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Abstract

Purpose of review—Over the past decade, substantial insight into the biological function of the
tumor suppressors neurofibromin (NF1) and Merlin (NF2) has been gained. The purpose of this
review is to highlight some of the major advances in the biology of neurofibromatosis type 1
(NF1) and neurofibromatosis type 2 (NF2) as they relate to the development of novel therapies for
these disorders.

Recent findings—The development of increasingly sophisticated preclinical models over the
recent years has provided the platform from which to rationally develop molecular targeted
therapies for both NF1 and NF2 related tumors, such as within the Department of Defense-
sponsored Neurofibromatosis Clinical Trials Consortium (NFCTC).

Summary—Clinical trials with molecular targeted therapies have become a reality for NF
patients, and hold substantial promise for improving the morbidity and mortality of individuals
affected with these disorders.
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INTRODUCTION

In this review, we describe recent key advances in NF biology that provide the basis for
emerging molecular targeted therapies. Since both NF1 and NF2 have also been implicated
in the tumorigenesis of a wide spectrum of sporadic cancers, successful novel therapies may
also be of benefit to non-NF patients in the form of “personalized medicine”.

CLINICAL TRIAL DEVELOPMENT AND DISEASE OUTCOME MEASURES

The burgeoning of novel therapy underscores the need to develop a co-ordinated approach to
clinical trials and this has been undertaken by the Department of Defense-sponsored
Neurofibromatosis Clinical Trials Consortium (NFCTC). The focus is on well-designed,
prospective trials with a strong biological rationale in appropriately selected patient
populations, using rigorous clinical and molecular endpoints [1]. The impetus of the
international REINS group (response evaluation in neurofibromatosis and schwannomatosis)
is to develop appropriate endpoints and outcome measures including imaging, neurological,
psychological, ophthalmologic and respiratory assessments, as well as validated, patient
focused, disease specific quality of life questionnaires [1]. Measurement of visual acuity
using quantitative methods is recommended as the primary outcome measure for optic
pathway gliomas and the children’s visual functional questionnaire as a secondary endpoint
[2]*. Volumetric magnetic resonance imaging is the gold standard for measuring plexiform
neurofibromas with a 20% volume change indicative of change in tumor size [3].

NEUROFIBROMATOSIS TYPE 1

Neurofibromatosis 1 (NF1) is an autosomal dominant tumor predisposition disorder with a
birth incidence of about 1 in 2,700 and prevalence of 1 in 4,560 [4]. The principal and
defining features involve the skin, nervous system, bone and eye and the disease
complications are protean [5]. The NF1 gene was cloned on chromosome 17q11.2 and the
cytoplasmic protein neurofibromin is widely expressed with high levels in the nervous
system [6] [7] [8].

Neurofibromin

Neurofibromin interacts with the proto-oncogene RAS to suppress tumor formation.
Negative regulation of RAS reduces cell proliferation and differentiation by forestalling
activation of the downstream signaling pathways phosphatidylinositol 3-kinase/protein
kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR)) and rapidly accelerated
fibrosarcoma/mitogen activated protein kinase kinase/extracellular signal regulated kinase
(RAF/MEK/ERK) [9]. Neurofibromin also regulates adenylyl cyclase and generation of
intracellular cyclic adenosine monophosphate (CAMP) via RAS dependent activation of
atypical protein kinase C zeta; loss of neurofibromin results in lower levels of cAMP in
some cell types including neurons [10]*.

NF1 associated tumors

Individuals with germline inactivation of the NF1 gene have a propensity to develop both
benign and malignant tumors through acquired inactivation of the functioning NF1 allele.

Curr Opin Pediatr. Author manuscript; available in PMC 2016 February 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Karajannis and Ferner Page 3

The emblematic lesion is the benign neurofibroma, but there is an 8-13% lifetime risk of
developing malignant peripheral nerve sheath tumor (MPNST) [5] [11]. Gliomas are
predominantly low grade pilocytic astrocytomas that occur mainly in the optic pathways and
brainstem but may arise elsewhere in the brain and spinal cord [5]. Phaeochromocytoma,
gastrointestinal stromal tumor, myeloproliferative disease (i.e., juvenile myelomonocytic
leukemia), myelodysplastic syndrome, osteosarcoma and rhabdomyosarcoma have all been
described in NF1 individuals [5] [12]. An increased relative risk was reported in NF1 for all
cancers outside the nervous system; gastrointestinal neoplasms were highlighted with
thyroid, bone, ovary and lung tumors, breast cancer in women under 50, melanoma and non-
Hodgkin’s lymphoma [12]. Neurofibromas are comprised of Schwann cells, fibroblasts,
perineurial cells, mast cells and axons, embedded in a collagenous extracellular matrix [13].
They may form as cutaneous, subcutaneous spinal nerve root or plexiform growths. The
latter have a rich vascular supply, frequently involve multiple nerves and may encroach on
surrounding structures causing pain, disfigurement, hemorrhage and neurological deficit.
Cutaneous neurofibromas are invariably benign but subcutaneous and plexiform
neurofibromas may undergo transformation to MPNST and high grade lesions herald a poor
prognosis [5]. The clinical presentation includes pain, rapid growth change in texture and
neurological deficit; 18" fluorodeoxyglucose positron emission computerized tomography
with delayed imaging is a useful diagnostic tool in distinguishing benign neurofibromas
from MPNST [5] [14]. The mainstay of treatment for plexiform neurofibromas is judicious
surgery, complete excision is recommended for MPNST, radiotherapy and chemotherapy
used as palliation for incompletely excised and high grade lesions [5]. Optic pathway
gliomas (OPG) are commonest in children under 7 years and are usually asymptomatic but
may cause visual loss, hydrocephalus, or precocious puberty secondary to hypothalamic
involvement [5]. Females, infants under 2 years, and post chiasmatic OPG have a poorer
visual prognosis. Tumors outside the optic pathway are usually indolent but may manifest
with neurological deficit or hydrocephalus and gliomas occurring in adulthood are more
aggressive [5]. Chemotherapy with vincristine and carboplatin is the treatment of choice for
symptomatic OPG, surgery manages proptosis, but radiotherapy is contra-indicated because
of the risk of secondary malignancy, neuropsychological, neurovascular and endocrine
problems [5].

Molecular targeted therapy and clinical trials

The ultimate aim for NF1 tumors is targeted treatment, tailored to the individual and
monitored with reliable clinical, radiological and patient focused outcome measures. Recent
research has made great strides in identifying the underlying cellular and molecular
mechanisms of NF1 related tumors and facilitated the use of novel therapy (Table 1) [15]*
[16] [17] [18] [19] [20] [21] [22]. Genetically engineered mouse models (GEM) have been
developed for multiple tumors including plexiform neurofibromas, OPG, malignant glioma
and MPNST. Murine models are helpful in representing different types of NF1 malignancy,
although they do not exhibit the spectrum of severity encountered in patients with MPNST
and OPG [1]. Nonetheless, they are crucial in developing new drugs and exemplify
neurofibromin’s distinct modes of growth control in different cell types [23] [24]**.
Notably, a recent pre-clinical study demonstrated the key role of abnormal signaling in the
RAF/MEK/ERK pathway in sustaining the growth of neurofibromas and MPNSTSs [24]**.
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A highly selective MEK inhibitor produced reduction in neurofibroma size in the majority of
mice evaluated and increased survival in mice implanted with human MPNST cells. This
work paved the way for clinical trials, and preliminary results from a phase | study of the
MEKZ1/2 inhibitor selumetinib (AZD6244) in children and young adults with NF1 and
inoperable plexiform neurofibromas (PNs) was recently published (ClinicalTrials.gov
identifier NCT01362803) [19]. Selumetinib was tolerated in children on a continuous dosing
schedule at approximately 50% of the adult recommended dose and very encouraging
preliminary activity was noted: of 11 patients with = 1 restaging MRI, all had a decrease in
PN volume (median maximal decrease 24%, range 8-39). A Neurofibromatosis Clinical
Trials Consortium (NCTC) sponsored phase 2 clinical trial with another MEK inhibitor
(PD-0325901) for adolescents and adults with NF1-associated PN is currently ongoing
(ClinicalTrials.gov identifier NCT02096471).

The importance of the microenvironment has been highlighted in tumor formation, notably
microglial cells in OPG and mast cells in plexiform neurofibromas [25] [26]. The tumor
cellular environment was spotlighted as a potential target for therapy when glioma formation
was delayed in a GEM by impeding microglial function [26].

Furthermore, imatinib (a c-kit inhibitor, involved in mast cell development) was assessed in
a clinical trial of symptomatic plexiform neurofibromas, resulting in at least a 20% decrease
in volume in tumor size in 6/36 patients [27]. An NCTC sponsored trial with cabozantinib
(XL184), a small molecule inhibitor of c-kit, MET, RET and VEGFR2, for adolescent and
adult NF1 patients with PN in currently ongoing (ClinicalTrials.gov identifier
NCT02101736).

Multiple molecular changes contribute to the progression from plexiform neurofibroma to
MPNST. Loss of NF1 is sufficient for plexiform neurofibroma growth but in vitro and in
vivo studies on MPNST demonstrated additional loss or alteration of cell cycle regulators
including Tumor protein 53 phosphatase (TP53), retinoblastoma gene 1 (RB1), tensin
homolog (PTEN) and cyclin dependent kinase inhibitor 2A (CDKN2A) [28] [29] [30].
Numerous growth factor signaling systems are implicated in MPNST, particularly increased
expression and/or amplification of epidermal growth factor receptor (EGFR); Rahrmann and
colleagues demonstrated that reduced p53 gene expression and increased EGFR expression
co-operate to promote MPNST formation and progression [9] [31].

The potential role of combination therapy in tackling malignancy has been addressed
recently. Radiation was used in combination with an mTOR inhibitor and bortezomib (a
proteasome inhibitor regulating protein expression and function and removing damaged
proteins) [32]. The result was decreased proliferation in vitro and reduced tumor growth and
enhanced apoptosis in vivo.

Changes in gene expression may arise from DNA promoter methylation and microRNAs.
Reduced RASSF1A expression (RAS association domain family member 1, isoform A) was
detected in a large series MPNSTS due to promoter methylation and was associated with a
poor prognosis independent of tumor size or clinical manifestations [33]. RASSF1A acts as a
tumor suppressor by controlling microtubules and potentially could be used as a prognostic
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marker. In a whole gene sequencing study of gliomas, NF1 methylation was one of the
mechanisms underpinning somatic NF1 loss in pilocytic astrocytomas [34].

An overview of the most relevant, recently published clinical trials for NF1 are summarized
in Table 1.

NEUROFIBROMATOSIS TYPE 2

Merlin

Neurofibromatosis type 2 (NF2) is an autosomal dominant genetic disorder with a birth
incidence of approximately 1/33,000 [4]. It is caused by inactivation of the NF2 gene
located on chromosome 22¢, which codes for the NF2 gene product, Merlin. In contrast to
neurofibromin, Merlin acts both at the cell cortex and the nucleus, directly affecting multiple
signaling pathways related to contact inhibition and tumor suppression.

Merlin has substantial sequence homology to members of the Ezrin/Radixin/Moesin (ERM)
family of proteins, which link a variety of cell-adhesion receptors to the cortical actin
cytoskeleton [21], and has emerged as a major effector of cell contact inhibition. In addition,
it has been known that Merlin can affect a variety of mitogenic signaling pathways,
including Rac-PAK, mTOR, EGFR-Ras-ERK and PI13K-Akt, and contribute to the
activation of the Hippo tumor-suppressor pathway. More recently, it has been recognized
that Merlin pleiotropically affects cell signaling by migrating into the nucleus and inducing a
growth-suppressive program of gene expression through direct inhibition of the CRL4DCAF1
E3 ubiquitin ligase [35], and that derepressed CRL4PCAFL promotes activation of the Hippo
pathway component YAP by inhibiting Lats1 and 2 in the nucleus [36]**.

The complex biology underlying Merlin’s functions, including tumor suppression and
contact inhibition, remains incompletely understood and is beyond the scope of this article,
but has been summarized in a number of excellent recent reviews [37] [38] [39].

NF2 associated tumors

NF2 patients develop multiple tumors affecting the central and peripheral nervous system
tumors, i.e. schwannomas, meningiomas and ependymomas. The majority of NF2 patients
develop progressive hearing loss in young adulthood due to bilateral vestibular
schwannomas (VS). Schwannomas frequently also involve other cranial nerves, impacting
on neurologic function such as swallowing, vision and facial function. Meningiomas and
less commonly, ependymomas, involve the brain and spine, leading to mass effect and/or
neurological dysfunction, based on size and location. The natural history of VS growth and
hearing decline in newly diagnosed, untreated NF2 patients was reported in a recent study
[40]*. The rate of hearing decline was 5%, 13% and 16% at 1, 2 and 3 years, respectively;
while the rate of tumor progression was 31%, 64% and 79% at 1, 2 and 3 years, respectively.
The median time to tumor progression was 14 months and the median time to hearing
decline 62 months.
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Molecular targeted therapy and clinical trials

The traditional treatment paradigm for NF2 patients consisted of clinical observation and
surveillance imaging observation, with judicious use of surgical intervention for
symptomatic tumors, and sometimes radiotherapy. Angiogenesis occurs in VS, and VEGF
receptors are expressed in these tumors. Bevacizumab, an anti-VEGF monoclonal antibody,
has recently emerged as a medical treatment option for NF2 patients with progressive VS.
The initial reports, based on case series and off-label use of bevacizumab, suggested that
treatment was effective in the majority patients, including not only imaging responses, but
also hearing improvement, which in some patients was dramatic [41] [42]. Subsequently it
became clear that the responses can only be sustained with continued treatment, which poses
a challenge due to dose-limiting long-term toxicities, chiefly hypertension and proteinuria
[43]. A further multi-center, prospective phase 2 clinical trial for NF2 patients with
symptomatic VS, i.e. hearing loss, was completed recently (NCT01207687) and results are
expected to be published in the near future. A similar phase 2 study of bevacizumab in
children and young adults with NF2 and progressive VS sponsored by the NFCTC is
currently ongoing (NCT01767792).

Based on recent insights into the biology of Merlin-deficient tumors, a number of molecular
targeted agents have been repurposed for testing in preclinical models of NF2, including
genetically engineered mouse models for schwannomas [44] and meningiomas [45] [46].
Major molecular targets validated in NF2 preclinical models that have been recently
translated into clinical trials include EGFR/ErbB2 (lapatinib) [47], mTOR (rapamycin/
everolimus) [48] [49] [50] [51]* [52]* and VEGFR/PDGFR/c-kit (sorafenib, axitinib) [53]
[54] [55].

In a phase 2 clinical trial for adult and pediatric NF2 patients with progressive VS, lapatinib
showed modest activity with objective volumetric and hearing response rates of 24% and
31%, respectively [56]. The hearing responses, however, were predominantly minor and not
sustained. In contrast, a similarly designed phase 2 study with everolimus failed to yield any
objective volumetric or hearing responses [57]*.

An overview of the most relevant recent and ongoing clinical trials for NF2 are summarized
in Table 2.

CONCLUSION

A key challenge is to develop effective personalized targeted therapy for patients with
neurofibromatosis. This will be facilitated by the further development of preclinical models
that represent the variability in clinical manifestations in NF1 and NF2, and in parallel, the
identification of biomarkers to identify individuals most likely to benefit from a given
therapy.

In NF1, the MAP-kinase signaling pathway has emerged as a key target; MEK inhibition
reduced plexiform neurofibroma and MPNST growth in preclinical studies [22], and small-
molecule MEK inhibitors are currently being tested in phase 2 clinical trials for NF1 patients
with plexiform neurofibromas
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Since NF2 loss affects a plethora of cellular signaling pathways, the most suitable molecular
targets for clinical therapy, which may vary between tumor types, remain to be elucidated.
While a number of molecular targets have been validated preclinically in NF2 related tumors
and some agents have already shown promise in the clinical realm, especially for a subset of
patients with VS, effective medical therapies for NF2 that achieve sustained tumor
regression remain elusive. In addition, meningiomas remain a tough clinical challenge in
NF2 patients, with effective medical therapies urgently needed.

In addition to traditional efficacy trials, several (pharmacokinetic/pharmacodynamic)
clinical trials (“Phase 0”) are currently exploring the achievable drug concentrations in
tumor tissue of NF2 patients and molecular target inhibition (see Table 2). Patients
scheduled for tumor surgery are given study drug for a short period of time preoperatively,
and tumor tissue is acquired for comprehensive laboratory analysis. The key goals are to
estimate the achievable drug concentration in human tumor tissue in vivo, as well as
molecular target inhibition. In addition, valuable information on potential tissue-specific
resistance mechanisms, such as release of negative feedback loops, may be gained.

Opportunities also exist for future drug development aimed at molecular pathways with
currently “undruggable” targets, such as the Hippo pathway and CRL4PCAFL Importantly,
bi-allelic loss of NF2 is also found in tumors of non-NF2 patients, including the relatively
common sporadic schwannomas and meningiomas, as well as ependymomas and malignant
mesotheliomas. The development of effective therapies of NF2 patients is therefore
expected to be highly relevant for a much larger patient population.

In summary, our rapidly increasing understanding of NF biology, coupled with increasingly
sophisticated preclinical models, is expected to yield novel treatment approaches to be tested
in rigorously designed clinical trials with standardized and validated clinical outcome
measures relevant to NF patients, including functional outcome measures.
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