extracted from the solution
for analysis of atomic vibrations as well as overall structural fluctuations. We provide a brief
description on the system of equations of motion used in classical molecular dynamics
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simulation, the closed form solution to the approximated system, and the formulas for
computing the atomic vibrations.

Suppose that a biological molecule has n atoms. Let r(t) be the collection of the coordinates
of the atoms in the given molecule at time t such that r(t) = {rj(t) : i = 1,..., 3n}, where
r3j-2(t), rsj-1(t), rsj(t) are the x, y, z coordinates of atom jattime t, j=1,..., n. Let Ep(r) be
the potential energy function. Then the molecular motion can be described as a collection of
movements of the atoms in the molecule, as given in the following system of equations of
motion:

"

Mr=-VE,(r) @

where M is a diagonal matrix with the diagonal element m;; being the mass of atom i. Proof
Let the Lagrangian of the physical system for the molecule be defined as the following:

L (7’, r, t) :% (r/)T.M (r,) —E,(r).

Then

and

Based on the Euler-Lagrange equation,
d (OL\ OL
dte\or' ) or’

we then have

"

Mr"'=—VE,(r).

The potential energy function Ep(r) is usually given in a complicated nonlinear form.
Therefore, the system of (1) can only be solved numerically. While many methods have
been developed for the solution of the system, they all are computationally costly even for
the calculation of very short period trajectories (say in nanoseconds), because they have to
use very small time steps (in femtoseconds) to match the fast atomic motions so they can
keep the accuracy of the calculations (Brooks et al. 1989; Schlick 2002).
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For normal mode analysis, the potential energy function is approximated by a quadratic
function at its energy minimum. Let r0 be the minimum energy state, and assume without
loss of generality that E(r%) = 0. Then

1« 9%E,
Ep (r) ~ 52 8Ti8Tj
1)

=) ()

r=r0

Let Ar = r — r0. The function can also be written as
1 T [2 0
B, (r) ~ 3 (An)T [V°E, ()] (ar). @
By using this approximation, the system of (1) becomes

MAr" =Mr"=—VE, (r)=—V E(AT)T [vz E, (7«0)} (Ar)] =-V’E, (TO) Ar.

That is,

MAr'=-V?E, (") Ar. @)

The above equation can be solved analytically via the singular-value-decomposition of the
Hessian matrix vZEp(ro). Suppose that the molecule has n atoms. Then the dimension of the
Hessian matrix is 3n by 3n and has 3n singular-value and singular-vector pairs. Among
them, the first 6 values corresponding to 3 translational and 3 rotational motions are equal to
zeros, while the remaining 3n — 6 defines 3n — 6 normal modes. The detailed formulas for
obtaining the normal modes are given in the following lemma.

Suppose that the singular-value-decomposition of the mass-weighted Hessian matrix, H =
M~12E,(r0), is given by UaUT . Then the solution of the system of (3) is given by the
following functions:

3n
A’)"i (t) :ZUijajcos (w]t—l-,@]) 5 w]: A]]: Z:l, PN ,37’Z, (4)
j=1

where a; and B can be determined by the given conditions of the system. Proof Let H =
M~12E(r0). Then
MAr'= - V?E, (") Ar= — MHA,

and
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3n
"
Ari = — ZHUATJ’
j=1

Let Ari (¢ Z Ujajcos (wjt+53)) Then

Z a]w cos (wit+p3;),

and

3n 3n
- Z Hz‘jATjI - Z Hz] Z Qe COS (wkt—{—ﬂk)
j=1

3n 3n
= — Z z:]ym[]]]g Q. COS (wkt+ﬁk)

k=1 |j=1
3

= — > UgApogcos (wpt+0Gx) ,
k=1

proving that

3n
Ar; (t) ZZUijajCOS (wjt—l—,@j) y  wWi= N/Ajjv i=1,...,3n
j=1

is a solution to the system of (3), where qj is called the amplitude, «j the angular frequency,
and /j the phase of the jth normal-mode of motion.

Now let g = gj cos(ajt + f5). Then

Ar; (t ZUqujv Ar=

Also,

Ey (r) z(AT) [V2E, (r°)] (AT):%(AT)TH(AT)
(Uq)TUAUT(Uq) q"A,

= E,(r)= Z Aﬂq] Z w

Then the time-averaged potential energy for each mode is

wjza? (cos (wjt+P;) , cos (wit+5))) = Jza?'

N —

Swiina) =
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Since at the thermal equilibrium, the averaged potential energy should be equal to the kinetic
energy kgT/2 for each mode, we then have

2_ B~ __ -1
Ozj— w2- —QkBTAjj . (5)

J

Once the solution f*:r(t) for the system of (3) is obtained, the average fluctuation of r(t) from
its equilibrium position r9(t) can be calculated using a simple formula, as given in the
following theorem.

Let the solution to the system of (3) be given by

v/ AR
the singular-value-decomposition of the mass-weighted Hessian matrix H = M™172E(r0).
Then the mean-square-fluctuation of the ith mode motion of the molecule is

3 .
Ar; (t) :ZjilUijaj X cos (w]t—l-ﬂ]) ,UJJZ-:AJ‘]‘, Oz.?:2kBTA-_1 i=1,... ,37’L. Let UaUT be

3n
(Arg, Ary) =k, TY UA;'Uy, i=1,...,3n. (g
j=1

Proof

3n 3n

(Ar;, Ar;) = < ZlUZjajcos (wit+55) 5 ZlUZ']-ozjcos (wjt+ﬁj)>
j= j=

3n

2 (Ugajcos (wjt+p;) , Uyajcos (wit+8;))

3n

> Uija?Uij (cos (wjt+5;) , cos (wjt+0;))

=1
]1 3n 9 1 3n 1 3n 1
1= J= J=

|
<

If we use vj(t) to represent the position vector of atom j at time t, then vj(t) = (rzj-2(t),
r3j-1(t), rgj(t))T, and the mean-square-fluctuation of atom j can be calculated as

(Avj, Avj) = (Arsj_o, Arzj_o) + (Argj_1, Arzj_1) + (Arz;, Argj) . (7)

Note that if the singular value 4;jj is small, then the frequency «j is small and, therefore the
corresponding mode is slow. Thus, the smaller the singular value, the slower the
corresponding mode; and the slower a mode is, the larger mean-square-fluctuation it makes.
Also, the atomic mean-square-fluctuation is usually related to the experimentally detected
average atomic fluctuation, which, in X-ray crystallography, is represented by the so-called
temperature factor or B-factor. Let the B-factor for atomj be denoted by B;. Then

8 2
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From equations (6), (7), and (8) above, we see that the B-factors are proportional to the
atomic mean-square-fluctuations, and thus inversely proportional to all the singular values
4j (or square frequency ,sz). Therefore, the largest contributions to the atomic
displacements come from the lowest frequency normal modes (small jj or wjz). In addition,
the singular vectors corresponding to the lowest frequency normal modes represent the most
globally distributed or collective motions. For these reasons, studies on NMA usually focus
on only a few low frequency normal modes, and in real applications, only several terms in
(6) corresponding to the smallest singular values are used for the evaluation of the atomic
mean-square-fluctuations.

3 Gaussian Network Model

NMA requires the availability of the potential energy function and the computation of the
Hessian matrix of the function. Tirion (1996) demonstrated that an approximation to the
Hessian can be obtained by using a single parameter for all the atomic pairs in a close
distance. The analysis with such an approximation can be as accurate as using the exact
Hessian. Along this line, Bahar et al. (1997, 1998), Haliloglu et al. (1997) later made further
simplification on conventional normal mode analysis using the Gaussian Network Model
(GNM). In this model, a protein structure is described at a coarse level with the amino acid
residues as the basic units and is considered as an elastic network with the residues as nodes
and the contact connections among them as springs. Each residue can be represented by one
of its backbone atoms, say C,, or a selected point in the residue, say the geometric center of
the side-chain. Two residues are said to be in contact if they are close in distance (usually, in
a 7 A cutoff distance). All the springs are assumed to be the same, i.e., have the same force
constant. Figure 1 shows an example elastic network model for a protein structure 1HEL.

Once an elastic network is constructed, the energy function for the protein can be defined
without referring to the protein’s atomic level potentials: Assume that the protein has m
residues. Let r be the collection of the coordinates of the residues in the protein such that r =
{ri:i=1,...,3m}, where r3j_y, r3j_1, rsj are the x, y, z coordinates of residue i.
Correspondingly, let v be the collection of the coordinate vectors of the residues such that v
= {v = (W1, vi» %3)" = (r3izo, F3i-1, r3i) T 11 =1,..., m}. Let Av; = 1; - 1P be the displacement
of residue i from its equilibrium position 1° and kij be the force constant for the spring
between residues i and j. Then the total force on residue i would be

m m
ZkijAvj with k;= — Z kija
Jj=1 J=lj#

and the potential energy contributed from residue i would be

m m
ZAU;TICUAUJ/QZZ (Avil k,‘jA’Ujl—I-A’UizkijA’Ujg—|—AU¢3]§,‘J‘A’UJ‘3) /2
i=1 =1

we then have the total potential energy of the protein to be

Bull Math Biol. Author manuscript; available in PMC 2015 March 25.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Park et al.

Page 9

E,(r)= in: AvTk;Av; /2
=1 @
= 3 (AvilkijA’Ujl+AU¢2/€UAUJ‘2-|—A’Ui3kijAUj3) /2
4,j=1

Since in GNM, the spring forces are kept constant and are zeros if the distances between any
pairs of residues are larger than 7 A, we can define kij = kZjj for some constant k and

-1 ifi # jandd; < 7A
Iy=¢0 ifi # jand d; >7TA, (10

m e
=2 ey =g

Here, I'={7jj :ij=1,..., m} form a matrix called the contact matrix. Let Avj = {Avjj:i=1,
...,m}, j=1, 2, 3. Then the energy function in (9) can be written as

k
B, (1) =3 (AvITAv)+AVET Avo+AVET Avy) . (1)

An example contact matrix can be found in Fig. 2.

Based on the theory of statistical physics, at a given temperature, the probability of a
physical state r to occur is subject to the Gibbs—Boltzmann distribution

p(r)=eap (< By (r) [k, ), (2)

where kg is the Boltzmann constant, T the temperature, and Z the partition function.

Given the energy function in (11) and the fact that /g3m p(r)dr = /g3m p(r)dAr = 1, it follows
that

Z= fnSm exp (—E, (r) /k,T)dAr

fR:;m exp [—k (Av?’{FAfu.l+AUEFA@.2+AUEFA1)43) /ZkBT} dAv
ﬁ J..exp [—k (Av?{PAv.l) /szT} dAv,
1

=

By changing all the variables Ay to Au, we then have

z=7" = Z'=[ exp(—kAu"TAu/2k,T) dAu.

Let 7"= UaUT be the singular-value-decomposition of 7. Then

Z/:me exp (—k:AwTAAw/Qk:BT) dAw (13)

m

/3 ’
where Aw=UT Au. Then 2=%4 " Z :szlzj, with
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Zj=[ yexp (—kAyAw? 2k, T) dAw;, (14)

Note that given the probability distribution of a physical state, p(r), we can evaluate the
expectation value of any property related to this physical state, f(r), using the integral /g3m

f(r)p(r)dr It follows that if we consider the fluctuation of residue ;, Av! Avi, as a function
f(r) of state r, we can calculate the mean-square-fluctuation using the integral

J Av] Aw; p(r) dr, We give a formula for the calculation of this integral in the following
theorem.

Theorem 3.1

Let the potential energy function E(r) for a given protein be defined as (11). Let the
singular-value-decomposition of I" be given by UaUT . Then the mean-square-fluctuation
(Av;, Ay) can be calculated by the formula:

3k

T & _ )
<A1)1', Avi> = ;; ZUijAjleija ’L:]_, cee,aMm, (15)
j=1

where k is a force constant, kg the Boltzmann constant, and T the absolute temperature.
Proof Note that foranyi=1,..., m,

Av] Avp (r) dr

(Av;, Av)) = [
R3
= fR3m AviTAvl%ezp (=Ep(r) [k, T)dr

3
= %szm Av?Avill;[leIp (—kAngAUTAU.l/ZkBT> dAwv,;.

Since AU?AWZAU%#—AU%—}—AU% and Z = 2’3 by (13),

3
(Av;, Av;) :%Z[Rm Aviexp (—kAvaAUTAU.l/2kBT> dAv,.

-1

By changing all the variables Ay to Au, we then have

(Av;, Avy) :%me AuZexp (—k‘AuTUAUTAu/ZkBT) dAu.

Let Au = UAw. Then

(Av;, Av;) = i,me 'kgl:lUijUikijAwk exrp (—kAwTAAw/ZkBT) dAw
J,R=

N

m m
me %leLjU,;kijAwk [lexp (—k:Ajjijz/QkBT) dAw;.
Jsk= J

N\| w
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Note that if j # k for AgjAax,

S ijAwkHemp (—kAJ-jAwJZ/WcBT) dAw;=0
J

But if j = k for AwjAax,
S om ijAwkﬁexp (—kAﬁAw]z/ZkBT) dAw,
J

__>m—1
=Z; meAw]Zexp( EA; Aw2/2k' T) dAw;.

It follows that foranyi=1,...,m

<Av1,Avl> f ijAw]zemp( EA; Aw2/2k‘ T) dAw;

ZJZ L ezp( kAjjAw]Z/2kBT> dAw;

by

Note that the formula for calculating the mean-square-fluctuations of the residues in (15) is
very similar to that for calculating the mean-square-fluctuations of the atoms in (6). It is not
a coincident because GNM can indeed be considered as residue level NMA with the energy
function approximated by using the contact matrix as the Hessian matrix. In other words, if
we consider the function Ep(r) in (11) to be a harmonic approximation to the potential
energy function for the protein at the residue level, we can perform NMA for the protein at
its residue level in the same way as that at the atomic level. We provide some further
justifications in the following.

Note that the energy function Ey(r) in (11) is symmetric with respect to An, 1 = 1, 2, 3.
Therefore, the system of equations of motion for the residues can be reduced to three
independent and identical subsystems:

MAv,=—kI'Avy,  1=1,2,3. (16)

Consider Ep(r) in (11) to be a harmonic approximation to the potential energy function of
the protein at an equilibrium state r0. Let M be the mass matrix of the residues and H =
M~17 Then, the solution to the system of equations of motion for the residues in (16) is
given by

Awvy (t Z joicos (wit+5;) =\/kAj,i=1,...,m,1=1,2,3. (17

where a; and Bj can be determined by the given conditions of the system.
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Proof Since the system of equations of motion can be reduced to three independent and
identical subsystems, we only need to solve any of them, which can be put into the
following general form:

MAY = — kT'Aw.

Let H=M=17 Let UaUT be the singular value decomposition of H. Then, by using a similar
argument for Lemma 2.2, we can have

Au; (t) :ZUijajcos (wit+05;5) 5 =\/kAj,i=1,...,m,
j=1
meaning that
Awvy (t) — Z gajcos (wit+06;),  wi=1/kAj,i=1,...,m,[=1,2,3.

Based on the argument that at the thermal equilibrium, the averaged potential energy should
be equal to the kinetic energy kgT/2 for each mode, we then have

2k, T 2k, T
o2=2tst _ 2

i w? kA (18)

Therefore, we can have the following theorem for the calculation of the residue mean-
square-fluctuations.

Let the solution to the system of (16) be given by

Awiy (t) =271, Uy cos (wit+5;) ,i=1 ,m,l=1,2,3, w3 _AAJJ, aj 22k sT/kAj;. Let
UaUT be the S|nguIar—value—decomposmon of the matrix H = M~1/" Then the mean-square-
fluctuations of the residues can be calculated by the formula,

(A, Av;) =

i JJ Z], i:l,...,m. (19)

Proof Based on the discussion in Theorem 3.2,

3
<A7JZ’, A’Ui> :Z <A’Uil> A/Uil> 23 <Aui, A’Uq> 5
=1

with Auizzjleijajcos (wjt+65) ,i=1,...,m, w5 —IcAJJ,a =2k T/kAJJ Then
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(Au;, Aug,) = Ujajcos (wit+85;), Z Ujajcos (w]t—|—ﬂj)>

(\
i

I
NE

(Ujjajcos (wjit+0;) , UUa]cos (wit+85;))

<.
Il
—

S
S

= U-joz?Uij <cos (wjt+8;) , cos (wit+5;))

<.
Il
—

Il
[
\¢E

Ua2U S ZUUA]] ”

<.
Il

proving that

(Av, Avy) = ZUUAJJ g

Note that if M is an identity matrix, then H = I"and the formula in (19) for calculating the
mean-square-fluctuations of the residues using NMA will be the same as that in (15) using
GNM. In other words, GNM for calculating the residue mean-square-fluctuations is
equivalent to NMA with the contact matrix used as the Hessian approximation and with all
the residues assumed to have a unit mass.

4 Coarse-Grained Normal Mode Analysis

As described in Sect. 2, in classical NMA, the system of equations of motion is solved with
a quadratic approximation to the potential energy function. This approximation is accurate
enough only in a small neighborhood of the energy minimum state (or structure). It also
depends on the original potential energy function, which itself is an approximation obtained
semi-empirically (Brooks et al. 1989; Schlick 2002). In addition, the classical NMA is
usually conducted at the atomic level, which is subject to all the atomic level errors induced
in energy calculations. As a result, the structural fluctuations predicted by NMA are often
even worse than those by GNM, which is in fact a coarser model than NMA (Micheletti et
al. 2004; Cui and Bahar 2006).

As analyzed in Sect. 3, the GNM method can be considered as a type of residue level NMA.
In GNM, a residue contact matrix is defined using the distances between the residues (the
distances between the representative atoms C,, N, C, or Cp). If the distance between two
different residues is less or greater than the given cutoff value, say 7 A, then a constant, -1
or 0 (or more accurately, —k or 0), is allocated for the entry in the matrix, respectively. In
other words, constants are assigned to the entries throughout the matrix according to the
contact distances. The advantage of using GNM is that the model is simple and easy to
construct, the dimension of the model is much smaller (proportional to the number of
residues) than atomic level NMA, and the computation is efficient. In addition, GNM does
not require the exact potential energy and the Hessian, reducing not only computational cost
but also possible errors in atomic energy calculations.
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Physically speaking, in GNM, the protein is viewed as an elastic network with the residues
as nodes and the contact distances as the links. The links are approximated by springs and
assigned with some spring constants. In other words, the forces between the residues in
contact are approximated by some harmonic forces. Mathematically speaking, this is
equivalent to saying that a quadratic approximation is used to represent the potential energy
for the residue interactions of the protein. As a first approximation, in GNM, a single spring
constant is assigned to all the residue pairs in contact. However, different pairs of residues
may interact differently with different force constants. A more accurate model may be built
if these differences can be considered.

Here, we investigate an alternative approach to coarse-grained normal mode analysis.
Instead of using a homogeneous force constant for all the interactions among the residues in
contact, we assign different force constants for different types of interactions in terms of
related residue types and distances. In a certain sense, it can also be considered as a refined,
nonhomogeneous Gaussian Network Model. There have been several efforts made in the
past to refine GNM: For example, Taner and Jernigan (2006) defined the force constants in
terms of the residue contact distances, and Kondrashov et al. (2006) assigned different force
constants for residue pairs of different sequence distances. We derive the force constants
from the atomic level Hessian matrix of the potential energy function. Therefore, our
approach can be considered to be more physics-based.

Much work has been done in the past on coarse-grained normal mode analysis at different
coarse levels and with different calculation schemes. Early work includes using graph
theoretical methods to estimate protein shapes and structural flexibility by Mitchell et al.
(2001) and by Jacobs et al. (2001). Tama et al. (2000), and Li and Cui (2002) proposed an
approach to use residue fragments as building blocks for computing low frequency normal
modes. Approaches have been studied using rigid components of proteins as basic units for
normal mode analysis (Schuyler and Chirikjian 2004; Ahmed and Gohlke 2006; Demerdash
and Mitchell 2012). Work has also been done in Lu and Ma (2008, 2011) with the Hessian
elements derived from all-atom normal mode analysis and some universal force constants.
Our method differs from these approaches in using the Hessian matrix of the energy
function to extract the force constants for residue interactions and further determine them
based on their probability distributions in a large set of know protein structures.

For a given structure, we first perform sufficient steps of energy minimization in an atomic-
level force field. Once an energy minimum is reached, we save the Hessian matrix of the
energy function and use it to derive the force constants for residue interactions. Let Rj and R;
be two residues represented by two atoms A; and Aj, where Aj and Aj must have two position
vectors (11, W, )" and (11, ¥, v3)" and correspond to a 3 by 3 submatrix S() of the
Hessian H. We then define the force constant for residues R; and R; to be the average value
of the entries in S(. In other words, if k;j is the force constant for residues R; and R}, then kj;
=~ | s I £, where || - || £ is the matrix Frobenius norm. More precisely,

3y= m e s
=X ik ifi=],
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where m is the number of residues in the protein. Then, the matrix /"= {kjj : i,j = 1,..., m}
can serve as a reduced Hessian matrix for coarse-grained NMA.

We have applied this new model to a set of protein structures downloaded from the PDB
(Berman et al. 2010). The resolutions of the structures are 1.5 A or higher and the sequence
similarity is 30 % or lower. The sizes of the structures are from small to large, with the
numbers of atoms ranging from 35 to 2387. We have employed the CHARMM version 27b2
(Brooks et al. 2009) for energy minimization and implemented a Matlab NMA code for
residue normal mode calculations. For each structure, we have used different representative
atoms C,, N, C, or Cgfor residues, to obtain the reduced Hessian. We have computed the
residue mean-square-fluctuations and their correlations with the B-factors of the
corresponding representative atoms of the residues (B-factor correlations). We call our
model the coarse-grained NMA or cgNMA for short. A cgNMA with C, N, C, or Czas the
representative atoms for the residues is denoted as cgNMA(C,), cgNMA(N), cgNMA(C),
cgNMA(Cp), respectively.

For comparison, we have also computed the residue mean-square-fluctuations and their B-
factor correlations for each structure, using GNM with C,, N, C, Czas the representative
atoms for the residues. A GNM with C, N, C, or Cas the representative atoms for the
residues is denoted as GNM(C ), GNM(N), GNM(C), GNM(Cp), respectively. An atomic
level NMA has also been performed for each structure with the CHARMM NMA routine.
The mean-square-fluctuations of C, atoms are recorded and compared with their
experimental B-factors as well.

A more sophisticated cgNMA is to use a set of atoms to represent each residue. Let two
residues Rj and R; be represented by the same types of N atoms, Ajy,..., Ajy and Ajp ..., Ajn,
respectively. Let S() be the 3N by 3N submatrix of the Hessian matrix H corresponding to
the representative atoms of R; and R;. Wereduce S®) to a 3 by 3 matrix T, with

N N

i) _ () ? -

Tz(yf)_sqrt<§ >SS e sone] ) z,y=1,2,3.
k=1l=1

We then define the force constant k;; for residues R;j and R; to be the average value of the
entries in T, j.e.,

o T, i
T —ELky ifi=),

where m is the number of residues in the protein. We denote this model by cgNMA(M),
meaning the coarse-grained NMA with multiple representative atoms. In particular, we have
used C,, N, C for cgNMA(M) in our test.

We have divided the test structures into three groups of relatively small-,medium-, and
large-sized structures. We then summarize the test results for each of them separately.
Tables 1, 2, and 3 show the test results on small, medium, and large structures, respectively.
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In these tables, we have listed the names of the proteins (ID), the numbers of the atoms and
residues in the proteins (TA and TR), and the B-factor correlations of the computed residue
mean-square-fluctuations for the structures using different methods. The methods include
GNM with different representative atoms, GNM(C,), GNM(N), GNM(C), GNM(Cp), the
coarse-grained NMA with different representative atoms, cgNMA(C,), cgNMA(N),
cgNMA(C), cgNMA(Cp), cgNMA(M), and classical NMA using CHARMM. The B-factor
correlations are calculated against the B-factors of the representative atoms except for NMA
for which the B-factors of C,, atoms are compared with. For cgNMA(M), the averages of
fluctuations of representative atoms of residues are compared with the averages of B-factors
of representative atoms of residues.

In Tables 1, 2, and 3, we see consistently that the results from cgNMA methods are
comparable with GNM except when Czatoms are used as the representative atoms. Both
types of methods performed much better than NMA. Among all these methods, it seems that
cgNMA(M) performed the best for all three categories of structures. Tables 4, 5, and 6
compare the test results for different pairs of methods for small, medium, and large
structures, respectively. In these tables, we compare the B-factor correlations of the residue
mean-square-fluctuations of the structures produced by each pair of methods, method A vs.
method B, denoted as A-B. We list the numbers of B-factor correlations of method A that
are significantly higher (or lower (-) than that of method B. If the difference of two B-factor
correlations is within 1.0e—02, we consider them to be comparable (=). From these tables,
we see more clearly how different methods performed and compared to each other. It seems
that GNM using C,, as the representative atom performed the best among all GNM methods;
cgNMA using N or C as the representative atom performed better than using C,, or C
cgNMA(M) performed better than GNM(C,) and NMA consistently.

Figures 3, 4, and 5 demonstrate the test results on three example structures, 1HJE, 2BF9,
and 2HQK, each representing a small, medium, and large structure. For each structure, the
residue mean-square-fluctuations calculated by GNM(C,), cgNMA(M), and NMA are
shown in red curves. The experimental B-factors of the representative atoms are shown in
black curves. In Fig. 3, the B-factor correlations of the residue mean-square-fluctuations of
the structure calculated by GNM(C,), cgNMA(M), and NMA are 0.616, 0.838, and 0.209,
respectively. In Fig. 4, the B- factor correlations of the residue mean-square-fluctuations of
the structure calculated by GNM(C,), cgNMA(M), and NMA are 0.419, 0.762, and 0.367,
respectively. In Fig. 5, the B-factor correlations of the residue mean-square-fluctuations of
the structure calculated by GNM(C,), cgNMA(M), and NMA are 0.365, 0.716, and 0.715,
respectively.

5 Refined Gaussian Network Model

In this section, we present a new Gaussian Network Model based on our study on coarse-
grained NMA as described in Sect. 4. We consider the requirement on an energy function as
a key distinction between GNM and NMA. Indeed, the coarse-grained NMA in Sect. 4 still
requires the availability of an energy function to obtain the Hessian matrix, although it
conducts the same analysis as GNM at the residue level. However, we do see that with
nonhomogeneous force constants extracted from the Hessian matrix, the coarse-grained
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NMA such as cgNMA(M) performs better than GNM. The question then is whether or not
GNM can be improved by introducing some nonhomogeneous force constants, yet without
requiring the Hessian matrix from an energy function.

In order to answer this question, we have examined the Hessian matrices of our downloaded
structures. We collected all the force constants (the entries in the Hessian matrices) defined
in cgNMA(M). For each structure, we have a matrix of force constants {kjj : i,j = 1,..., m}
where m is the number of residues in the structures. We then grouped the constants for all
the residue pairs in contact but separated by s residues in sequence, where s =0, 1, 2, 3, etc.
For a fixed s, different residue pairs do not have significantly different force constants.
However, for different s, the force constants are different, especially between the directly
connected pairs (s = 0) and other types of pairs (s > 0). Figure 6 shows the distributions of
the force constants for residue pairs in contact but separated by 0, 1, 2, 3 residues in
sequence. Clearly, the constants are around 12 units when s = 0, and are all around 1 unit
when s > 0. Based on the above survey, we have a reason to suggest that the forces between
the residue pairs in contact should not be treated as the same. At the very least, the forces
between directly connected residue pairs should be stronger than others in a magnitude. In
other words, the force constants for directly connected residue pairs should be at least one
magnitude larger than others. These constants correspond exactly to the bidiagonal elements
of the contact matrices. Therefore, a simple way to build a new Gaussian Network Model
that incorporates this nonhomogeneity of the force constants is to define all the entries of the
contact matrix in the same way as the conventional GNM except for the bidiagonal entries
set to a number of larger mag nitude, say —10. Such a model may reflect more accurately the
real residue interactions in proteins. We call it a GNM model with nonhomogeneous force
constants or NhGNM for short. An example nhGNM contact matrix can be found in Fig. 7.
We have tested the n(hGNM model on a large set of protein structures, each time with the
force constants for directly connected residue pairs set to -8, -9, —-10, 11, -12, -13, -14,
or —15, to see if the results vary with varying these constants. Again, we divide the
structures into three groups corresponding to relatively small-, medium-, and large-sized
structures. The test results on each group are shown in Tables 7, 8, and 9 separately. In each
table, we show the B-factor correlations of the residue mean-square-fluctuations of the
proteins calculated by nhGNM. For comparison, we have also listed the B-factor
correlations obtained using GNM. For both types of models, C,, atoms were used as the
representative atoms for the residues. We use “+” to mean that (hGNM with one of the
selected force constants has a higher B-factor correlation than GNM,“~" to mean the
opposite. We use “=" to mean that the difference in the B-factor correlations computed by
GNM and nhGNM is small within 1.0e-02.

We see from Tables 7, 8, and 9 that in many test cases, the nhGNM performed significantly
better than GNM. Out of total 33 relatively small-sized structures, "hGNM predicted the
residue mean-square-fluctuations no worse than GNM for 23 cases (Table 7). "(hGNM
outperformed GNM significantly for 12 cases. Out of total 36 relatively medium-sized
structures, N(hGNM predicted the residue mean-square-fluctuations no worse than GNM for
19 cases. N(hGNM outperformed significantly GNM for 13 cases. Out of total 35 relatively
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large-sized structures, NhGNM predicted the residue mean-square-fluctuations no worse
than GNM for 23 cases. "(hGNM out-performed GNM significantly for 20 cases.

Note that in general, nhGNM performed similarly for the tested force constants for directly
connected residue pairs {-8, -9, -10, -11, -12, =13, -14, -15}. We were not able to
identify an optimal value, but we would suggest just using —12 for such contact pairs while
-1 for all other types. It is also possible to run nhGNM multiple times for this whole set of
force constants, remove obvious outliers, and take the average results.

6 Concluding Remarks

In this paper, we have investigated several possible approaches to coarse-grained normal
mode analysis. Similar to GNM, we take the residues as the basic units in a protein and use a
single backbone atom (or a combination of several backbone atoms) to represent each
residue. Different from GNM, the force constants for pairs of representative atoms are not
the same and are instead extracted from the Hessian matrix of the energy function.

Using the new models, we have calculated the mean-square-fluctuations of the residues and
their correlations with the experimental B-factors (called the B-factor correlations) for a
large set of proteins. We have compared them with the all-atom normal mode analysis and
the residue-level Gaussian Network Model. We have shown that our models performed
more efficiently than the all-atom normal mode analysis, and the B-factor correlations are
also higher. The B-factor correlations are comparable with those estimated by the Gaussian
Network Model and in some cases better.

Following the development of the coarse-grained NMA, we have conducted a statistical
survey on the extracted force constants, for different pairs of residues with different numbers
of separation residues in sequence. We then based on their statistical averages to build a
refined Gaussian Network Model. We have shown that the force constants for the
neighboring residue pairs are always about one-magnitude larger than other pairs in contact.
Therefore, in the refined GNM, the entries of the contact matrix could be defined in the
same way as the conventional GNM except that the bidiagonal entries have large
magnitudes. We have shown that such a simply refined GNM could predict residue-level
structural fluctuations significantly better than the conventional GNM in many test cases.

The coarse-grained NMA and refined GNM do not always outperform conventional
methods such GNM. In our future efforts, we would like to examine each of our test cases
more carefully and find the causes for the disagreements between the predicted structural
fluctuations and the experimental B-factors, and to further improve our predictions. We
would also like to apply our methods to a few biologically interesting proteins such as the
HIV-1 protease and the human telomerase and analyze the results in great details. The
structures of these proteins have just been modeled in recent studies (Yang et al. 2008;
Steczkiewicz et al. 2011). Accurate predictions on their structural fluctuations may provide
great insights into how the dynamics of the structures relate to their functions.

Another direction to explore is to develop a relatively accurate residue-level energy function
so that the residue-level NMA can be carried out exactly as the atomic-level NMA. This
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could be difficult but challenging because of the lack of complete physical understanding of
the residue interactions. Much work has been done for developing residue-level potentials
using statistical approaches such as residue-residue contact potentials (Miyazawa and
Jernigan 1985; Sippl 1990), residue distance or angle potentials (Kuszewski et al. 1996; Wu
et al. 2007a, 2007b; Huang et al. 2011), and residue C,, only potentials (Wu et al. 2007a,
2007b). These residue-level potentials may provide a basis for defining a complete residue-
level energy function, with which a residue-level NMA can be performed.

Note that the B-factor is a consequence of the dynamic disorder in the crystal caused by the
temperature-dependent vibration of the atoms in the structure (Drenth 2006). This is the
reason that we can compare the computed atomic or residue mean-square fluctuations with
the B-factors detected by X-ray crystallography. However, protein crystals have also static
disorder: molecules, or parts of molecules, in different unit cells do not occupy exactly the
same position or have exactly the same orientation (Drenth 2006). With this static disorder
also included, the B-factor may not always reflect the atomic fluctuations correctly. In future
work, we will consider to compare the computed atomic or residue mean-square fluctuations
with the atomic or residue fluctuations in NMR structural ensembles, for which a better
correlation between theoretically computed and experimentally estimated structural
fluctuations may be obtained.

Finally, we would like to point out that the phrase “coarse-grained NMA” can be confusing.
In general, by “coarse-grained NMA” we mean the normal mode analysis beyond the atomic
level. More specifically, we mean the residue-level normal mode analysis requiring the
Hessian or partial Hessian of the energy function, which is different from the analysis via
other nonenergy-based methods such as GNM. In this sense, the residue-level normal mode
analysis we have conducted using the force constants extracted from the Hessian of the
energy function is still called the coarse-grained NMA. So is the residue-level NMA to be
explored using a residue-level energy function.
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Fig. 1.
The picture on the left shows the C,, trace of 1HEL. The one on the right shows all

connections between C,, nodes for 1HEL to indicate the nature of the elastic network
analyzed by GNM (Cui and Bahar 2006).
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This is an example of a contact matrix.
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(a) The residue mean-square-fluctuations calculated by GNM(C,,) for 1HJE are compared
with the experimental B-factors of C,,. (b) The residue mean-square-fluctuations calculated
by cgNMA(M) for 1HJE are compared with the experimental B-factors of C,. () The
residue mean-square-fluctuations calculated by NMA for 1HJE are compared with the

experimental B-factors of C,
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The distributions of the force constants for pairs of residues separated by 0,1,2,3 residues in

sequence.
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An example of an N(hGNM contact matrix.
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Table 4

Comparison of B-factor correlations for small structures@

cgNMA(C,)-GNM(C,)  cgNMA(N)-GNM(N)  cgNMA(C)-GNM(C)  cgNMA(M)-GNM(C,)

+ 13 17 17 16
- 17 13 12 14
= 3 3 4 3

cgNMA(C,)-NMA cgNMA(N)-NMA cgNMA(C)-NMA cgNMA(M)-NMA
+ 22 19 22 23
- 9 12 11 10
= 2 2 0 0

a . . . .
+: number of structures whose B-factor correlations for the two different models are positive; —: number of structures whose B-factor correlations
for the two different models are negative; =: number of structures whose B-factor correlations for the two different models are comparable
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Table 5

Comparison of B-factor correlations for medium-sized structures?

cgNMA(C,)-GNM(C,)  cgNMA(N)-GNM(N)  cgNMA(C)-GNM(C)  cgNMA(M)-GNM(C,)

+ 10 19 19 23
- 24 16 13 9
= 2 1 4 4

cgNMA(C,)-NMA cgNMA(N)-NMA cgNMA(C)-NMA cgNMA(M)-NMA
+ 15 18 21 25
- 20 16 13 9
= 1 2 2 2

aSee descriptions in Table 4
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Table 6

Comparison of B-factor correlations for large-sized structures®

cgNMA(C,) - cgNMA(N) - cgNMA(C) - cgNMA(M) -
GNM(C) GNM(N) GNM(C) GNM(Cp)
13 13 19 18

19 22 15 15

3 0 1 2

cgNMA(C,)-NMA

cgNMA(N)-NMA

cgNMA(C)-NMA

cgNMA(M)-NMA

15
18
2

15
15
5

19
16
0

22
11
2

aSee descriptions in Table 4
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