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Abstract: Gait decline is common among older adults and is a risk factor for adverse outcomes. Poor gait
performance in dual-task conditions, such as walking while performing a secondary cognitive interfer-
ence task, is associated with increased risk of frailty, disability, and death. Yet, the functional neural sub-
strates that support locomotion are not well established. We examined the functional connectivity
associated with gait velocity in single- (normal pace walking) and dual-task (walking while talking) con-
ditions using resting-state functional Magnetic Resonance Imaging (fMRI). We acquired 6 minutes of
resting-state fMRI data in 30 cognitively healthy older adults. Independent components analyses were
performed to separate resting-state fMRI data into group-level statistically independent spatial compo-
nents that correlated with gait velocity in single- and dual-task conditions. Gait velocity in both task con-
ditions was associated with similar functional connectivity in sensorimotor, visual, vestibular, and left
fronto-parietal cortical areas. Compared to gait velocity in the single-task condition, the networks associ-
ated with gait velocity in the dual-task condition were associated with greater functional connectivity in
supplementary motor and prefrontal regions. Our findings show that there are partially overlapping
functional networks associated with single- and dual-task walking conditions. These initial findings
encourage the future use of resting-state fMRI as tool in developing a comprehensive understanding of
age-related mobility impairments. Hum Brain Mapp 36:1484–1493, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Decline in gait performance is common among older
adults, even in the absence of neurological pathology or
acute clinical events. Such age-related gait decline has
been widely studied and reliably shown to increase the
risk for morbidity, hospitalization, and mortality [Newman
et al., 2006; Studenski et al., 2011; Verghese et al., 2006].
Age-related gait decline also increases the risk for future
cognitive decline and dementia in older adults [Marquis
et al., 2002; Verghese et al., 2007b; Waite et al., 2005; Wang
et al., 2006]. It is important to note that older adults are
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especially challenged under dual-task gait conditions,
which require walking while attending to a secondary cog-
nitive demand [Beurskens and Bock, 2012; Holtzer et al.,
2011; Li et al., 2001; Lindenberger et al., 2000]. In fact,
walking while talking is conceptualized as a mobility
stress test that has been shown to be a reliable predictor of
falls, frailty, disability, and mortality in cognitively
healthy, community-dwelling older adults [Ayers et al.,
2014; Verghese et al., 2002, 2012]. As the population of
older adults increases throughout the world, developing a
comprehensive understanding of these age-related mobil-
ity impairments is an essential public health consideration.

The evidence for cognitive control, notably attention and
executive functions, of gait when assessed in single- and
dual-task conditions in aging is robust [Holtzer et al., 2006,
2012, 2014c]. However, the underlying functional brain cor-
relates of gait and other mobility outcomes are not well
established [Holtzer et al., 2014a]. Investigations of neural
activity associated with gait have been particularly challeng-
ing because traditional neuroimaging modalities cannot be
applied during the act of walking. Recent functional brain
imaging studies have used a variety of techniques to cir-
cumvent this limitation. Researchers have used radionuclide
tracers during locomotion, and subsequently examined dis-
tribution patterns in the brain using single photon emission
computerized tomography (SPECT) or positron-emission-
tomography (PET) [Fukuyama et al., 1997; la Fougere et al.,
2010; Malouin et al., 2003]. As these approaches are invasive
and expensive to implement, other researchers have used
functional near-infrared spectroscopy (fNIRS), a noninva-
sive, low-cost imaging modality that can map functional
brain correlates during dynamic tasks such as gait [Holtzer
et al., 2011; Miyai et al., 2001]. Previous studies have
also explored the functional neural correlates of gait using
mental imagery tasks [Blumen et al., 2014; Jahn et al.,
2004; la Fougere et al., 2010; Zwergal et al., 2012]. Imaging is
done while participants envision themselves walking, with-
out actual execution. Imagery of movements has been
shown to activate similar cortical and subcortical regions
as the physical performance of the same movements
[Anderson and Lenz, 2011; Jeannerod, 2001]. Investigation
of gait through imagery creates new opportunities for the
use of functional magnetic resonance imaging (fMRI) in
this field.

While the majority of fMRI studies have studied the
brain’s response to a stimulus or task, resting-state fMRI
has emerged as an approach that does not require these
conditions. Resting-state fMRI research stems from a semi-
nal study demonstrating that low-frequency (0.01–0.1 Hz)
blood-oxygen-level-dependent (BOLD) signals were tem-
porally correlated between regions of the primary sensory
motor cortex within and across hemispheres in partici-
pants at rest [Biswal et al., 1995]. Large-scale cortical net-
works corresponding to a variety of core perceptual and
cognitive processes have since been widely replicated
across a range of analytic approaches at both the group
and individual levels in a variety of resting conditions:

eyes closed, sleep, and even anesthesia [Damoiseaux et al.,
2008; Erhardt et al., 2011; Fox and Raichle, 2007]. Well-
established resting-state networks correspond strongly to
functional areas identified through the use of task-
dependent paradigms, and are widely interpreted as
intrinsic neural activity supporting core functional systems
[Cole et al., 2010]. There are important limitations and
interpretational difficulties of resting-state fMRI because it
is an indirect measure vulnerable to several confounding
factors including head movements, physiological activity,
and acquisition artifacts [Biswal et al., 1996; Friston et al.,
1996; Glover et al., 2000]. Nevertheless, resting-state fMRI
is a potentially powerful technique to further advance our
understanding of the system-wide neural substrates
underlying gait.

Our aim for this study was to identify functional neural
networks associated with single- and dual-task gait per-
formance in nondemented, community-dwelling older
adults using resting-state fMRI. Prior research from our
group has demonstrated increased oxygenation levels and
BOLD activity in the prefrontal cortex during WWT com-
pared with normal walking in older adults using fNIRS
[Holtzer et al., 2011] and fMRI with imagined gait [Blumen
et al., in press], respectively. Based on these findings, we
expect greater involvement in prefrontal regions in the
dual-task condition; however, we used a whole-brain mul-
tivariate approach to explore this issue, as we were inter-
ested in brain function at a systems level.

METHODS

Study Population

Quantitative gait and MRI data from a convenience sam-
ple of 30 cognitively healthy older adults [M (SD) age in
years 5 72.50 (5.22); % female 5 55.17] were used for this
study from the Central Control of Mobility in Aging
(CCMA) study [Holtzer et al., 2013, 2014c]. The CCMA
study recruits older adults (�65 years) residing in
Yonkers, NY and aims to identify cognitive and brain pre-
dictors of mobility. General exclusion criteria included
severe auditory or visual loss, recent hospitalization that
affects mobility, living in a nursing home, serious chronic,
or acute illness (e.g., cancer), and presence of dementia or
other neurodegenerative disease. Specific MRI exclusion
criteria included left-handedness (assessed by Edinburgh
Handedness Inventory [Oldfield, 1971]), claustrophobia,
and surgically implanted metallic devices (e.g., pace-
maker). Written informed consent was approved by the
university’s institutional review board.

Measures

Quantitative gait assessment

Consistent with the vast literature concerning dual-task
methodology, participants completed both the single- and
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dual-task gait conditions. One trial was completed under
each gait condition. To reduce learning effects, participants
were not given practice trials or taught strategies. Task
order was counterbalanced to avoid practice effects. Quan-
titative gait data were obtained using a 20-foot instru-
mented walkway with embedded pressure sensors
spanning 14 feet, allowing for 3 feet of initial acceleration
and terminal deceleration (GAITRite, CIR systems, Haver-
town, PA). Monitoring devices were not attached to partic-
ipants during the test. Each trial was one walkway in
length and the software computed gait velocity (cm/s)
based on the footfalls recorded. We focused on gait veloc-
ity as it is a standard quantitative performance index in
gait literature and clinical practice that predicts a variety
of adverse outcomes [Studenski et al., 2011; Verghese
et al., 2012]. GAITRite assessments have been shown to be
reliable and valid in previous research in our center and
in other studies [Bilney et al., 2003; Verghese et al., 2002].

Normal pace walking (NW)

In the single-task condition, participants were asked to
walk on the instrumented walkway at their normal pace
for one trial in a quiet and well-lit room. Start and end
points were clearly marked.

Walking while talking (WWT)

In the dual-task condition, participants were asked to
walk on the instrumented walkway at their normal pace
while reciting alternate letters of the alphabet (skipping
the letter in between) for one trial in a quiet and well-lit
room. Participants were asked to pay equal attention to
their walking and talking [Verghese et al., 2007a].

We have demonstrated reliable dual-task effects using
this walking while talking paradigm in many articles
using different cohorts of older adults [Brandler et al.,
2012; Holtzer et al., 2014c; Li et al., 2014]. Consistent with
the cognitive dual-task literature, our findings also
revealed increased attention/executive demands in the
dual-task compared to the single-task walking condition
[Holtzer et al., 2006, 2012, 2014b]. Furthermore, using
fNIRS, we provided first evidence that online oxygenation
levels in the prefrontal cortex were increased in walking
while talking compared with walking in a single-task con-
dition in young and old participants [Holtzer et al., 2011].
Increasing the demands of the cognitive task (reciting let-
ters of the alphabet compared with reciting alternative let-
ters of the alphabet) was more strongly associated with
risk of falls in older adults [Verghese et al., 2002] and
changing instructions while maintaining the same cogni-
tive and motor tasks in the dual-task paradigm resulted in
task prioritization effects [Verghese et al., 2007a]. Strong
predictive validity for the walking while talking paradigm
was also established in longitudinal cohort studies. Per-
formance on this task has been shown to be a robust pre-

dictor of falls, frailty, disability, and mortality in older
adults [Ayers et al., 2014; Verghese et al., 2012].

MRI data acquisition

During resting-state MRI acquisition, participants were
asked to lie still in the scanner, keep their eyes closed, and
not fall asleep for 6 min of recording time [Van Dijk et al.,
2010]. MRI scanning was performed with a Philips 3T
Achieva Quasar TX multinuclear MRI/MRS system
equipped with a Dual Quasar High Performance Gradient
System, 32-channel broadband digital RF system, Quadra-
ture T/R Head Coil, RapidView reconstructor, Intera
Achieva ScanTools Pro R2.5 Package, NetForum and
ExamCards, and SENSE parallel imaging capability. All
BOLD (T2*-weighted) images were acquired with echo
planar imaging using a whole brain gradient over a
240 mm field of view (FOV) on a 128 3 128 acquisition
matrix, 3 mm slice thickness (no gap); TE 5 30 ms,
TR 5 2000 ms, flip angle 5 90�, and 42 trans-axial slices per
volume. A T1-weighted whole head structural image was
also acquired using axial 3D-MP-RAGE parameters over a
240 mm FOV and 1.0 mm isotropic resolution, TE 5 4.6
ms, TR 5 9.9 ms, a 5 80, with SENSE factor 2.5. MRI data
was obtained a few weeks to months following quantita-
tive gait assessment (M 5 96.53 days, SD 5 66.20 days,
range 5 14–265 days). Participant health was monitored in
the interim through bimonthly telephone interviews.

Image preprocessing

BOLD (T2*-weighted) image preprocessing, using FSL
(Version 4.1), FMRIB’s Software Library (http://fsl.fmrib.
ox.ac.uk/fsl) [Jenkinson et al., 2012; Smith et al., 2004;
Woolrich et al., 2009], consisted of nonbrain removal using
BET [Smith, 2002], motion correction with MCFLIRT [Jen-
kinson et al., 2002; Jenkinson and Smith, 2001], slice-timing
correction for interleaved acquisitions using Fourier-space
time-series phase shifting, highpass temporal filtering
using Gaussian-weighted least-squares straight line fitting
(r 5 50 s); spatial smoothing using a Gaussian kernel with
full-width half-maximum 8 mm, coregistration to high-
resolution T1-weighted images, and normalization to
standard space (Montreal Neurological Institute atlas,
using resolutions of 4 3 4 3 4 mm) using combined affine
and nonlinear registration (FSL FNIRT, with warp
resolution 5 10 mm).

Statistical Analysis

Independent components analysis and correlation

For each participant, smoothed normalized fMRI images
were concatenated across time to form a single 4D image.
The 4D images were then analyzed with FSL MELODIC
Independent Component Analysis (ICA) software [Beck-
mann and Smith, 2004]. ICA is a data-driven approach
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that separates multivariate data into statistically independ-
ent spatial components and their associated time series.
When applied to resting-state fMRI data, ICA decomposes
the BOLD dataset into components representing neural
signals of interest, structured noise, and random noise
[Beckmann et al., 2005; Cole et al., 2010; Fox and Raichle,
2007; Greicius et al., 2004; Murphy et al., 2013]. This tech-
nique does not require a priori modeling, providing flexi-
bility appropriate for our exploratory analysis. We used
this technique to identify components that correlated with
NW and WWT gait velocity in two separate analyses, and
limited each analysis output to 20 components, a dimen-
sionality used in previous resting-state studies [Smith
et al., 2009]. Criterion for statistical significance was set as
P< 0.05.

Manual classification of components

Even after traditional pre-processing steps, several con-
founding sources of noise may remain in resting-state
fMRI data that could compromise interpretation [Bhagana-
garapu et al., 2013; Kelly et al., 2010; Power et al., 2012].
ICA accounts for the existence of noise effects by auto-
matically isolating sources of noise within artifactual com-
ponents. Identification of these components, primarily
related to gross participant motion and physiological sour-
ces such as cardiac and respiratory cycles, is critical to
limit spurious findings in resting-state fMRI analyses
[Murphy et al., 2013; Thomas et al., 2002]. We used an
operationalized fMRI de-noising procedure to manually
classify components as representing artifacts or neural sig-
nals of interest via visual inspection. The protocol dictates
that components are labeled as artifactual when the
thresholded component spatial map shows 90% or more
activation or deactivation in peripheral areas or in a ran-
dom scattered pattern over 1=4 or more of the brain with-
out correspondence to functional-anatomical boundaries.
Components are labeled as neural signals of interest when
the thresholded component spatial map shows 10% or
more activation or deactivation in small to large gray mat-
ter clusters localized to nonperipheral regions of the brain.
Secondary considerations include indications of noise such
as high frequency activity, spikes, saw tooth pattern, and
sinus coactivation. This procedure has been shown to be
reliable and to improve the sensitivity of results from
resting-state fMRI data analysis [Kelly et al., 2010].

RESULTS

Characteristics of the 30 participants are presented in
Table I. A paired-samples t-test was conducted to evaluate
the intraindividual change in gait velocity between NW
and WWT conditions (also referred to as dual-task cost in
the literature [Holtzer et al., 2014c; Lindenberger et al.,
2000; Yogev-Seligmann et al., 2010]). Consistent with the
literature, there was a statistically significant decrease in

gait velocity from the NW condition (M 5 108.83 cm/s,
SD 5 22.52 cm/s) to the WWT condition (M 5 82.69 cm/s,
SD 5 25.29 cm/s), t (29) 5 7.17, P< 0.001).

Resting-State Networks Correlated with NW

Of the 20 components generated from the ICA corre-
lated with NW gait velocity, 16 components were deter-
mined to be artifactual following the operationalized fMRI
de-noising procedure. The remaining four components
were determined to be neural signals of interest (see
Fig. 1). All anatomical and functional descriptions were
classified with reference to the underlying standard-space
images in conjunction with several atlases [Lancaster et al.,
1997, 2000]. These components were further identified by
comparison to well-established resting-state networks
derived from a large meta-analysis [Smith et al., 2009;
Ystad et al., 2011]. We describe each of the networks
briefly below. Map 1A (“sensorimotor”) covers the premo-
tor cortex, primary motor cortex, and supplementary
motor area. This network corresponds to activations seen
in bimanual motor tasks, and similar patterns have been
identified in previous resting-state studies [Beckmann
et al., 2005; Smith et al., 2009]. Map 2A (“visual”) includes
primary, secondary, and associative visual cortices. Strong
correspondence between these areas and functionally iden-
tified visual domains has been well established in the
resting-state literature [Beckmann et al., 2005; Smith et al.,
2009]. Map 3A (“vestibular”) is primarily composed of the
insula, and the primary and secondary auditory cortices.
This network appears to be functionally related to both
auditory and vestibular paradigms. Similar patterns have
been found in resting-state networks in the past [Beck-
mann et al., 2005; Smith et al., 2009]. Map 4A (“left fronto-
parietal”) covers the left posterior parietal association
areas, left supplementary motor cortex, left frontal eye
field, and left prefrontal association cortex. This left

TABLE I. Descriptive statistics of demographic informa-

tion and gait velocity (N 5 30)

M (SD) Range

Age (years) 72.50 (5.22) 65–87
Gender (% female) 55.17
Education (years) 15.27 (2.99) 12–23
Global health status score 1.37 (1.13) 0–4
RBANS total score 95.2 (13.20) 62–119
Gait velocity NW (cm/s) 108.83 (22.52) 45–146
Gait velocity WWT (cm/s) 82.69 (25.29) 35–144

Note. Global health status score (range 0–10) obtained from dichot-
omous rating (presence or absence) of diabetes, chronic heart fail-
ure, arthritis, hypertension, depression, stroke, Parkinson’s
disease, chronic obstructive pulmonary disease, angina, and myo-
cardial infarction; RBANS: Repeatable Battery for the Assessment
of Neuropsychological Status; NW: normal pace walk; WWT:
walking while talking
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lateralized fronto-parietal network also includes regions of
the right cerebellum. This is consistent with anatomical
and functional connections, as evidenced by recent resting-
state studies that have shown cross-lateral connectivity
between regions of the cerebellum and the prefrontal and
posterior-parietal cortices [Habas et al., 2009; Krienen and
Buckner, 2009; O’Reilly et al., 2010]. Fronto-parietal net-
works were strongly lateralized in the resting-state litera-
ture [Smith et al., 2009].

Resting-State Networks Correlated with WWT

Of the 20 components generated from the ICA corre-
lated with WWT gait velocity, 16 components were deter-
mined to represent noise, and four components were
determined to be neural signals of interest using the oper-
ationalized fMRI de-noising procedure. As with NW gait
velocity, WWT gait velocity was significantly correlated
with functional connectivity in well-established sensorimo-
tor, visual, vestibular, and left-lateralized fronto-parietal
resting-state networks (see Fig. 1: Maps 1B, 2B, 3B, and 4B
respectively).

NW Compared with WWT

Similar resting-state networks were correlated with NW
and WWT gait velocity. The corresponding visual and
auditory networks are almost identical. The sensorimotor
and left fronto-parietal networks associated with NW and
WWT, however, have significant differences (Fig. 2). The
sensorimotor and left fronto-parietal networks associated
with WWT include greater frontal connectivity in the sup-
plementary motor and prefrontal areas, respectively, com-
pared with the corresponding networks associated with
NW.

DISCUSSION

The present study revealed four resting-state networks
associated with NW and WWT gait velocity in healthy
older adults. Our main findings were as follows: (1) Gait
velocity under both walking conditions was associated
with similar functional connectivity in sensorimotor, vis-
ual, vestibular, and fronto-parietal functional networks at
rest in older adults; however, (2) WWT gait velocity was

Figure 1.

Resting-state networks associated with NW gait velocity (A)

and WWT gait velocity (B). This figure shows the three most

informative axial, sagittal, and coronal slices of each resting-state

network superimposed on the Montreal Neurologic Institute

(MNI) template supplied by MRIcron software. The left side of

the image corresponds to the left side of the brain. All ICA spa-

tial maps were converted to z statistic images via a normalized

mixture-model fit, and then thresholded at z 5 2.30.
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associated with greater frontal functional connectivity in
the sensorimotor and fronto-parietal networks compared
with NW.

Shared Neural Correlates of NW and WWT

The resting-state networks associated with NW and
WWT gait velocity in our study are consistent with find-
ings from previous neuroimaging studies. As expected,
gait in both conditions was associated with functional con-
nectivity in the sensorimotor network. Recent studies
using PET, SPECT, fNIRS, and mental imagery to investi-
gate gait identified activations in the premotor cortex, pri-
mary motor cortex, and supplementary motor area
[Blumen et al., 2014; Fukuyama et al., 1997; Godde and
Voelcker-Rehage, 2010; Jahn et al., 2004; Malouin et al.,
2003; Miyai et al., 2001; Zwergal et al., 2012]. These areas
have been shown to be involved in motor preparation and
programming voluntary movement, both critical to loco-
motion [Fukuyama et al., 1997]. Gait also requires complex
motor abilities related to supplementary motor area func-
tion. Patients with lesions in premotor and supplementary
motor areas have difficulty in tasks such as initiating or
terminating gait [Massion, 1992; Viallet et al., 1992].

Gait in both conditions was also associated with func-
tional connectivity in the visual network, which is consist-
ent with results from a range of neuroimaging studies of
gait [Fukuyama et al., 1997; Jahn et al., 2004; la Fougere
et al., 2010; Zwergal et al., 2012]. Prominent activations in
the visual cortex were found across a variety of real and
imagined locomotion conditions. Visual function is essen-

tial to locomotion because the processing of visual input is
necessary for maintaining proper direction and adaptation
to obstacles in the environment.

NW and WWT gait performance were associated with
functional connectivity in the vestibular resting-state net-
work. Vestibular function is important in locomotion for
an appropriate internal representation of the body in
space. While vestibular cortical areas have been reliably
associated with gait performance, the directionality of the
relationship is not well established. Recent evidence sug-
gests activity in vestibular regions during locomotion to be
age-dependent. Specifically, while younger subjects exhib-
ited significant deactivations in vestibular cortices during
motor imagery, older subjects exhibited a relatively
increased activation in the same areas [Zwergal et al.,
2012]. Our findings underscore the importance of further
investigation into age-related differences in neural corre-
lates of gait performance, especially concerning vestibular
functioning.

NW and WWT gait velocity were also associated with
functional connectivity in the left-lateralized frontoparietal
resting-state network. Studies of real and imagined loco-
motion consistently demonstrate the involvement of the
frontal and frontoparietal regions during these tasks [Blu-
men et al., 2014; Holtzer et al., 2011; la Fougere et al.,
2010; Malouin et al., 2003]. These areas sustain higher-
order cognitive processes and attentional processes, which
have been shown to be integral to locomotion. Older
adults with poorer executive function are at higher risk for
falls [Herman et al., 2010; Holtzer et al., 2007]. An inter-
vention study from our group showed that cognitive
remediation of attention and executive functions improved
gait performance during NW and WWT conditions in
older adults [Verghese et al., 2010]. Our findings provide
further support for the role of executive functioning and
its underlying functional brain substrates in both NW and
WWT gait performance.

The known lateralization of fronto-parietal resting-state
networks is consistent with recent evidence that the left
and right fronto-parietal regions support distinct functions
[Smith et al., 2009]. In particular, the left fronto-parietal
region has been associated with allocentric spatial process-
ing and object recognition [Guerin and Miller, 2009; Iachini
et al., 2009]. The left hemisphere is also associated with
the cortical control of speech; however, the lack of verbal
activity in the NW condition suggest that this area plays a
role in locomotion that cannot be attributed solely to
verbal mediation. Consistent with our results, previous
studies using fMRI and mental imagery have found a pre-
ponderance of activity in the left dorsolateral prefrontal
cortex during imagined gait [Jahn et al., 2004; Malouin
et al., 2003]. Further investigation is necessary to explore
the differential involvement of the left and right fronto-
parietal regions in gait.

Importantly, our findings are also in general agreement
with prior structural MRI studies of mobility in older
adults. Findings across voxel-based morphometry, fluid

Figure 2.

A: Overlay of the sensorimotor resting-state networks associ-

ated with NW (red) and WWT (blue) on the same template. B:

Overlay of the left fronto-parietal resting-state networks associ-

ated with NW (red) and WWT (blue) on the same template.

The purple color represents the areas in which the networks

overlap. The blue color shows where the WWT networks

extend beyond the NW networks.
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attenuated inversion recovery sequences, and diffusion
tensor imaging studies have emphasized the role of the
primary sensorimotor, medial temporal, and prefrontal
regions in gait performance [de Laat et al., 2011; Rosano
et al., 2007, 2008; Srikanth et al., 2010; Sullivan et al., 2001;
Van Impe et al., 2012]. While the origins and functional
role of resting-state activity remain unclear, studies sug-
gest that functional correlations derived from resting-state
fMRI reflect direct and indirect anatomical connections to
a large degree [Greicius et al., 2009; Hagmann et al., 2008;
Skudlarski et al., 2008]. Therefore, the converging evidence
between our results and structural studies of gait suggests
additional cross validation for our findings. Presently, a
number of questions remain regarding the relationship
between structural and functional connection patterns, and
further studies combining structural and resting-state
imaging will critical to the interpretation of present and
forthcoming results.

Differences in Neural Correlates

of NW and WWT

Compared to NW gait velocity, WWT gait velocity was
associated with greater functional connectivity in the dorso-
lateral prefrontal regions of the left fronto-parietal resting-
state network. The ability to allocate attention to competing
task demands, a distinct component of executive function-
ing, is sub-served in part by the prefrontal cortex [Stelzel
et al., 2009; Szameitat et al., 2002] and is compromised in
older adults [Davidson et al., 2006; Holtzer et al., 2004, 2005;
Moscovitch and Winocur, 1995; Shimamura et al., 1990;
West, 1996]. Numerous studies have demonstrated that per-
formance on measures of executive function, assessed inde-
pendently of the dual-task paradigm, is related to gait
performance in dual-task conditions [Hall et al., 2011; Haus-
dorff et al., 2008; Holtzer et al., 2006, 2012; Liu-Ambrose
et al., 2009; Springer et al., 2006]. Our present findings pro-
vide converging evidence in older adults that the prefrontal
cortex appears critical in supporting NW and even more so
WWT, where cognitive demand is maximized.

Compared with NW gait velocity, WWT gait velocity
was associated with greater functional connectivity in the
supplementary motor area of the sensorimotor network.
The supplementary motor area has been shown to play an
important role not only in the planning and coordination
of movement but also attention to movement [Johansen-
Berg and Matthews, 2002]. Increased supplementary motor
area neural resources may reflect the increased attention to
postural awareness and movement coordination necessary
to ensure successful gait performance under challenging
dual-task conditions.

Limitations

Several limitations of this study should be considered.
First, while resting-state fMRI is a powerful approach to

measure functional brain organization, it is not without its
limitations. It is an indirect measure susceptible to several
confounding factors that may contribute to between-
subject and between-group differences. In addition to head
movement and physiological activity, anatomic variability
and atrophy are possible confounding sources particularly
relevant in older adults. Second, it must be noted that due
to the stochastic nature of ICA algorithms, our results may
be affected by a degree of run-to-run variability. Although
this problem is typical of ICA analyses, it must be noted
that results of a single run should be interpreted with cau-
tion. We attempted to reduce this type of variability by
selecting strict convergence criteria, as described previously.
Lastly, the participants in this study were a relatively small
sample of non-demented, community-dwelling older adults.
The results may not generalize to older adults with signifi-
cant physical and/or cognitive impairments. Future
population-based studies are needed to replicate our find-
ings in larger, more heterogeneous populations. While
methodological and interpretational limitations advise cau-
tion concerning the present results, the findings represent
an exciting initial investigation into the functional neural
correlates of gait.

CONCLUSION

Our results show that NW and WWT gait velocities
were both associated with well-established sensorimotor,
visual, vestibular, and left fronto-parietal resting-state net-
works in older adults. Compared with gait velocity in the
single-task condition, the networks associated with gait
velocity in the dual-task condition were associated with
greater functional connectivity in supplementary motor
and prefrontal regions. The results suggest that WWT may
require additional engagement of cognitive and motor
neural regions related to attention and movement coordi-
nation. To our knowledge, this is the first study to use
resting-state fMRI to examine neural correlates of gait per-
formance. These initial findings should encourage the
future use of resting-state fMRI as tool to examine func-
tional neural connections underlying age-related mobility
impairments. Future avenues of research, including com-
plementary structural and functional imaging techniques,
may lead to a better understanding of the multiple neural
resources underlying locomotion in older adults and even-
tually diagnostic or prognostic indicators and more tar-
geted interventions.
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