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Abstract

The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and
structural rearrangements during the course of host cell attachment and viral entry, which
are being increasingly defined at the atomic level using isolated proteins. In comparison, an-
tigenic markers of these dynamic changes are essentially unknown for single HIV-1 parti-
cles bound to target cells. Such markers should indicate how neutralizing and/or non-
neutralizing antibodies might interdict infection by either blocking infection or sensitizing
host cells for elimination by Fc-mediated effector function. Here we address this deficit by
imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and super-
resolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes
as they appear on single HIV-1 particles bound to target cells. Epitope exposure was fol-
lowed under conditions permissive or non-permissive for viral entry to delimit changes asso-
ciated with virion binding from those associated with post-attachment events. We find that a
previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding.
This array comprises both neutralizing and non-neutralizing epitopes, the latter being hid-
den on free virions yet capable of serving as potent targets for Fc-mediated effector func-
tion. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing
epitope exposures were relatively static over time for the majority of bound virions. Under
entry-permissive conditions, epitope exposure patterns changed over time on subsets of vi-
rions that exhibited concurrent variations in virion contents. These studies reveal that bound
virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120
epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediat-
ed effector function and/or for direct neutralization at a post-binding step. The elucidation of
these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibi-
tion of HIV-1 as it is measured in vitro and in vivo.
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Author Summary

A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to
sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward
matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral en-
velope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are
flexible and change shape once the virus has attached to its host cell. To date, it has been
difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral
activities of certain antibodies indirectly suggest that there must be unique sites on cell-
bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to
determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells.
We find that the virus exposes a remarkable array of these sites, including ones previously
believed hidden. These exposure patterns explain the antiviral activities of various anti-
HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune
system. Our study also provides insights for how to target HIV-1 with antiviral antibodies,
vaccines, or antiviral agents.

Introduction

The attachment and entry steps in the Human immunodeficiency virus 1 (HIV-1) replication
process involve sequential interactions between viral envelope glycoprotein trimers and cell
surface receptors [1]. Each interaction causes conformational alterations in the envelope struc-
ture that in turn enables a subsequent phase in the process [2-6]. Attachment begins when the
gp120 component of the envelope trimer binds to cell surface CD4. This causes the trimer to
assume a structure (CD4-induced or CD4i) that allows gp120 to bind a co-receptor, typically
CCRS5 in the context of natural virus transmission [7-12]. Co-receptor engagement causes ad-
ditional conformational rearrangements that translate to the gp41 viral transmembrane glyco-
protein, which enables HIV-1-driven membrane fusion and viral entry. HIV-1 envelope-
receptor interactions can drive membrane fusion between infected and uninfected cells or viri-
ons and target cells. The latter is thought to occur either by direct fusion with target cell mem-
branes; by fusion with membranes of endocytotic vesicles [13, 14]; or by a combination of such
processes [15], depending on the microenvironment in which the virus-cell interaction occurs
[13].

Numerous experiments with isolated HIV-1 envelope proteins or HIV-driven membrane
fusion systems have suggested that the HIV-1 envelope experiences significant changes in epi-
tope presentation as it progresses through the course of HIV-1 attachment and entry [16-21].
These patterns of epitope exposure define the key determinants for HIV-1 susceptibility to the
antiviral effects of anti-envelope humoral immunity.

A great deal of effort has been applied toward elucidating conserved neutralizing domains
expressed on free virions prior to host cell attachment. In gp120, the most broadly reactive do-
mains include the CD4 binding site [22-29], sequences encompassing a high mannose cluster
(2G12 [30]) and glycosylated regions of V1V2 loop structures [31-38]. Other highly conserved
epitopes exist within gp120 but are poorly antigenic on free virions. These include the co-
receptor binding site and other (CD4i) domains that are fully exposed only after reaction of
gp120 with soluble CD4 [39-52].

Very little is known about the antigenic nature of HIV-1 virions residing on the surfaces of
permissive cells although several lines of evidence suggest that they are linked with antibody-
mediated antiviral activities. A number of studies including our own have shown that CD4+,
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CCR5+ cells coated with gp120 or whole viral particles are susceptible to Fc-receptor depen-
dent, antibody-mediated antiviral activities, such as antibody-dependent cellular cytotoxicity
(ADCC) [53-55] or antibody-dependent cell-mediated viral inhibition (ADCVT) [56], or tro-
gocytosis [57-59]. It is particularly noteworthy that CD4i epitopes enable ADCC against cell-
bound virions [55] even though they are hidden within the trimers on free virions as measured
by numerous approaches [24, 48, 51, 60-67]. These findings indicate that cell-bound virions
exhibit unique and unexpected epitope profiles linked with the development of humoral anti-
envelope responses, some of which have antiviral activity. As examples, multiple studies have
linked ADCC against gp120 with protection from infection in non-human primate (NHP)
models [68-77]; with reduced risk of infection in the RV 144 vaccine trial [78]; with decreased
risk of mother-to-child HIV-1 transmission [79]; and lower viral loads during HIV disease pro-
gression [54, 80, 81]. These observations that CD4i epitopes are involved in humoral effector
functions conflict with evidence that CD4i epitopes on viral trimers are occluded from antibod-
ies by steric constraints extant before and after virion attachment to target cells [43, 82-84].

To reconcile this question, we developed microscopy-based methods to interrogate the tim-
ing, duration and extent of gp120 epitope exposure as a consequence of virus-cell surface inter-
actions. We focused on virions located on the outer membrane surfaces of freshly targeted cells
as they are the most likely candidates for substantive interactions with the anti-HIV-1 humoral
response. We find that an array of conserved gp120 domains comprising ADCC targets and
CD4i domains are rapidly exposed on cell-bound virions along with constitutively exposed
neutralizing domains. Such epitope exposure profiles provide insights for understanding rela-
tionships between HIV-1 replication and previously reported humoral immune functions.

Results

Analyses of HIV-1 virions bound to cells requires a system capable of reflecting changes in epi-
tope exposure and viral protein disposition within the context of certain in vivo conditions
and/or in vitro assays commonly used to assess infection. To construct such a system, HIV-
Ljrpr, virions were produced with SNAP-ICAM-1 and CLIP-Vpr fusion proteins (SNAP-I-
CAM-1/CLIP-Vpr particles) that can be conjugated to Alexa Fluor substrates. After conjuga-
tion, the relative dispositions of virion membrane and internal components can be interpreted
based on the SNAP-ICAM-1 and CLIP-Vpr fluorescent signals, respectively (see Methods).
Further, relationships between these signals should distinguish various populations of bound
virions as well as reflect the dynamics of viral replication. For example, CLIP-Vpr signals are
expected to decline relative to SNAP-ICAM-1 signals as surface membrane fusion and virus-
cell content mixing occurs. Against this background, antibody staining should reveal concur-
rent patterns of epitope exposure on the HIV-1 envelope.

Epitope exposure on unbound HIV-1 g, virions

To define epitope exposure patterns specific to bound virions, it was first necessary to establish
which epitopes are exposed on unliganded HIV-1zgy virions. Previously we used FCS to do
this with untagged (i.e., without SNAP-ICAM-1 or CLIP-Vpr) virions in solution [51]. Briefly,
this system is based on molecular diffusion rates, which are proportional to the cube root of
molecular weight. As a consequence, virion-bound antibody diffuses much more slowly (D, ~
8um?/sec) than free antibody (D,,;, ~ 65um?/sec). The proportion of a fluorescence-tagged anti-
body that ‘slows down’ in the presence of a much larger virus species reveals the extent cognate
epitope exposure on HIV-1 surface trimers. These studies showed that CD4i epitopes (e.g. 17b)
are poorly exposed except when virions are treated with soluble CD4 (sCD4). Other CD4i
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Fig 1. Anti-envelope mAb binding to HIV g virions in solution measured by Fluorescence Correlation Spectroscopy (FCS). HIV jgg virions (10ug/
ml p24 equivalent concentrations) were allowed to interact in solution with Alexa Fluor 647-conjugated test Mabs b12,2G12, A32, C11, and 17b, or negative
control antibody Synagis in a 100pL volume at 4.5-6.6ug/ml final concentrations (see Methods). The relative fraction of Mabs that adopts a slower diffusion
coefficient (D,~8 um? /sec) as a result of virion binding is indicated by black bars. The percentage of Mab binding to virions treated with 100ug/ml sCD4 is
shown in grey bars. As a control for nonspecific binding, Mabs were tested for interactions with particles not expressing HIV Env (HIV agny). All experiments
were repeated at least four times, and average values are shown. Error bars indicate standard deviation.

doi:10.1371/journal.ppat.1004772.9001

epitopes such as A32 remain unexposed in the presence and absence of sCD4, in accordance
with earlier studies [16, 17].

Similar experiments were carried out to confirm that the SNAP-ICAM-1/CLIP-Vpr-tagged
particles expressed the same epitope patterns seen with untagged virions. Alexa Fluor 647-
conjugated antibodies were used as probes for this purpose. These included Mab A32 [85-88]
against a CD4i epitope in the gp120 C1 domain, Mab C11 [85, 89] against a CD4i epitope in
the gp120 C5 domain, Mab 17b [88, 90] against a CD4i epitope in the co-receptor binding site,
Mab b12 [23, 91-93] against a constitutively expressed epitope in the CD4 binding site and
Mab 2G12 [30, 94-97] against an N-linked glycan (N332) in the outer domain of gp120. An
anti-respiratory syncytial virus (RSV) antibody, Synagis, was used as a negative control for non-
specific Mab binding.

Only a minor fraction (< 20%) of Mabs C11, A32 and 17b exhibited slower diffusion coeffi-
cients indicative of virion binding (Fig. 1), in accordance with our previous findings [51]. Mab
17b binding was markedly improved in the presence of 100pg/ml sCD4 (~50%), while binding
signals for Mabs A32 and C11 were not substantially increased, as predicted by previous studies
[16]. In comparison, a large fraction (> 50%) of Mabs b12 and 2G12 exhibited virion-bound
diffusion coefficients; such binding for Mab b12 was competitively reduced by sCD4. As
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expected, none of the Mabs exhibited binding to virions devoid of envelope (HIV-1g,y); Syna-
gis showed no binding to either type of particle.

Matching observations were made with HIV-1jrg;, virions attached to Poly-L-Lysine-coated
cover glass probed with Alexa Fluor 488-labeled Mabs (representative images shown in S1 Fig).
The virions were fluorescently tagged via SNAP-ICAM-1 and CLIP-Vpr using, respectively,
membrane-impermeable Surface Alexa Fluor 546 and membrane-permeable CLIP-Cell Alexa
360 as described in Methods. The possibility of interference from free gp120 was addressed by
tests with conjugated polyclonal D7324 immunoglobulin, which marks the presence of free
gp120. Incubation of the substrate-bound virions with this reagent failed to produce binding
signals (representative image in S2A Fig) indicating that free gp120 was unlikely to be a con-
founding factor. In comparison, Mab binding signals were clearly seen for the b12 and 2G12
epitopes, whereas no staining was seen with Mabs A32 and C11 (S1 Fig). Weak Mab 17b stain-
ing was seen on a subset of substrate-captured virions. This variance with FCS is likely to be a
peculiar aspect of the capture format, which can be less accurate for probing epitope exposure
versus solution binding [51].

Confocal imaging of single virions bound to target cells

Fluorescently tagged HIV-1jgpy, virions (Alexa 546 labeled-SNAP-ICAM-1; Alexa 360-labeled
CLIP-Vpr) were incubated with either TZM-bl cells (CD4+; CCR5+) or HeLa-CD4 cells (CD4
+; CCR5-) for 0 to 240 minutes at 37°C or 4°C, then washed, fixed with 4% paraformaldehyde,
stained with Alexa Fluor 488-conjugated test Mab, and examined by confocal microscopy (see
Methods). TZM-bl cells are derived from HeLa cells [98-101] but typically express 10-fold
higher surface levels of CD4 versus HeLa-CD4 cells as determined by flow cytometry.

Putative surface-bound virions were captured for analyses within regions of interest (ROI)
that were defined as follows (also see Methods for details). First, the ROIs were selected based
on the presence of a SNAP-ICAM-1 signal. Second, the ROI borders were configured to define
where fluorescent signals fell to apparent background. Third, target cells were stained with
phalloidin (which binds to cortical F-actin) in order to distinguish between the intracellular
space and the cell surface. Only surface-bound particles, designated as such according to their
orientation determined by phalloidin signals examined in lateral (XY) and axial (Z) orienta-
tions were considered for analysis. An example tracing of cell peripheries versus the virus—cell
interface is shown in S3 Fig. For each selected ROI, a randomly selected mock ROI (i.e. one not
containing an apparent fluorescent signal) was selected on a region of the same cell to define
background fluorescence signals. All putative virion ROI fluorescence values were corrected
for such background measures (see Methods). Fig. 2 shows representative images of ROI (se-
lected using the criteria described above) in tests with either neutralizing Mab 2G12 (Fig. 2A)
or Synagis negative control (Fig. 2B) conjugated to Alexa Fluor 488. As with free virions
(Fig. 1), Mab 2G12 reacted with cell surface-bound virions starting within five minutes of
virus-cell attachment (Fig. 2A). This was interpreted to indicate that envelope spikes on a sub-
set of virions were oriented away from the cell surface and therefore free to engage antibody.
No such reactivity was seen with Synagis (Fig. 2B).

Different subpopulations of HIV-1 gg_ virions emerge over time post-
attachment

A series of experiments were carried out to probe bound virions with Mabs b12, 2G12, A32,
C11, 17b, and negative control Synagis. Labelled HIV-1;gg; virions were bound to either TZM-
bl cells or HeLa-CD4 cells for various periods of time up to 120 minutes at 37°C. All experi-
ments were conducted under identical incubation conditions using the same preparation of

PLOS Pathogens | DOI:10.1371/journal.ppat.1004772 March 25, 2015 5/33



@. PLOS | PATHOGENS Antigenic Properties of Cell-Bound HIV-1

Fig 2. Representative fluorescence signals from cell-bound HIV jgg, virions. HIV ge pseudovirions expressing SNAP-ICAM-1 and CLIP-Vpr were
fluorescently labeled with membrane-impermeable SNAP-Surface Alexa Fluor 546 (Red) and membrane-permeable CLIP-Cell Alexa Fluor 360 (Blue),
respectively. Gp120 epitope exposure was probed at the indicated virus-cell contact periods with Alexa 488-tagged Mab 2G12 (A; green signal), versus
identically labelled control Mab Synagis (B). Cortical actin detected by staining with Alexa-647-conjugated phalloidin is delineated by the white dashed lines
(See S3 Fig). The top-most images in each panel show the entire surface of the cells in the lateral (XY) plane. Scale bar = 5um. Yellow boxes mark magnified
regions shown in the three images immediately below the corresponding top pictures. These images depict, from left to right, SNAP-ICAM-1 (red) plus
CLIP-Vpr (blue) signals; antibody (green) signals; and merged signals. The lowest images show signals in the axial (Z) plane with the “Z” arrow pointing to the
outer surface of the cell. The dashed yellow lines around virus particles represent example ROls used to obtain fluorescence intensity (see Methods). Scale
bar=1pm.

doi:10.1371/journal.ppat.1004772.9002

labelled virus. To characterize the dynamics of HIV-1rg;, bound to each type of target cell, we
first examined SNAP-ICAM-1 and CLIP-Vpr fluorescence data obtained from at least 1800
ROIs per time point from across antibody experiments. The detection of Vpr by the mem-
brane-permeable CLIP-Cell Alexa 360 dye was not attributable to the presence of degraded vi-
rions with exposed contents, as there was no staining of virions with anti-p24 antibody unless
the particles were first treated to permeabilize viral membrane (representative images shown in
S2A Fig).

The raw intensity data was normalized, log-transformed, and then multiplied by 1000 for
analysis using the FlowJo flow cytometry software as described in Methods. As shown in
Fig. 3A, the selected virions reflected a range of SNAP-ICAM-1 and CLIP-Vpr signals on
TZM-bl (Fig. 3A, blue) or HeLa-CD4 (Fig. 3A, red) target cells at five minutes post-attachment.
The distribution of SNAP-ICAM-1 signal intensities fell within a 1.5 log range but was roughly
the same on both target cell types and did not appreciably broaden or constrict over time in ei-
ther case. In comparison, the CLIP-Vpr signals dispersed over more extended periods of time
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Fig 3. Changes in SNAP-ICAM-1 and CLIP-Vpr signals on HIV g pseudoviruses attached to TZM-bl or HeLa-CD4 target cells. (A) To characterize
changes in HIV jge. during interactions with target cells, ROls comprising cell-bound virus particles were selected and used to extract SNAP-ICAM-1 and
CLIP-Vpr intensity signals. These data were then normalized in order to generate contour plots (see Methods) of HIV g signals on TZM-bl (blue) or HelLa-
CD4 (red) target cells at the indicated times. Three Boolean gates were defined based on Vpr content at the 5 minute co-culture time point with TZM-bl cells:
Vpr (0), corresponding to data points with no Vpr signal (bottom box); Vpr (low) corresponding to data in the bottom 5" percentile of signal intensity (middle
box); and Vpr (high) corresponding to the top 95" percentile of the data set (top box). A minimum of 1800 ROI per condition are shown. (B) Based on the
gating strategy described in (A), the Vpr (0) (light grey), Vpr (low) (dark grey), and Vpr (high) (black) subpopulations were quantified as percentages of the
entire bound virus population on TZM-bl cells (left) or HeLa-CD4 cells (right) after the indicated times of attachment. (C) The same three subpopulations were
quantified on TZM-bl cells after extended attachment periods (120-240 minutes) at the fusion permissive temperature 37°C (left) or at 4°C (right) where
membrane mixing is arrested.

doi:10.1371/journal.ppat.1004772.9g003
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on the TZM-bl cells; in large measure because of the steadily increasing appearance of virion
populations with low or no Vpr signal (Fig. 3A).

To more precisely examine the observed changes in CLIP-Vpr signals, Boolean gating anal-
ysis (using FlowJo) was used to partition virions into three populations representing high, low
or no Vpr signal based on data for the 5-minute time point: Vpr (0), corresponding to data
points with no Vpr signal; Vpr (low) corresponding to data in the bottom 5th percentile of sig-
nal intensity; and Vpr (high) corresponding to the upper 95th percentile of the data set. These
gates were then transposed onto HIV gy, data sets at subsequent time points. Overall, the tem-
poral analyses confirmed that ROIs circumscribing particles with low or no Vpr signal, which
were rare early after cell binding, increased in frequency over time on the surfaces of TZM-bl
cells (Fig. 3B). After 120 minutes of contact with TZM-bl cells, roughly 28% of virions had low
or no Vpr signal. The fraction of surface-bound virions with high Vpr signal decreased recipro-
cally (Fig. 3B, Left panel). Changes in the Vpr (low) population were statistically significant for
all adjacent time points (two-sample Kolmogorov-Smirnov test; p value corrected for multiple
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comparisons < 0.05) except for the 15 minute versus 30 minute times (S1 Table). On HeLa-
CDA4 cells, bound virions with a low Vpr signal remained relatively sparse (roughly 5 to 8%)
and did not increase over time. Only a negligible amount of virions with no Vpr signal (<1%)
was apparent at any time (Fig. 3B, right panel). Collectively, these data indicate that HIV-1 par-
ticles with low or no Vpr signal were very sparse in the initial virus preparation but evolved
over time once bound to cell surfaces, in a cell type-specific manner.

We next asked whether the time-dependent appearance of ROIs with low or no Vpr signal
on TZM-bl cells arises from protein-protein interactions or from virion-cell membrane inter-
mixing. At low temperatures (i.e. less than 23°C), protein interactions can occur but membrane
mixing cannot [42, 102, 103]. Accordingly, we examined the appearance and distribution of
HIV-1gg pseudovirus populations with high, low or no Vpr signals in the context of extended
periods (up to 240 minutes) of interaction with TZM-bl cells maintained at 37°C or at 4°C.
These experiments were also conducted using the same preparation of labelled virus as in the
previous experiments.

As seen in Fig. 3C, at 37°C the fraction of ROIs with no Vpr signal increased over time on
TZM-bl cells to reach roughly 40% of the total population examined. Notably, the fraction (11
to 15%) of bound particles with low Vpr signals remained relatively constant from 120-240
minutes at 37°C. In comparison, at 4°C, particles with no Vpr signal were very rare on TZM-bl
cell surfaces (< 1% of the total population) even after prolonged incubation times. Particles
with low Vpr signals were observed (5 to 7% of the total population) and did not change appre-
ciably over time. Collectively, the data indicate that certain populations of cell-bound virions
exhibit changes in content depending on time, temperature and target cell type.

Gp120 epitope exposure exhibited by surface bound virions

We next evaluated gp120 epitope exposure on the virions bound to either TZM-bl or HeLa-
CD#4 cells as revealed by reactivity with b12, 2G12, A32, C11, and 17b anti-gp120 Mabs. Syna-
gis was used as a negative control. At least 300 ROIs were defined per test antibody on virions
bound to either target cell.

Surprisingly, anti-CD4i Mabs A32 (Fig. 4A), 17b (Fig. 4B), and C11 (Fig. 4C) bound to at-
tached virions in a manner similar to Mabs b12 and 2G12 (see Fig. 2). Fig. 4 shows a compre-
hensive perspective of Mab binding signals (expressed as arbitrary units of intensity; a.u.i) over
time derived from ROIs on TZM-bl cells or HeLa-CD4 cells (panels D and E, respectively).
The distribution of signals depended on target epitope, cell type and virus-cell interaction time.
The broadest signal distributions were observed with Mabs 2G12, A32 and 17b signals on viri-
ons bound to TZM-bl cells for 120 minutes (Fig. 4D). Overall, the geometric mean signals from
the negative control Mab Synagis were at least 1.5 logs lower than the values observed with any
anti-gp120 Mab under all matched test conditions. These differences were significant (Kruskal-
Wallis test; p < 0.0001).

As with virions attached to coverslips, free gp120 did not appear as a confounding factor on
HIV-1jrgy, virions bound to target TZM-bl cells, as experiments with D7324 antibody were
negative (representative images shown in S2B Fig). Further, virion degradation appeared to be
minimal as there was also no anti-p24 staining within bound virion ROIs, including the Vpr
(0) subpopulation (representative images shown in S2B Fig). As an additional control for non-
specific antibody binding patterns (i.e. ones that might occur in the absence of viral receptors),
the tagged HIV -1y, virions were co-cultured with parental HeLa cells (CD4- and CCR5-
negative) for 30 minutes at 37°C, then fixed and stained with Alexa Fluor 488-conjugated test
Mab as described above. As the washing step of the above procedure removed all virions from
these cells, confocal analyses were performed on particles left to settle on cells at random. ROIs
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Fig 4. Gp120 epitope exposure on target cell-bound HIV g, virions. Representative images of SNAP-ICAM-1 (Red) and CLIP-Vpr (Blue)-expressing
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doi:10.1371/journal.ppat.1004772.9004

were defined as described above. Under these conditions, Mab signals were seen for the consti-
tutively expressed epitope 2G12, but not with Mabs A32 and C11. There was marginal staining
of some particles with CD4i Mab 17b (54 Fig).

Next, we examined the exposure of gp120 epitopes after longer periods of virus interactions
(120, 180, and 240 minutes) with TZM-bl cells at either 37°C, or 4°C. The cells were fixed and
the attached virions stained with antibodies as in the previous experiments. At least 200 ROIs
(defined as in the previous experiments) were surveyed for each experimental condition (S5
Fig). Under all conditions, the geometric mean fluorescence signal observed with Synagis did
not change over time and was similar to what was observed during shorter time frames (see
Fig. 4). The geometric mean fluorescence signals for all test Mabs was significantly lower on vi-
rions bound to TZM-bl cells at 37°C (S5 Fig, black) than at 4°C (S5 Fig, blue) (Kruskal-Wallis
test: p < 0.0001). The difference in test Mab intensity at these two different temperatures
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Fig 5. Influence of co-receptor expression, temperature and time on the exposure of gp120 epitopes on cell-bound HIV ;g virions. Geometric
mean antibody intensity signals derived from the data in Fig. 4 and S5 Fig were compiled and plotted versus attachment time. Signals for particles attached to
TZM-bl versus HeLa-CD4 cells from 5-120 minutes at 37°C are shown as black solid and dashed lines, respectively. Signals for particles attached to TZM-bl
cells between 120 and 240 minutes at either 37°C or 4°C are shown as black or blue lines, respectively.

doi:10.1371/journal.ppat.1004772.9005

increased with increasing co-culture time, from less than 1 log to approximately 2-3 logs. Most
Mab staining levels were maintained at 4°C through the 240-minute incubation period, with
the exception of Mab A32 where mean fluorescence signals dropped about 1 log between 180
and 240 minutes.

Fig. 5 summarizes the geometric mean fluorescence signals obtained from 5 to 120 minutes
(shown in Fig. 4) of virus interaction with the two target cell types at 37°C, compared with sig-
nals measured on TZM-bl cells after longer time points (comprehensive data arrays shown in
S5 Fig) at the two different temperatures. Overall, the compiled data show that temporal
changes in antibody staining signals were dependent on assay conditions. Signals were relative-
ly static on HeLa-CD4 cells at 37°C and on TZM-bl cells that were temperature arrested at 4°C,
although in the latter case the Mab A32 and 17b signals declined by roughly one to one-half log
between 120 and 240 minutes. The most extensive changes in Mab binding signal were seen on
virions bound to TZM-bl cells (CD4"; CCR5") at 37°C. Excepting Mab C11, fluorescence sig-
nals for the test Mabs began to decline after 60 minutes of virus attachment under these condi-
tions. The most extensive changes were apparent with Mabs A32 and b12. Between 5 and 240
minutes there was a roughly 2-3 log drop in geometric mean fluorescence binding signals,
reaching the background signal delineated by Synagis at the later time point. Mab C11 signals
began to decline after 120 minutes of virus attachment to TZM-bl cells at 37°C and decreased
roughly two logs by 240 minutes.
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Fig 6. Exposure of gp120 epitopes on Vpr subpopulations of TZM-bl cell-bound HIV jgg,_ virions. Normalized antibody intensities were determined for
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S5 Fig.
doi:10.1371/journal.ppat.1004772.9006

The temporal declines in Mab staining signals on TZM-bl cells under entry-permissive con-
ditions of 37°C were explored in greater detail. In particular, we investigated whether this was
associated with the gradual appearance of multiple cell-bound virion subpopulations that oc-
curred most extensively under these conditions. To do this, Mab fluorescence signals were ex-
tracted from the Vpr (high), Vpr (low) and Vpr (0) subpopulations (see Fig. 3) using Flow]Jo
software. For each Mab, mean fluorescence intensity signals observed within these subpopula-
tions were then plotted over time (Fig. 6). The highest intensities for all test Mabs were re-
corded on the Vpr (high) subpopulation (Fig. 6). The lowest levels of Mab staining occurred on
the Vpr (0) subpopulation that appeared after 60 minutes of virus- TZM-bl cell interactions
(see Fig. 3). Mabs staining on the Vpr (low) populations on each cell type was intermediate and
more dynamic. Mab b12 signals in this population decreased one-half log within 30 minutes of
attachment then steadily declined to near background levels (defined by Synagis negative con-
trol measures) by 240 minutes. Mab 2G12 signals were more persistent, decreasing less than
one-half log after 60 minutes and remained above background levels for 240 minutes. Signals
from anti-CD4i epitope Mabs, A32, C11, and 17b dropped at least one to one-half log by 120
minutes; approaching background levels (Synagis equivalent levels) by 240 minutes of virus-
cell attachment. Notably, the Vpr (0) population marginally reacted with Mab 2G12 at all the
time points; even less reactivity was observed with Mabs b12 or C11. Somewhat higher binding
signals in the Vpr (0) population were observed with Mabs A32 and 17b at 60 minutes of
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virus-cell attachment, but were lost with increasing times. Thus, it is likely that the general de-
cline in Mab binding signals observed for the entire population of ROIs on TZM-bl target cells
under entry-permissive conditions (see Fig. 5) could be explained in part by the temporal
emergence of the low or no Vpr subpopulations.

Three dimensional superresolution imaging of gp120 epitope exposure
on TZM-bl-bound HIV-1 jgg virions

Superresolution microscopy techniques can be used to study structural and functional aspects
of HIV replication [104-112] at levels of resolution compatible with the size of a retroviral par-
ticle. Accordingly, to provide a more detailed validation of the confocal microscopy we ana-
lyzed the TZM-bl/HIV-1ggy, system used here with three-color, three-dimensional direct
stochastic optical reconstruction microscopy (3D dSTORM). This method provides a 10-fold
increase in resolution (20nm lateral and ~50nm axial resolutions [113]) over standard confocal
microscopy. The lateral resolution was determined by the average full width at half maximum
(FWHM) measurements of all three fluorophores used. Neutralizing Mab 2G12 and anti-CD4i
Mabs A32 and 17b were selected as epitope probes.

Fluorescently tagged HIV-1jggy, virions (Alexa 546 labeled-SNAP-ICAM-1; Alexa
360-labeled CLIP-Vpr) were incubated with TZM-bl cells stained with a non-HIV neutralizing
anti-CD4 antibody (Alexa 647-conjugated OKT4) for 30 minutes at 37°C. Co-cultures were
then fixed with 4% paraformaldehyde, stained with Alexa Fluor 488-conjugated test Mab
(2G12, A32, 17b or Synagis), and mounted in imaging buffer for examination using the Nikon
N-STORM superresolution microscope (see Methods). The 3D dSTORM images were ac-
quired and single molecule fitting and Gaussian images were rendered using the N-STORM
software NIS Elements, where ROIs containing SNAP-ICAM-1and Mab signals proximal to
CD#4 staining were selected (representative images shown in Fig. 7 & S6 Fig; S1, S2, and S3
Movies). Consistent with the confocal microscopy results (Fig. 2, Fig. 4 & S4 Fig), neutralizing
Mab 2G12 (Fig. 7, S1 Movie) and CD4i Mabs A32 (S6 Fig, S2 Movie) and 17b (S6 Fig, S3
Movie) produced a signal in proximity to SNAP-ICAM-1 and cell surface CD4. Importantly,
scaling in the lateral plane versus the axial imaging range showed that SNAP-ICAM-1 and
Mab signals fell within a 100-200 nm area, consistent with the size of a single retroviral particle
(Fig. 7A, Fig. 7B, S6A Fig & S6B Fig, bottom panels). Overall, these data agree with the confocal
imaging of ROIs in the TZM-bl/HIV-1;rg;, system, showing that both neutralizing and CD4i
epitopes are found on bound particles.

Notably, the superresolution ROIs indicated that Alexa 488-conjugated Mabs 2G12, A32
and 17b generated comparable ranges of “blinking” fluorescence signals (localized events;

Fig. 7C) when attached to cell-bound virions. In accordance, the Mabs shared consistent signal-
ing characteristics when calibrated in the context of superresolution ROIs comprising a con-
strained gp120 antigen (see Methods and S7 Fig). The geometric mean of the localized events
measured for Mab 2G12 was roughly two fold lower than the mean for Mabs A32 and 17b (S7
Fig, Panel A). There were no such differences between Mabs A32 and 17b. However, the distri-
bution of localized events among ROIs was similar for all Mabs (S7 Fig, Panel B). ROIs with
two localized events were most frequently detected with all antibodies; followed by ROIs with
four localized events. ROIs containing larger numbers of localized events were relatively scarce
(S7 Fig, Panel B).

Discussion

Abundant evidence indicates that the susceptibility of HIV-1 to the antiviral effects of humoral
immunity is dependent on how and when epitopes are expressed on the viral envelope
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doi:10.1371/journal.ppat.1004772.9007

glycoproteins. Intensive research has revealed a few sites of vulnerability on free virions, which
comprise constitutively expressed epitopes with variable degrees of conservation among
strains. On HIV-1 gp120, these include the CD4 binding site [23, 82-84, 91, 114] and glycan
structures present on the variable loops [30, 61, 94, 115, 116]. More highly conserved regions
including a variety of CD4i epitopes also exist on gp120 but appear not to be exposed on free
virions [12, 51, 117-122].

Much less is known about the gp120 epitopes exposed on HIV-1 after attachment to target
cell surfaces although the available evidence suggests that it differs substantially from that of
free virions. Certain anti-envelope antibodies that bind poorly to free virions are capable of di-
rectly neutralizing infection, suggesting that exposure of neutralizing epitopes occurs after tar-
get cell attachment [24, 51, 63, 123]. More recently, we [55] demonstrated that virions bound
to target cells present targets for Fc receptor-dependent antiviral mechanisms such as ADCC.
Some of the more potent gp120 targets for such activity are located within the C1 region [55,
124, 125], which demands cell surface CD4 engagement for exposure [52, 60, 85, 86, 126, 127].
Additional targets include CD4i epitopes within the co-receptor binding site that also require
cell binding for full exposure [16, 17, 51, 52, 55, 122, 128-130].

Such findings contrast with previous reports and in silico molecular models suggesting that
CD¢4i epitopes are always occluded from immunoglobulin [43, 82-84] because of steric con-
straints at the cell surface. Importantly, this view of gp120 is derived largely from the crystal
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structures of soluble envelope glycoproteins and/or cryo EM images of engineered soluble tri-
mers [131, 132] or free virions [22, 133-135]. However, such information may not fully reflect
the antigenic profile of HIV-1 virions as they proceed through its attachment and entry steps.

HIV-1 epitope exposure on target cell surfaces has been successfully studied using confocal
microscopy in systems where various reactants are fluorescently labeled. Such studies con-
cerned epitope exposure during HIV-1 envelope-driven cell-cell fusion [16, 17, 136]; few stud-
ies have examined the disposition of surface bound particles [110, 137]. Standard confocal
microscopy is incapable of the resolution needed to accurately position different fluorescence
signals on single retroviral particles. Even under ideal conditions (e.g., a high numerical aper-
ture and optimized laser alignment) the resolution of standard confocal microscopy is limited
to approximately half of the wavelength of the excitation laser, the shortest of which
(200 - 250nm) is larger than the size of an HIV-1 particle (0.145-0.181 um) as indicated by
high-resolution methods including electron microscopy or optical trapping [138, 139]. Never-
theless, standard confocal microscopy can be adapted to derive multiple fluorescence measures
emanating from ROIs comprising bound virions. Furthermore, confocal microscopy is suffi-
ciently robust to capture temporal information from populations of bound virions in order to
reveal changes in the dispositions of HIV-1 components versus surface epitopes [16, 17, 137].

In the present study, we explored this question using virions expressing surface (SNAP-I-
CAM-1) and internal (CLIP-Vpr) fluorescent tags that can also be stained with Mabs conjugat-
ed to harmonious fluorescent labels (see Methods). Multi-parameter fluorescence data for
populations of virions imaged over time was then normalized for Boolean gating in order to re-
veal concurrent changes in the dispositions of proteins expressing the various
fluorescent signals.

HIV-1 has been reported to engage in endosomal entry [14, 15, 140-145] and/or endosomal
recycling [146] in addition to direct virus-cell membrane fusion at the cell surface. A recent
study by Herold et al. [147] showed that productive HIV-1 entry occurs predominantly at the
plasma membrane, and does not require endocytosis. We focused exclusively on surface-
bound virions since they are the most plausible targets for various humoral anti-HIV-1 effector
mechanisms and/or for other antiretroviral agents designed to block viral entry. Further, the
antigenic profiles of internalized virions are likely to be clouded by overlapping processes of
endosomal versus lysosomal uptake [143] potentially involving productive infection or virion
degradation, respectively. Accordingly, ROIs were selected for collection of fluorescence infor-
mation based on outer membrane surface orientation along with a calibrated size correspond-
ing to the apparent size of a retroviral particle. Although particles engaged in endosome-
related processes may have been present in the system used here, they would not have been
captured in ROIs since cell permeabilization occurred after anti-gp120 Mab treatment, surface
fixing, and washing. ROIs without Mab signals were considered only if their orientation was on
the extracellular surface. Three dimensional superresolution imaging showed that ROIs on the
cell surface were proximal to CD4 and contained fluorescent signals comprising the dimen-
sions of a retroviral particle (Fig. 7 and S6 Fig). However, we cannot completely eliminate the
possibility that some of the ROIs defined by confocal imaging (e.g., those with more irregular
contours) occasionally contained two or three HIV-1 particles captured in close proximity by
the target cells.

The overarching immunological feature indicated by our analyses was that virions bound to
target cells rapidly expressed an array of conserved gp120 epitopes including ones (e.g., A32,
17b, and C11) that were not exposed on the same virions when probed in solution (Fig. 1). Fur-
ther, the signals obtained with Mabs specific for these epitopes were generally on par with what
was observed with Mabs against constitutively exposed epitopes such as b12 and 2G12 (Fig. 2,
Fig. 4, and Fig. 7). The exposure of the 2G12 epitope in our experiments agrees with previously
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published superresolution microscopic studies [110] showing that this epitope is expressed on
surface bound virions. In this context exposure of the b12 epitope, which forms part of the
CD4 binding site on gp120, is most likely attributable to the presence of epitopes on the virion
face oriented away from the target cell.

All gp120 epitopes examined here exhibited a time-dependent reduction in immunoreactiv-
ity with cognate antibody (Fig. 4, Fig. 5, S5 Fig). However, such changes varied among the en-
tire population of bound virions and were linked to conditions permissive for downstream
membrane fusion and entry events. This was evident from findings that epitope exposure pat-
terns were relatively static on HeLa-CD4 cells not expressing co-receptor or on TZM-bl cells
held at low temperatures that prohibit membrane mixing (Fig. 5, Fig. 6, and S5 Fig). Based on
these data, we posit that the broad decrease in gp120 epitope immunoreactivity seen on entry-
permissive cells is linked to the presence of CCR5 co-receptor and downstream replication
steps including the entry process itself. Possible mechanisms include the occlusion of epitopes
via the repositioning of envelope spikes on attached virions, as was indicated by cryo-electron
microscopy [134, 148]. An alternative albeit more speculative explanation is that the fully
“opened” structure of CD4- and co-receptor-bound gp120 is uniquely susceptible to proteolytic
degradation. Since our analyses were deliberately focused on extracellular processes, such deg-
radation would have to occur at the outer cell surface to explain our findings.

In this regard, it was intriguing that CLIP-Vpr signals declined and/or disappeared over
time within subsets of particles attached to entry-permissive TZM-bl cells (Fig. 3). The expan-
sion of these subsets occurred after 30 minutes of virus-cell incubation at 37°C, which is consis-
tent with previous observations of a similar “lag time” before transition state envelope
structures and evidence of membrane fusion are detected [16, 17, 137, 149, 150]. Importantly,
such particles were very rare at early time points and therefore were not dominant artifacts in
the virus preparations used for our experiments. Further, the population with no detectable
CLIP-Vpr signal appeared only on the TZM-bl cells expressing both CD4 and CCR5 and not
on the CCR5 negative HeLa-CD4 cells (Fig. 3). Conversely, this population did not appear on
TZM-bl cells at 4°C, where membrane fusion was temperature-arrested. Only a fraction of the
particles bound to TZM-bl cells at high temperature acquired the low or no Vpr signal profile
over time (Fig. 3C). Nevertheless, the occurrence of these particles is consistent with conven-
tional models of virion fusion with the plasma membrane [151-160]. In this case, receptor-
driven membrane mixing processes are predicted to release virion content into the target cell
thus generating particles with low or no Vpr signal. However, loss of Vpr at the cell surface is
at odds with models require endosomal uptake during or after CD4 and co-receptor engage-
ment [13, 15] for fusion, entry and infection. These models would predict that Vpr should be
retained within all particles that rest on the target cell surface. Our data are consistent with an-
other proposed scenario [13, 150] in which some particles progress beyond hemifusion at the
plasma membrane to create small pores which release a limited amount of virion content. Vpr
is a plausible component of such release if a fraction of the protein is located beneath the viral
envelope as has been reported [161, 162]. The transducing properties of Vpr might further pro-
mote movement out of the virion and into the cell [163]. An alternative possibility is that con-
tent release occurs when virions contact adjacent surfaces of the cell; e.g., as might occur
between tightly spaced microvilli [164-166]. In this situation, lateral forces could enable a pro-
cess of “fusion from without” [13, 167]. Finally, our observations might reflect processes that
lead to the specific loss of Vpr signal. Exploration of such questions will require future studies
that simultaneously track multiple intra-virion components.

Another noteworthy feature of the bound particles with low or no Vpr signals was that they
poorly expressed the gp120 epitopes examined here (Fig. 6). Thus, the processes on TZM-bl
cells that led to the temporal decline in CLIP-Vpr signals may have concurrently impacted the
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disposition of the viral envelope. The broad loss of epitope reactivity with antibody is consis-
tent with either the extensive degradation or loss of gp120 as has been studied previously [168-
173]. Alternately, in view of the potential mechanisms for CLIP-Vpr signal reductions dis-
cussed above, epitope loss may occur as part of an active or abortive entry processes. It must be
noted that certain features of epitope exposure were less apparent in the entire population of
bound particles (Fig. 5) compared to what was seen in subpopulations (Fig. 6). For example,
within the entire HIV gy, virion population (Fig. 5) epitope reactivity with anti-gp120 antibod-
ies declined with increasing attachment time on TZM-bl cells. Examinations of subpopulations
(Fig. 6) revealed that Mab staining was retained on Vpr (high) but progressively lost on Vpr
(low) or (0) particles (Fig. 6). Precise links between SNAP-ICAM-1, CLIP-Vpr and Mab signal
patterns are difficult to establish with population-based studies such as this one. However, live-
cell imaging of fluorescent signals from single particles in real time may reconcile such ques-
tions. Data from the current study provide a foundation for such future efforts.

Emerging techniques of superresolution microscopy have been increasingly applied toward
studies of HIV replication [104-112]. The application of one such technique; three dimension-
al, three-color dSTORM, allowed us to obtain a more refined view of the TZM-bl cell-bound
HIVggy, virions examined in this study. This approach revealed that ROIs such as those select-
ed for confocal microscopy comprised SNAP ICAM-1-and anti-gp120 Mab fluorescence sig-
nals that were co-localized within an area less than 200nm (Fig. 7 & S6 Fig) in size, consistent
with measures of HIV virions by cryo-electron microscopy [138]. Further, these signals oc-
curred within biologically relevant proximity to signals from anti-CD4 antibody bound to cell
surface CD4. Mabs 2G12, A32 and 17b produced such co-localized signal patterns, in agree-
ment with the fluorescence signals measured by confocal analyses (Fig. 2 & Fig. 4) of cell-
bound virions.

An interesting question concerned how many gp120 epitopes on a cell-bound virion might
react with cognate Mabs under these conditions. This was approached by first calibrating the
number of localized events produced by each of the anti-gp120 test Mabs when bound to a de-
limited amount of known target antigen. The methods we used (see Methods and S7 Fig) were
deliberately conformed to preserve intact antibody interactions with native gp120 structures.
The latter feature was accomplished via D7324 antibody capture of a single chain gp120-CD4
complex (FLSC) that presents a stabilized CD4-induced structure [174]. A caveat was that such
ROIs could variably contain one or two target antigens captured by a D7324 antibody. Thus,
the total localized events measured could derive from the formation of either one or two im-
mune complexes with the conjugated anti-gp120 Mabs. However, this possibility applied
equally to all Mabs tested. In the calibration system, Mab 2G12 trended toward slightly fewer
localized events compared to Mabs A32 and 17b although in all cases ROIs with two localiza-
tion events were most frequently observed (S7 Fig). In comparison, the differences between
numbers of localized events generated by the Mabs on TZM-bl cell-bound virions was not sig-
nificant (Fig. 7C), in accordance with the similar signal intensity levels detected with the anti-
bodies in confocal microscopy (Fig. 4D). Accounting for these considerations, we could
estimate that TZM-bl cell-bound virions reacted with roughly 5-10 Mab 2G12 molecules; 3-6
Mab A32 molecules; or 4-8 Mab 17b molecules. In agreement with these estimates, previous
superresolution microscopy studies using Stimulated Emission Depletion (STED) [110], indi-
cated that on average Mab 2G12 bound to 7 trimeric spikes on a mature HIV virion. Other
published studies using protein purification [175] and electron tomography [176] suggest that
there are between 7 and 14, or from 8 to 10 spikes per HIV-1 particle, respectively.

Taken together, the patterns of gp120 epitope exposure revealed by imaging of cell-bound
HIV-1jgg, virions are inconsistent with models in which CD4i epitopes are predicted to be
fully occluded from antibodies at the cell surface [43, 82, 84]. There are two possible
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explanations for this disagreement. The simplest one is that the CD4i and other epitopes are
not buried at interfaces where virions contact target cell membranes to the extent that interac-
tions with immunoglobulins are prevented. The second, more speculative possibility is that
HIV-1 binding to cell surface receptors propagates conformational changes across the virion
that impact envelope spikes distal to the cell contact zone. Such plasticity has been observed
with other enveloped viruses [177-183].

A related question concerns why antibodies to CD4i epitopes such as A32 are not directly
neutralizing even though the cognate epitopes are exposed at the cell surface. The exposure of
such epitopes without direct neutralizing consequences was previously established for HIV-
driven cell-cell fusion [16, 17]. Likely explanations pertinent to cell-bound virions include: epi-
tope exposure occurs on trimers that fail to fully enable membrane fusion machinery; epitope
exposure that occurs after the membrane fusion process has been committed; epitope exposure
that occurs distal to the cell contact zone as suggested above. Further exploration of these possi-
bilities in the context of HIV-1 attachment will require more advanced spatial analyses using
superresolution microscopy and other molecular techniques.

Importantly, the gp120 imaging patterns elucidated here for attached virions are entirely
consistent with previous findings that certain anti-CD4i epitope Mabs mediate potent ADCC
activity in vitro against virions bound to target cells [55]. This accordance supports the concept
that there may be multiple opportunities for humoral responses to counter HIV-1 infection
after attachment. Following the observations made here, it could be envisioned how Fc recep-
tor-dependent modes of humoral immunity might locate and destroy cells recently targeted by
HIV-1 for replication. In this case, the ensuing effector cell activity might have a protective ef-
fect even if it is directed toward replication defective particles if other virions on the same cell
manage to initiate productive replication. However, the efficacy of such responses in vivo is ob-
viously dependent on the number of virions that attach to any given target cell, the durability
of epitope exposure during initial stages of HIV-1 replication, and the proximity of effector
cells to the epicenter of HIV-1 replication. Our data suggest that gp120 epitope exposure on at-
tached virions is transient but sustained for periods of time that might allow immune mecha-
nisms to impact infection under certain conditions. Information from clinical trials of
candidate HIV-1 vaccines along with systematic testing of anti-gp120 Mabs in various animal
models of HIV-1 infection could help to reconcile this question.

Methods
Cells

HeLa cells, which express CXCR4 but not CD4 or CCR5 (CD4-, CCR5-) [7, 8, 184], HeLa-CD4
clones (CD4+, CCR5-) stably transfected to express CD4, and TZM-bl cells expressing CD4
and CCR5 (CD4+, CCR5+) were used. TZM-bl cells were obtained through the NTH AIDS Re-
search and Reference Reagent Program, Division of AIDS, NIAID, NIH: TZM-bl from Dr.
John C. Kappes, Dr. Xiaoyun Wu and Tranzyme Inc. [98-101]. The HeLa-CD4-LTR-f-gal cell
line with high CD4 expression was also obtained through the AIDS Research and Reference
Reagent Program, Division of AIDS, NIAID [185]. Both cell lines were maintained in Dulbecco
modified Eagle medium (DMEM; Gibco-BRL) supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 2 mM L-glutamine, and antibiotics, with 0.1 mg of G418 (Gibco-BRL)/ml,
and 0.05 mg of hygromycin B/ml supplements for HeLa-CD4 cells in a 37°C incubator with
5% CO,. CD4 and CCR5 content of these cells was quantified using the QuantiBRITE PE fluo-
rescence quantitation kit (BD Biosciences). TZM-bl cells had 1.7 x 10° CD4 and 5.4 x 10*
CCR5 molecules/cell, while HeLa-CD4 cells had 1.8 x 10* CD4 molecules/cell and no CCR5.
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Plasmid Constructs

To make pSNAP-ICAM-1, human ICAM-1 was extracted from the pPCDM8-ICAM-1 vector
(Addgene, Cambridge, MA) using PCR, and cloned into the SNAP-tag expressing pSEMXT-
26m plasmid (New England Biolabs, Ipswich, MA) at the 3’ end of the SNAP-tag coding
region using the Sbfl and BamHI restriction sites. To make pCLIP-Vpr, the Vpr coding
region was extracted from pEGFP-Vpr vector obtained through the NIH AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID [186] by PCR, and cloned into the
pCLIPm vector (New England Biolabs) at the 3’ end of the CLIP-tag coding region using the
Sbfl and BamHI restriction sites. pSNAP-ICAM-1 and pCLIP-Vpr were sequenced by the Bio-
polymer Laboratory of the University of Maryland School of Medicine and assigned GenBank
accession numbers Banklt1758508 Seql KM555100 and Banklt1758535 Seql KM555101,
respectively.

HIV-1,grr. Pseudovirus Production

CCR5-tropic HIV-1jgg;, pseudoviruses were generated by co-transfecting HEK 293T cells with
(i) pSG-3AEnv virus backbone with an Env deletion obtained through the AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID [187, 188]], (ii) pPCAGGS-JRFL, a plas-
mid containing JRFL Env, obtained through the AIDS Research and Reference Reagent Pro-
gram, Division of AIDS, NIAID [189] (iii) pPSEMXT-ICAM-1 (expresses SNAP-tagged ICAM-
1 captured by virions from the cell membrane during viral budding [190, 191], and (iv)
pCLIP-Vpr (expresses CLIP-tagged Vpr marking virion content) [157-160]. Transfections
were accomplished using FuGENE 6 (Roche, Indianapolis, IN) transfection reagent at a 3:1 re-
agent-DNA ratio. Pseudovirus-containing supernatant was harvested after 3 days, and concen-
trated about 10-fold by incubating with PEG-it virus precipitation solution (System
Biosciences, Mountain View, CA) for 18 hours at 4°C as recommended by vendor. The antigen
content of pseudoviruses was quantified using p24 and gp120 ELISAs, and their TCID50 was
obtained as previously described by Li et al. [192]. HIV-1jggy, pseudoviruses with gp120 to p24
ratio of 1:10-1:50, and 200,000-500,000 TCID50/mL (FCS) or 1 x 10°~3 x 10° TCID50/mL
(Confocal and Superresolution microscopy) were used.

Antibodies

We probed anti-Env epitope exposure on free HIV-1jgrgy as well as on cell-attached virions by
examining the binding properties of fluorescently-labeled cognate human monoclonal anti-
bodies (Mabs). 2G12 mAb was purchased from Polymun Scientific (Vienna, Austria); b12,
A32, C11 and 17b, were expressed from plasmid clones using an IgG1 backbone for heavy-
chain variable regions and either a k- or A-chain expression vector for light-chain variable re-
gions by transfecting HEK 293T cells. Mabs were purified from culture supernatants by pro-
tein-A chromatography. A32 and 17b were initially provided by James Robinson, Tulane
University, New Orleans, La. The humanized monoclonal anti-respiratory syncytial virus
(RSV) antibody, SYNAGIS® (MedImmune LLC, Gaithersburg, MD), and human plasma IgG
(Calbiochem, La Jolla, CA) were used as non-specific negative controls. D7324 (Aalto BioRea-
gents, Dublin, Ireland), an antibody that binds the C terminus of monomeric gp120, and an
HIV-1 p24 antibody (Abcam Ab9071, Cambridge, MA), were used to assess gp120 dissociation
from HIV-1jggy, trimers and exposure of capsid, respectively. OKT4, an antibody against CD4
that does not neutralize HIV-1, was purchased from BioLegend (San Diego, CA).

These Mabs were fluorescently labeled with Alexa Fluor 647 (for FCS experiments) and
Alexa Fluor 488 (for confocal and superresolution microscopy experiments) using monoclonal
antibody labeling kits from Molecular Probes (Eugene, OR) following manufacturer
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instructions. Briefly, 100 pg of Mabs were labeled with Alexa Fluor reactive dyes which have a
succinimidyl ester moiety that reacts efficiently with their primary amines and form stable dye-
protein conjugates. The labeled Mabs were separated from unreacted dye by centrifugation
through a spin column at 1100 x g. The dye:protein ratio of the recovered Mabs was measured
using a UV-vis spectrometer (Nanodrop 2000, Thermo-Scientific). Conjugated Mabs used in
our experiments had an optimal ratio range of 4-6 (Alexa Fluor 488) or 3-5 (Alexa Fluor 647)
moles of dye per mole of Ab.

Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) is a methodology that allows real-time detection
of protein-protein interactions in solution, by measuring diffusion and reaction kinetics of
fluorescently-labeled biomolecules [193]. The binding of Alexa Fluor™ 647-labeled Mabs b12,
2G12, A32, Cl1, 17b, and anti-RSV antibody, Synagis (negative control) to HIV-1gg;, was
monitored by tracking diffusion of their fluorescent label across the observation area, where
unbound antibodies will diffuse much faster than those that bound viral particles as described
in [51]. Briefly, HIV-1jrgy, pseudovirions were diluted to 10pug/mL p24 equivalent in a 100-pL
reaction volume (gp120:p24 ratio of 1:50), and were first incubated with 100pg/mL non-
specific IgG1 (1.5uL of a 7mg/mL stock) for 90 minutes at 37°C to block non-specific binding.
Then 1L of the test Alexa Fluor™ 647-conjugated Mab (4.5-6.6pg/mL) was introduced and al-
lowed to interact with pseudovirions for 90 minute at 37°C. In experiments where CD4-
induced conformational changes were studied, HIV-1;zg, pseudovirions were pre-incubated
with 100pg/mL sCD4 (Biogen) (1.5pL of a 7mg/mL stock) along with the non-specific IgG1 for
90minutes at 37°C before the addition of test Alexa Fluor 647 Mab. For spectroscopic measure-
ments, 11pL of the reaction mixture was loaded onto an FCS slide reservoir, sealed, then placed
on the Picoquant MicroTime 200, a time-resolved confocal microscope (inverted), with a high
numerical aperture (NA = 1.3) oil objective (100x magnification). The samples were excited
with Aex = 635 nm laser, and fluorescence signals from the Alexa Fluor 647 Mabs were collect-
ed over 60 seconds in a constant detection volume that is continuously replenished. PicoQuant
Symphotime software was used to generate the autocorrelation function of the fluorescent fluc-
tuations of the Alexa Fluor™
tensities is given by the product of the Mab intensity at time ¢, I(¢) with the intensity after a
delay time 7, I(t+1), typically in the range from 10 to 10° ms, averaged over the 60 seconds of
measurement. For experiments where only the Alexa Fluor 647- Mabs were in the sample, the
autocorrelation function was fitted with the pure diffusion model equation for single species,
where a diffusion coefficient of 65um?/sec was extracted for the 150kD IgG molecules. In the
presence of HIV-1jrg, pseudovirions, the autocorrelation was fit to a two-species diffusion

647 Mab signal. The autocorrelation function of fluorescence in-

model, where one species had the unbound Mab diffusion coefficient of 65um?*/sec (D,;), and
the second species with a diffusion coefficient of 8um?/sec (Dy), represented Mabs bound to
the 100nm HIV-1jrg;. These equations were also used to obtain the amount of Mab exhibiting
the slower diffusion rate as a measure of the percentage of virus-bound Mabs in each reaction
mixture. The derivation of all the equations is described in [51].

Confocal Microscopy

4.0 x 10° cells (HeLa, TZM-bl, or HeLa-CD4) were attached to 22-mm?> glass coverslips (Fisher
Scientific) and incubated overnight at 37°C in 5% CO,. The next day, HIV-1;gg;, pseudovirions
expressing SNAP-ICAM-1 and CLIP-Vpr were fluorescently labeled with their respective sub-
strates, membrane-impermeable SNAP-Surface Alexa 546 (Red, Expp,ay: 558nm, Emyy,
574nm), and membrane-permeable CLIP-Cell Alexa Fluor 360 (Blue, Ex.x: 357nm, Emyy,:
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437nm) (New England Biolabs), by incubation for 20 minutes at 37°C. TZM-bl and HeLa-CD4
cells grown on coverslips were co-cultured with 0.5mL of 1 x 10°-3 x 10° TCID50/mL (equiva-
lent to 7.0 x 10°-2.1 x 10° PFU; ~ 1-3 MOI) of these fluorescently-labeled HIV-1jrg; pseudo-
virions for the indicated times (5, 15, 30, 60, 120, 180, or 240 minutes) at either 37°C or 4°C,
washed, then immediately fixed with 4% Paraformaldehyde (Electron Microscopy Sciences,
Hatfield, PA) for 15 minutes. Experiments with receptor-negative parental HeLa cells eliminat-
ed the wash step, as this operation removed all viral particles (due to the absence of cell surface
receptors). Thus, for microscopy the particles were left settled on the cells. Non-specific inter-
actions were blocked by incubating coverslips with 10% normal goat serum (Thermo Scientific,
Rockford, IL) and 100ug/mL non-specific IgG1 solution for 30 minutes at 4°C, then the specific
epitopes were recognized by incubating cells with 5pg/mL Alexa Fluor 488 (Green, Ex,y:
495nm, Em,,,: 519nm)-conjugated Mabs (b12, 2G12, A32, C11, 17b, or Synagis) for 1 hour at
4°C. For actin staining, after the addition of Mabs, coverslips were post-fixed with 4% Parafor-
maldehyde for 10 minutes, permeabilized in 0.2% Triton X-100 (Sigma) then incubated with
Alexa Fluor 647-conjugated Phalloidin (Invitrogen) for 30 minutes at room temperature. Cov-
erslips were mounted in Fluoromount (Sigma) and observed using the Zeiss Laser Scanning
Microscope (LSM) 5 DUO. To verify that our results were independent of the fluorophore
choices, we alternatively labeled HIV-1jrp;, with SNAP-Surface Alexa 546 (Red, Expp,y: 558nm,
Em .y 574nm) and CLIP-Cell BG505 (Green, Ex .« 505nm, Emyy,.x: 532nm), and recognized
anti-Env epitopes with cognate Mabs conjugated with Alexa Fluor 350 (Blue, Exyay: 346nm,
Em,,,: 442nm).

To view unbound virions by microscopy, 22-mm” glass coverslips were coated with 0.1%
Poly-L-Lysine w/v in water (Sigma) overnight at room temperature. The Poly-L-Lysine was re-
moved and coverslips were washed with 1X PBS. Fluorescent-tagged HIV-1gg;, pseudovirions
(SNAP-Surface Alexa 546 and CLIP-Cell Alexa Fluor 360) were added and incubated for 2
hours at 4°C. Unbound virions were then washed off, and virions were fixed in 4% paraformal-
dehyde, non-specific interactions blocked with 10% normal goat serum, and test Alexa Fluor
488-conjugated Mabs added as described above.

Confocal Microscopy Image Acquisition and Analysis

Virus—cell interactions were imaged using the Zeiss Laser Scanning Microscope (LSM) 5
DUO using a 63X oil-immersion lens at room temperature, where signals from the dually la-
beled virus and anti-HIV-1 antibody signals were tracked in 3D by taking 512 by 512 XY scans,
0.279018 um/pixel size, in 0.2-pm increments in the Z-direction. Images were taken at 5 or
more randomly selected regions that span the coverslips. To minimize cross-talk between the
different fluorescence labels, the multi-tracking setting of the Zeiss Zen software was used,
which sequentially illuminated and detected one fluorophore at a time [194]. The image set-
tings were saved and re-used for subsequent experiments in order to compare differences in
virus and antibody intensity levels.

Images were processed using MetaMorph (Molecular Devices) program. Maximum projec-
tion images were used to include fluorescence signals from all the Z planes. Viral particles on
the surface of target cells were identified using SNAP-ICAM-1 signals. Orientation on the
outer cell membrane surface was determined by Phalloidin staining signals (see S3 Fig.). Re-
gions of interests (ROIs) were traced around ICAM-1 SNAP Surface Alexa 546 signals. The
ROIs perimeters were configured to define where fluorescent signals fell to apparent back-
ground. Such boundaries were more expansive than the full width at half maximum measures
of point spread function (200-250 nm for our instrument), but were desirable as a means to in-
clude all the intensity signals for unbiased and comprehensive comparisons. This approach
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was rehearsed using 0.1um carboxylate-modified red microspheres (FluoSpheres; Invitrogen),
which have similar excitation and emission spectra as the SNAP-ICAM-1 label (Exax: 540nm,
Em,,.x: 560nm) and a diameter matching the lower end of the size range [138, 139] reported
for HIV particles (0.145-0.181 pum). As such, the microspheres provided a serviceable gauge, al-
though they are designed to be intensely fluorescent with little or no photobleaching and are
likely to exhibit greater image resolution compared to the randomly incorporated SNAP-I-
CAM-1 label on virus surfaces. Configured as stated above, ROIs determined for microspheres
settled on to target cells exhibited a median diameter of 0.72 + 0.09 um. The ROIs for putative
cell-bound virions exhibited a similar median diameter of 1.32 + 0.17 um; ROIs for virions
bound to coverslips exhibited a median diameter of 1.25 + 0.15 um. These concordant sizes in-
dicated that in general single entities versus large “clumps” of virions were interrogated on tar-
get cell surfaces. However, the possibility that we occasionally surveyed multiple particles
located in close proximity cannot be completely eliminated.

To correct for background fluorescence, each ROI meeting the above criteria was compared
to a mock ROI These were randomly selected regions of equivalent diameter on condition-
matched cells that did not have apparent SNAP-ICAM-1 signals. Background intensity levels
in all 3 color channels were recorded and subtracted from corresponding ROI measures. For
the displayed images, each fluorescent channel was deconvolved using the nearest neighbor al-
gorithm in MetaMorph to decrease the noise in the system.

SNAP-ICAM-1, CLIP-Vpr, and antibody relative intensity values were exported from Meta-
Morph as excel files and graphed using GraphPad Prism (version 5.04 for Windows) or Sigma-
Plot (version 12.0 for Windows). For all data points to appear in the log scale, intensity values
less than 1 were amended to be equal to 1. Since the virus and antibody intensity signals did
not have a normal distribution, the non-parametric Kruskal-Wallis was performed for statisti-
cal analysis, using GraphPad Prism.

To quantify the cell-bound particle and antibody signals, fluorescence intensity data of
HIV-1jrer (SNAP-ICAM-1 & CLIP-Vpr), and test Mabs were imported into the flow cytome-
try software, FlowJo X. This allowed standard Boolean gating of the data in order to examine
differences in the various treatment groups. To achieve this, a same day experimental set was
normalized, and then log transformed to offset the treatment of the input data as log values. Fi-
nally, the numbers were multiplied by 1000 to spread the data set to the capacity of the software
[the number of pseudocolor palettes of a 12-bit image (2'% = 4096)].

Direct STochastic Optical Reconstruction Microscopy (dSTORM)

Conditions similar to the confocal experiments were used for direct stochastic optical recon-
struction microscopy (dASTORM) experiments. 4.0 x 10° TZM-bl cells were seeded on 20-mm
glass-bottom MatTek dishes (MatTek Corp., Ashland, MA) and incubated overnight at 37°C
in 5% CO,. The next day, HIV-1jrg;, pseudoviruses expressing SNAP-ICAM-1 and CLIP-Vpr
were fluorescently labeled with SNAP-Surface Alexa 546 and CLIP-Cell Alexa Fluor 360, re-
spectively as described above. The TZM-bl cells were co-cultured with 0.5mL of 3 x 10°
TCID50/mL of these fluorescently-labeled HIV-1ggr, and with 5ug/mL Alexa 647-conjugated
OKT4 (a non HIV neutralizing anti-CD4 antibody) for 30 minutes at 37°C, then immediately
tixed with 4% Paraformaldehyde for 15 minutes at room temperature. Non-specific interac-
tions were blocked by incubating coverslips with 10% normal goat serum and 100ug/mL non-
specific IgG1 solution for 30 minutes at room temperature. Epitopes of interest were probed
with 5pg/mL Alexa Fluor 488-conjugated antibodies for 30 minutes at room temperature.
Dishes were then post-fixed in 4% Paraformaldehyde for 15 minutes at room temperature and
stored in 1X PBS at 4°C until imaging.

2
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dSTORM Image Acquisition and Analysis

Three-color, 3D dSTORM imaging was carried out using the Nikon N-STORM microscope
(Nikon Instruments Inc., Melville, NY). Using the 100X CFI Apo TIRF oil-immersion objective
(1.49 NA), 256 by 256 XY scans, 0.165 pm/pixel size, were acquired, and 3D images were ob-
tained using the astigmatism method of 3D localization [113]. The 647nm, 561nm, and 488nm
laser lines were used to excite Alexa 647-conjugated OKT4, SNAP-ICAM-1 labeled with SNAP
Surface Alexa 546, and Alexa 488-conjugated Mabs, respectively. The 405 laser was used to ob-
tain TIRF images of the CLIP-Vpr Alexa 360 signal. The oxygen-scavenging imaging buffer
was 14mg glucose oxidase and 50pL of 17mg/mL catalase (Sigma) in 200puL Component A
(10mM Tris, 50mM NaCl); Component B (50mM Tris-HCI, 10mM NaCl, 10% glucose); and
1M cysteamine (MEA).

Single molecule fitting and Gaussian images were rendered using the N-STORM software
NIS Elements (version 4.30.01). The localization precision for all three fluorophores was deter-
mined to be 20 nm using full width at half maximum (FWHM), with a 50 nm axial resolution.
After high resolution images were obtained, ROIs were defined around single virions with
ICAM-1 and Mab signals within 200nm. Virus-bound Mab signals and the number of localized
signals were recorded.

Antibody Quantitation Based on Localized Events

The calibration method was designed to equate localized events (Alexa Fluor 488 fluorophore
signal “blinks”) with a defined number of dye-conjugated antibody molecules within a superre-
solution ROL. To do this, MatTek dishes were coated with 5ug/mL D7324 in 1X PBS overnight
at room temperature and were used to capture 0.5ug/mL full length single chain (FLSC), a mo-
nomeric gp120-sCD4 complex stably expressing CD4i epitopes [174]. Thus, the substrate-
bound bivalent antibody in an ROI could theoretically capture one or two FLSC antigens;
which in turn could capture one or two conjugated Mabs. Importantly, the capture format was
selected because it preserves the native structure of the target antigen by avoiding chemical
modifications or direct adsorbance to substrate, either of which can perturb epitope presenta-
tion. Alexa Fluor 488-labeled Mabs 2G12, A32, or 17b (5ug/mL) were incubated with the cap-
tured FLSC for 30 minutes at room temperature, fixed and imaged by dSTORM. ROIs were
circumscribed around distinct Gaussian signals, and the corresponding number of localized
events was extracted. The number of localized events measured within an ROI was then taken
to reflect the presence of one or two conjugated Mabs. As this qualification applied to all target
epitopes, cross-comparisons of Mabs tested under identical conditions were feasible.

Supporting Information

S1 Table. Statistical comparison of Vpr (low) populations. The Vpr (low) populations were
defined as the bottom 5th percentile readings of HIVjrg; —TZM-bl co-cultures at 5 minutes.
The 5-minute-threshold also defined the Vpr (low) populations in the remaining time points.
A two-sample Kolmogorov-Smirnov test was used to compare Vpr (low) populations between
adjacent time points. P-values were adjusted using a Bonferroni multiple-test correction (fac-
tor = 4). The Vpr (low) populations show significant differences between all adjacent time
points tested, except for the 15 vs 30 minute-time point comparison.

(TIFF)

S1 Fig. Representative images of HIVjgg;, virions attached to poly-l-lysine—coated cover-
glass. HIV g virions were treated with membrane-impermeable SNAP-Surface Alexa Fluor
546 (Red) and membrane-permeable CLIP-Cell Alexa Fluor 360 (Blue) to fluorescently tag
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SNAP-ICAM-1 and CLIP-Vpr, respectively. Labeled virions were adhered to poly-1-lysine-
coated coverglass for 2 hours at 4°C. Gp120 epitope exposure was probed with Alexa 488
(green)-conjugated Mabs b12, 2G12, A32, C11 or 17b. Synagis was used as a negative control.
The dashed yellow lines around virus particles represent example ROIs selected as described in
Methods. Scale bar = 1um.

(TIFF)

S2 Fig. Bound HIVjgg; virions measured as regions of interest do not present free viral an-
tigens. (A) HIVjrg virions tagged with SNAP-ICAM-1 (red) and CLIP-Vpr (blue) were at-
tached to poly-I-lysine coated coverglass for 2 hours at 4°C. Virion degradation was assessed by
Alexa 488 (green)-conjugated monoclonal anti-p24 (Abcam Ab9071) antibody; the presence of
monomeric gp120 was probed with polyclonal D7324 antibodies against the gp120 C terminus.
Tests with anti-p24 antibody were made before (pre) and after (post) viral membrane permea-
bilization with 0.2% Triton X-100. The latter serves as a positive control for the presence of
HIVjggr capsid in the intra-viral space. Scale bar = 1um. (B) Tagged virions were attached to
TZM-bl cells for 120 minutes, fixed and probed with above antibodies prior to permeabiliza-
tion with 0.2% Triton X-100 and staining of peripheral actin with Phalloidin for the identifica-
tion of virions on the cell surface as described in Methods. HIVgrgr, with [Vpr(+)] or without
[(Vpr(0)] Vpr signals were selected to assess gp120 dissociation and capsid protein exposure in
these subpopulations. The dashed yellow lines depict representative ROIs selected as described
in Methods. Scale bar = 1ym.

(TIFF)

S3 Fig. Cortical actin staining to distinguish cell surface bound HIVjgg;y. Target cells were
used to capture HIV rg; virions, which were then treated with test Mabs and fixed. After Mab
staining and fixing, the cells were then permeabilized to label cortical actin with Alexa-
647-conjugated phalloidin (see Methods). Extracellular ROIs were selected based on the phal-
loidin staining pattern. (A) Representative image of HIVjrg;, bound to TZM-bl cells. Phalloidin
staining is shown in cyan, virus-associated SNAP-ICAM-1 in red. Corresponding axial (Z) im-
ages are shown in the lower panels, with the arrow pointing toward the top of the cell. Scale
bar = 5um. (B) Close up image of yellow box in (A) indicating how the cell periphery is defined
based on phalloidin signals viewed in lateral and axial orientations (dashed white line); and an
ROl is selected based on calibrated size SNAP-ICAM-1 signal (dashed yellow line). Corre-
sponding axial (Z) images are shown in the lower panels, with the arrow pointing to the upper
surface of the cell. Scale bar = 1um.

(TIFF)

S4 Fig. Representative fluorescence signals from HIV;rg virions settled on to HIV recep-
tor-negative HeLa cells. SNAP-Alexa 546 (Red) and CLIP-Alexa 360 (blue) tagged HIVggy, vi-
rions were settled on to HeLa cells for 30 minutes. Gp120 epitope exposure was probed with
Alexa 488 (green)-conjugated neutralizing Mab 2G12, or CD4i Mabs A32, C11, or 17b, as well
as the negative control Synagis. Scale bar = 1um. ROIs (yellow) were selected using the meth-
ods employed with TZM-bl cells.

(TIFF)

S5 Fig. Gp120 epitope exposure on TZM-bl cell-bound HIVjgg;, virions under membrane
fusion-permissive or non-permissive conditions. Relative antibody intensity signals from at
least 200 ROIs/condition were collected for particles bound to TZM-bl cells for the indicated peri-
ods of time at either 37°C (black) or 4°C (blue), which facilitate or prohibit membrane fusion, re-
spectively. Red lines represent the geometric mean of the data; green bars indicate standard errors.
(TIFF)
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S6 Fig. Three dimensional superresolution images of TZM-bl—bound HIVjrg;, probed
with Mab A32. Alexa 488 (green)-conjugated Mabs A32 (A) and 17b (B) were tested in the
same manner as Mab 2G12 in Fig. 7. TZM-bl surface CD4 is stained with Alexa 647-tagged
OKT4 (red); the virion surface is marked by ICAM-1 tagged with SNAP-Alexa546 (Blue). Top
left: XY images. Scale bar = 0.1pum; top right: Axial views of the dASTORM image with the color
channels separated as well as merged together. The Z line is pointing upwards away from the
cell. The bottom images match the ones above, but with color coded Z position scaling as in
Fig. 7.

(TIFF)

S7 Fig. Standardization of antibody fluorescence signals. A gp120-CD4 fusion protein
(FLSC), was captured on D7324-coated cover glass (see Methods) and reacted with Alexa
488-conjugated Mabs 2G12 (red), A32 (green), and 17b (blue) were allowed to bind for 30 min-
utes at room temperature. (A) The number of localized events generated from superresolution
ROIs (Mab 2G12, N = 107; Mab A32, N = 113; or Mab 17b, N = 103) are shown. Black bars in-
dicate the geometric mean and standard errors. The two-tailed Mann-Whitney test was used to
perform pairwise comparisons of localized events measured with each Mab. (B) Histogram of
the number of localized events from ROIs containing test Mabs 2G12 (red), A32 (green), and
17b (blue), tested as shown in (A).

(TIFF)

S1 Movie. Rotation of the 3D projection image shown in Fig. 7. HIVjrg virion attached to a
TZM-bl cell, with cell surface CD4 stained with Alexa 647-conjugated, anti-CD4 antibody
OKT#4 (red), virion surface marked by ICAM-1 tagged with membrane-impermeable SNAP-A-
lexa 546 (Blue), and gp120 stained by Alexa 488-conjugated Mab 2G12 (green).

(AVI)

$2 Movie. Rotation of the 3D projection image shown in S6A Fig. HIVgg, virion attached
to a TZM-bl cell, with cell surface CD4 stained with Alexa 647-conjugated, anti-CD4 antibody
OKT4 (red), virion surface marked by ICAM-1 tagged with membrane-impermeable SNAP-A-
lexa 546 (Blue), and gp120 stained by Alexa 488-conjugated Mab A32 (green).

(AVI)

$3 Movie. Rotation of the 3D projection image shown in S6B Fig. HIVrg;, virion attached
to a TZM-bl cell, with cell surface CD4 stained with Alexa 647-conjugated, anti-CD4 antibody
OKT4 (red), virion surface marked by ICAM-1 tagged with membrane-impermeable SNAP-A-
lexa 546 (Blue), and gp120 stained by Alexa 488-conjugated Mab 17b (green).

(AVI)
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