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Abstract

The present study of general cognitive ability attempts to replicate and extend previous 

investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample 

of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed 

with individually administered IQ tests. We hypothesized that SES would covary positively with 

additive-genetic variance and negatively with shared-environmental variance. Important potential 

confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and 

differential heritability by trait level, were found to be negligible. In our main analysis, we 

compared models by their sample-size corrected AIC, and base our statistical inference on model-

averaged point estimates and standard errors. Additive-genetic variance increased with SES—an 

effect that was statistically significant and robust to model specification. We found no evidence 

that SES moderated shared-environmental influence. We attempt to explain the inconsistent 

replication record of these effects, and provide suggestions for future research.

Background

Biometric Modeling of General Cognitive Ability

Gene-environment interaction (G × E) occurs when the phenotypic effect of genetic factors 

varies as a function of one or more environmental variables. The present work is concerned 

with an extension of the G × E concept: estimating how much the magnitudes of all 

biometric variance components depend upon one or more observable variables. We will use 

“biometric moderation” to refer to the phenomenon that the biometric decomposition of a 

phenotype varies as a function of some observable variable, the “biometric moderator.” We 

will specifically be concerned with biometric moderation in general cognitive ability (GCA, 

the phenotype) by family-of-origin socioeconomic status (SES, the moderator). We will 
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attempt to replicate the result of Turkheimer et al. (2003): increasing additive-genetic 

variance and decreasing shared-environmental variance with increasing SES.

GCA is that ability which is tapped by all cognitively demanding tasks. Often identified with 

Spearman’s (1904) g, it can be operationalized as a composite score from a battery of tests 

that adequately samples the domain of cognitive tasks and specific abilities—for example, 

Full-Scale IQ (FSIQ) from an individually administered IQ test. Decades of research (to say 

the least—see Galton, 1869) have made clear that general cognitive ability is a substantially 

heritable trait. Estimates of its heritability typically range from 0.50 to 0.70 (Bouchard & 

McGue, 1981, 2003; Deary, Spinath, & Bates, 2006), and are sometimes as high as ~0.80 

(Rijsdijk, Vernon, & Boomsma, 2002).

As we described above, an important principle in contemporary behavior-genetic research is 

that the magnitude of a biometric variance component may depend upon other variables 

(moderators). The heterogeneity of heritability estimates for GCA across studies may reflect 

the influence of such moderators. The role of one of them, age, has been well replicated: the 

general trend is that, from early childhood through late adolescence or early adulthood, IQ’s 

heritability increases while its shared-environmentality decreases (Bouchard & McGue, 

2003; Deary et al., 2006). A more tentative biometric moderator is family-of-origin SES. 

Two theoretical perspectives—those of Sandra Scarr (1992) and of Bronfenbrenner & Ceci 

(1994)—predict that cognitive abilities will be more heritable among children from higher-

SES families. The two theories make that prediction for somewhat different reasons: Scarr’s 

theory emphasizes active gene-environment correlation (rGE; Plomin, DeFries, & Loehlin, 

1977), whereas Bronfenbrenner & Ceci emphasize parental facilitation of “proximal 

processes” in development. Scarr (Scarr-Salapatek, 1971) was the first to investigate 

whether the heritability of children’s GCA might vary as a function of their family SES. 

This and other earlier studies (Fischbein, 1980; van den Oord & Rowe, 1998; Rowe, 

Jacobson, & van den Oord, 1999) are reviewed in Supplementary Note #1 (Online 

Resource).

Turkheimer et al. (2003): A × SES and C × SES effects

In an important study that has generated much interest, Turkheimer et al. (2003) applied the 

continuous-moderator model of Purcell (2002) in a small sample of 319 pairs of 7-year-old 

twins. They found that the biometric decomposition of FSIQ (from the Wechsler 

Intelligence Scale for Children) varied as a function of parental SES They operationalized 

SES as a composite of parental education, income, and occupational status. At the upper 

extreme of the SES variable, IQ variance decomposed into ~80% additive-genetic variance 

and near-zero shared-environmental variance, whereas at the lower extreme of the SES 

variable, it decomposed into near-zero additive-genetic variance and ~60% shared-

environmental variance. Further, unshared-environmental variance decreased with SES. 

However, judging by what is mentioned in the title and abstract of Turkheimer et al.’s 

article, it is the moderation of genetic variance (a specific form of G × E, which we will 

designate as A × SES) that is of primary interest, with the moderation of shared-

environmental variance (shorthand, C × SES) of secondary interest.
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It is important to recognize that, since family SES is the same for both twins in a pair, 

irrespective of zygosity, it is effectively part of the shared environment as far as twin models 

are concerned. However, the association between family SES and children’s GCA is surely 

at least partly genetically mediated, as evident from the larger associations between family 

characteristics and offspring ability in biological families vis-à-vis adoptive families (e.g., 

Scarr & Weinberg, 1978; Kirkpatrick, McGue, & Iacono, 2009). This is an example of 

passive rGE (Plomin et al., 1977): parental cognitive ability and SES are positively 

correlated, and higher-ability parents pass on their trait-relevant genes to their children as 

well as provide them with an enriched rearing environment. Because rGE can result in 

spurious detection of G × E, it is advisable to incorporate SES into the moderation model as 

a fixed regressor, which will partial out any phenotypic variance due to correlation between 

SES and A (Purcell, 2002; van der Sluis, Posthuma, & Dolan, 2012).

We are aware of five studies of GCA interpretable as attempts at replicating Turkheimer et 

al.’s (2003) A × SES and C × SES effects (Harden, Turkheimer, & Loehlin, 2007; van der 

Sluis, Willemsen, de Geus, Boomsma, & Posthuma, 2008; Grant, Kremen, Jacobson, Franz, 

Xian, et al., 2010; Hanscombe et al., 2012; Bates, Lewis, & Weiss, 2013). The effects’ 

replication record among these studies is mixed, possibly due to heterogeneity among the 

studies with respect to participant age (child, adolescent, adult) and country (USA, UK, 

Netherlands). The studies also vary with regard to how SES was operationalized. SES is not 

completely temporally stable1; parental income and occupational status, in particular, can 

change with the vicissitudes of the labor economy. Only Hanscombe et al. had the advantage 

of repeated measures of SES (although the adult participants in Grant et al.’s (2010) study 

were asked for the highest education level their parents ever achieved). Details concerning 

the five replication studies are available in Supplementary Note #2 (Online Resource).

Of course, the A × SES and C × SES effects could be spurious. The A × SES element seems 

less plausible from sample-size considerations alone, since it is only supported in samples of 

fewer than 1000 twin pairs (Turkheimer et al., 2003; Harden et al., 2007; Bates et al., 2013). 

Several phenomena can lead to detection of spurious G × E. One of these is differential 

heritability (or shared-environmentality) by phenotype level. If the influence of A increases, 

or the influence of C decreases, with increasing GCA, then this heterogeneity may appear to 

be a biometric moderation effect of SES, simply because SES and GCA are positively 

correlated2. Another complication is if there is greater assortative mating for GCA at lower 

SES levels (Loehlin, Harden, & Turkheimer, 2009). Because assortative mating deflates 

twin-based estimates of additive-genetic variance and commensurately inflates estimates of 

shared-environmental variance, it would then appear that additive-genetic variance increases 

with SES.

Finally, there is the issue of the specificity of biometric-moderation effects. Under the 

continuous-moderator model, biometric moderation may be thought of simply as 

heteroskedasticity in the regression of the phenotype onto the putative moderator. The 

1We are grateful to two anonymous referees for calling to our attention the points made in this paragraph concerning stability of SES.
2See Tucker-Drob, Harden, & Turkheimer (2009) and McCallum & Mar (1995) for discussion of how quadratic trends may be 
mistaken for multiplicative interactions.
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specificity issue concerns how well an analysis can resolve which and how many biometric-

moderation effects are nonzero—that is, which biometric variance components are 

heteroskedastic. Purcell (2002) remarked on this issue when discussing a substantial 

estimate of a C × SES effect in simulated data when the true generating model only had an A 

× SES effect. Both Turkheimer et al. (2003) and Hanscombe et al. (2012) refer to the issue 

as well. It is also evident in Harden et al.’s Table 5: the estimate of the A × SES effect when 

the C × SES effect was fixed to zero was very similar to the estimate of the C × SES effect 

when the A × SES effect was fixed to zero. This calls to mind an essential fact: inference 

about a parameter from a given model is ipso facto model-dependent; specifically, it 

depends upon which other parameters are free to be estimated in the model at hand. We wish 

to bring attention to one specific questionable practice that is widespread in behavior 

genetics: that of selecting one single model that is best (by some criterion), and then basing 

inference only on that model, as though no others had ever been considered. Breiman (1992, 

p. 738) has called this practice “a quiet scandal.” We instead provide an alternative 

approach: inference about parameters can be based on multiple models; in fact, one can (in a 

sense) select many or even all models under consideration, each only to the extent that it is 

supported by the data. Much of the present study is conducted using methods of multimodel 

inference. Awareness of these methods is not as widespread as we believe it should be, 

which is why we describe them in the Appendix. Our description mostly follows that of 

Burnham & Anderson (2001, 2002, 2004), whose work we recommend for further details.

Study Overview

Our study, which attempts to replicate the A × SES and C × SES effects of Turkheimer et al. 

(2003), improves upon previous replication attempts in several ways. First, our large sample 

is composed of twins, non-twin biological siblings, and adoptive siblings, assessed at a 

range of ages spanning the teenage years. A prior study of IQ in a substantially identical 

sample has been reported (Kirkpatrick, McGue, & Iacono, 2009). The presence of adoptees 

provides us with a “backstop” against artifacts stemming from passive rGE and assortative 

mating, and allows us to directly estimate shared-environmental variance (and, in principle, 

variance due to covariance between the A and C factors). Second, we also have parental 

phenotype—IQ scores for the parents of the twins and siblings—and therefore can estimate 

assortative mating, both SES-independent and SES-dependent. Third, we have data on the 

same three SES indices used in the original Turkheimer et al. (2003) report.

Our primary analysis attempts to replicate the A × SES and C × SES moderation effects. We 

will compare performance of SES-moderation models when the age-moderation effects 

established in the literature, A × Age and C × Age, are included versus when they are not. In 

addition, we conduct three preliminary analyses prior to the primary analysis, and one 

exploratory analysis subsequently to it. The first preliminary analysis serves to test for a 

source of spurious moderation effects, SES-dependent assortative mating among parents 

(i.e., IQ correlation between mothers and fathers being dependent upon their SES). In our 

second preliminary analysis, we identify the sources of variance that should be represented 

in our model. The ACE model is quite plausible a priori from existing literature (reviewed 

above), especially for an adolescent (rather than adult) sample, and in light of the dearth of 

evidence for non-additive genetic variance in the domain of cognitive abilities (Bouchard, 
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2004). However, we can estimate more than two sources of familial variance in our sample. 

One possibility would be twin-specific environmental effects (“twin effects”), which would 

contribute to between-family variance among twins but not among non-twin siblings. 

Another possible source of variance is assortative mating. We need not assume that the 

additive-genetic correlation between full siblings is 0.5—we can estimate it from the data, 

because an ACE model would be identified by MZ twins and adoptees alone. Once the 

sources of variance are identified, our third preliminary analysis will determine whether the 

biometric decomposition of IQ varies as a function of trait level (that is, whether the 

influence of heredity and shared environment differs across the IQ distribution). This 

constitutes another test for a source of spurious moderation effects. Finally, after the main 

analysis, we will explore the possibility that the SES-moderation effects are age-dependent; 

we hypothesize that they will weaken through adolescence.

Methods

Sample

The primary sample (N = 4,973 from 2,494 sibling pairs) consisted of twins from the 

Minnesota Twin Family Study (“MTFS”; Iacono, Carlson, Taylor, Elkins, & McGue, 1999; 

Iacono & McGue, 2002; Keyes et al., 2009), and non-twin sibling pairs from the Sibling 

Interaction and Behavior Study (“SIBS”; McGue et al. 2007). In addition to this primary 

sample, one of our secondary analyses used a sample of 3,916 parents from MTFS and 

SIBS. Written informed assent or consent was obtained from all participants, with parents 

providing written consent for their minor children. The primary sample is substantially 

identical to that of Kirkpatrick et al. (2009), and MTFS and SIBS, their cognitive ability 

testing, and their zygosity determination and inclusion criteria have been described there and 

elsewhere (e.g., Kirkpatrick et al., 2014). We have therefore relegated many details 

concerning the sample and measurements to a Supplementary Methods section (Online 

Resource).

For the present study, we used parental data only from parents who were the “original 

rearing” parents in the family. Usually, the original rearing parents would be the biological 

parents of the family’s offspring, unless it was known that one of them had limited contact 

with the children while they were growing up (due to divorce, etc.). In the case of families 

with only adopted offspring, the original rearing parents would be those with whom the 

offspring were originally placed for adoption, unless again it was known that one of them 

had limited contact with the children.

SES

Our analysis used three family-level SES variables: (1) the higher of the parents’ 

occupational statuses, (2) midparental educational attainment, and (3) annual household 

income. We only used the occupational and educational data of the original rearing parents. 

If data were available only for one of the parents, we took that parent’s occupation and 

education as the higher occupational status and the average education level of the couple, 

respectively. After exclusions, at least one family-level SES variable was observed for 2,501 

families.
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Mothers’ and fathers’ occupational status was assessed during the recruitment phone 

interview with families’ mothers. Occupational status was coded on the Hollingshead scale 

(Hollingshead, 1957). We reverse-scored the Hollingshead scale so that higher values, on a 

scale of 1 to 7, represent higher status. We coded as missing the occupational status of those 

who did not work full-time in their reported occupation, those who reported their occupation 

as “homemaker,” and those reported to be retired, disabled, or institutionalized.

Mothers’ and fathers’ educational attainment was also assessed during the phone interview. 

We harmonized educational attainment from the slightly different phone interviews given to 

different subsamples into a five-point scale (1 = less than high school, 2 = high school, 3 = 

some post-secondary education, 4 = four-year college degree, 5 = graduate/professional 

degree).

Annual household income was collected by parental report at the intake assessment of 

MTFS, and at the first follow-up visit of SIBS. Income was measured on an ordinal scale 

representing income brackets: 0 = “less than $10,000,” 1 = “$10,001 to $15,000,” and so 

forth, up to a maximum of 12 = “Over $80,000.”

Of the 2,501 families, the percentages missing data on each family-level SES variable were 

7.4% for occupational status, 0.6% for educational attainment, and 8.4% for household 

income. Around 85% of families had no missing observations, 14% had one missing 

observation, and 1% had two missing observations. As did Turkheimer et al. (2003) and 

Myrianthopoulos & French (1968), we converted each family’s score on the three SES 

variables into a cumulative proportion (from that variable’s empirical CDF), and then 

averaged the available proportions, producing an SES score for each family (if only one 

proportion was available, it was taken as the family’s SES score). There were 2,494 families 

having both an SES score and FSIQ for at least one of the offspring. There were 2,382 

families in which SES and at least one parent’s FSIQ score were available.

Analyses

Unless stated otherwise, all analyses were conducted in OpenMx (Boker et al., 2011), via 

full-information maximum-likelihood (FIML) estimation from raw data. In most of our 

analyses, the endogenous variable was offspring IQ, which is assumed to follow a bivariate 

normal distribution (conditional on age, sex, and SES).

For model comparison and multimodel inference (see Appendix), we used Hurvich & Tsai’s 

(1989) sample-size-corrected version of Akaike’s Information Criterion, AICc:

(1)

In large samples, AICc differs little from AIC. However, some (e.g., Burnham & Anderson, 

2004) argue that AICc should always be used in practice, and that AIC’s reputation for 

overfitting has resulted partly from failure to use AICc in simulation studies.
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We proceeded by fitting models, assessing model performance via AICc, and using the 

performance of previously fitted models to guide specification of subsequent ones. We 

refrain from reporting parametric inference until all models informative about a particular 

parameter have been fitted, and—so that Akaike weights can be used—until all AIC-

comparable models have been fitted as well. At that point, if more than one model 

informative about the parameter had been fitted, we computed model-averaged point 

estimates, with confidence intervals and p-values3 from the model-averaged standard error, 

under the assumption of normal sampling distribution. We also obtained a 95% confidence 

set for the best-approximating model. Details concerning Akaike weights, model-averaging, 

and the confidence set are provided in the Appendix. Very briefly, Akaike weights are 

AICcs transformed to proportions so that smaller AICcs have larger weights. These weights 

are used to compute averages of parameter estimates and their standard errors across 

models. The confidence set is expected to contain the “best” model with probability 0.95 

over repeated sampling, and helps to quantify model-selection uncertainty due to sampling 

error.

Results

We first estimated IQ standard deviations and sibling correlations, separately by family type, 

while correcting for age and sex (McGue & Bouchard, 1984), which is especially important 

in the present case since members of a sibling pair from SIBS were not necessarily the same 

age and sex, whereas MTFS twins were. From these estimates (Table I), we can see that the 

DZ-twin correlation and SD were greater than those of the non-twin full sibs, suggesting the 

possibility of twin effects. The presence of adoptees also enables us to estimate rGE. 

However, it is evident that the phenotypic variance among adoptees was greater, not less 

than, the variance among biological offspring (which includes the twins), in which case the 

estimated correlation between A and C (rAC) would be negative—in other words, that a 

typical person’s genes and shared environment affect IQ in opposite directions. On its face, 

this is a difficult conclusion to accept. We therefore decided not to fit any models including 

an rAC estimate. In any event, the four standard-deviation parameters in Table I were not 

significantly different from one another (LRT χ2(3) = 4.25, p = 0.2353), which is not 

suggestive of significant rAC.

Preliminary analyses

To test for SES-dependent assortative mating, we modeled parental IQ with a bivariate 

normal distribution, having a different mean (which was conditioned on SES via regression) 

and standard deviation for mothers and fathers. We fit two models, one in which the spousal 

correlation was allowed to vary linearly with SES, and one in which it was constant with 

respect to SES. The former model estimated that the spousal correlation would be 0.41 at the 

3We consider effect sizes and their interval estimates to be more scientifically interesting and informative than hypothesis tests. 
However, our confidence intervals only have a marginal 95% coverage probability; their joint coverage probability is presumably 
smaller. Also, not every free parameter we estimated is an easily interpretable effect size, and further, the null hypothesis is indeed of 
interest and somewhat plausible for certain parameters. We therefore report p-values as well, and when making decisions about null 
hypotheses, compare them to the conventional significance level of α = 0.05. P-values are also easier than confidence intervals for the 
reader to adjust for “multiple testing.” We report 17 of them altogether. A Bonferroni correction would certainly be conservative, but 
skeptical readers are free to hold our results to its standard of α = 0.0029.
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bottom of the SES distribution, and 0.30 at the top—a change of −0.11 (95% CI: −0.29, 

0.06), which was not statistically distinguishable from zero (LRT χ2(1) = 1.56, p = 0.2114). 

The estimate of the spousal correlation from the latter model (constant across SES) was 

moderate, and very close to the meta-analytic average reported over 30 years ago (Bouchard 

& McGue, 1981): r = 0.35 (95% CI: 0.30, 0.39). Obviously, it differed significantly from 

zero (LRT χ2(1) = 186.43, p = 1.908×10−42).

This analysis indicated that parental assortative mating is moderate in magnitude, and is not 

SES-dependent, which rules out one possible source of spurious G × E. As explained by 

Kirkpatrick et al. (2009, footnote 1), if we assume a high heritability for adult IQ, that 

spouses select mates for psychometric IQ per se, and that the phenotypic spousal correlation 

perfectly reflects a genetic spousal correlation, then the classical twin model would 

underestimate heritability by about 28%, and commensurately overestimate shared-

environmentality. However, these are “worst-case scenario” assumptions, and are generally 

not true. Further, in our dataset, the ACE variance components are identified by the adoptees 

and MZ twins alone, whose covariances are not affected by the true genetic correlation 

between full siblings. As described in the next section, we actually estimated this genetic 

correlation.

To decide which sources of variance to include in our biometric models, we fit Models 

#1through #4 (collectively, “Block #1”). These four models represented the four 

combinations of the twin effects path γT0 fixed (to zero) versus free, and full-sib genetic 

correlation rA fixed (to 0.5) versus free. All four included the main effects of sex and age. 

Additionally, we estimated a separate intercept (β0) for twins, biological SIBS offspring, and 

adoptees, and a separate SES main effect (βSES) for biological offspring (including twins) 

and adoptees. If we were to apply the ACE model to our dataset without SES main effects, 

variance due to SES per se would otherwise be variance due to C, but this is not the case for 

variance due to A-SES correlation, as it does not contribute to variance among adoptees nor 

to covariance between unrelated siblings reared together. Hence, estimating separate SES 

main effects for biological children and adoptees is a prudent way to control for A-SES 

correlation (a form of passive rGE). Since the association between parental SES and 

offspring IQ partly reflects this correlation in the case of biological children, but not for 

adoptees, we naturally anticipate a larger main effect of SES for biological offspring.

The four models’ AICcs are presented in Table II. Because Block #1 was the first part of a 

series of comparable models (the general form of which is depicted in Figure 1), Table II 

also includes their Akaike weights, which are calculated relative to the AICcs of all models 

in this comparable set. From Table II, it can be seen that the best-approximating model 

within this block is #4, which has both rA and γT0 fixed to their null values. As anticipated, 

we conclude from Block #1 that the biometric ACE components are sufficient to describe 

our data, and that fixing both rA and γT0 to their null values improves model efficiency. In 

the previous section, we conclude that the spousal correlation for IQ is not SES-dependent, 

and we report here that the genetic correlation for full sibs differs unimportantly from 0.5. 

On the basis of the foregoing, we resolved here to assume in further analyses that the effects 

of assortative mating are negligible.
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The models of Block #1 are the only ones that provide single estimates for the ACE variance 

components, since models with a biometric-moderation effect estimate, in a sense, different 

component values at different levels of the moderator. The model-averaged point estimates 

from Block #1 of additive-genetic variance, shared-environmental variance, and unshared-

environmental variance are respectively 109.06, 23.25, and 43.19, which sum to total 

residual variance 175.50, and respectively yield standardized estimates of 0.62, 0.13, and 

0.25.

To assess whether the influence of heredity and shared environment depend upon trait level, 

we used DeFries-Fulker regression (DeFries & Fulker, 1985, 1988) with double-entered data 

(Rodgers & McGue, 1994; Rodgers & Kohler, 2005) which has been used for similar 

purposes in other studies (e.g., Cherny, Cardon, Fulker, & DeFries, 1992). With double-

entered data, phenotype scores are mean-centered within kinship groups, and then each 

sibling pair (twins being a special case of siblings) is entered into the dataset twice, with the 

labels “sibling #1” and “sibling #2” reversed for each entry. Since our data support the use 

of a model with the ACE biometric components, the DeFries-Fulker regression equation we 

used is

(2)

where K1 is the phenotype score of sibling #1, K2 is the phenotype score of sibling #2, R is 

the coefficient of relationship (1 for MZ twins, 0.5 for full siblings, and 0 for adoptive 

siblings), Age1 is the age of sibling #1, and Sex1 is a dummy variable for whether or not 

sibling #1 is female. In this model, the interaction coefficients b3 and b4 represent how much 

the shared-environmentality and heritability, respectively, depend upon trait level.

This DeFries-Fulker regression requires complete data within sibling pairs. There were 

2,479 pairs in which FSIQ was available for both members. We conducted the regression 

represented by Eq. (2) via an implementation of Kohler & Rodgers’ (2001) “efficient DF 

estimation” in the R statistical computing language. The interaction estimates were both 

small and statistically indistinguishable from zero: b̂3 = −2.87×10−5 (95% CI: −2.36×10−3, 

2.30×10−3; p = 0.9807) and b̂4 = 7.40×10−4 (95% CI: −1.72×10−3, 3.21×10−3; p = 0.5560). 

Further, the joint test of the two interactions was not significant (Wald χ2(2) = 1.05, p = 

0.5913). This DeFries-Fulker regression required exclusion of incomplete sibling pairs, and 

was only informative about the standardized, not raw, additive-genetic and shared-

environmental variance components. Nonetheless, we regard it as reasonably good evidence 

that the additive-genetic and shared-environmental components do not linearly vary across 

the FSIQ continuum, ruling out another possible source of spurious G × E.

Primary Analysis: Can we replicate SES-moderation effects?

To address our research question, we fit Block #2, consisting of Models #5 through #19. 

These models comprise the eight combinations of A × SES, C × SES, and E × SES effects 

being included or excluded. Each such combination was fitted twice: once including A × Age 

and C × Age effects, and again with them dropped.
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The AICcs and Akaike weights of this block are reported in Table III, from which we draw 

several conclusions. For one, the inclusion of any kind of SES-moderation effect improved 

model efficiency, indicating that the regression of IQ onto SES is heteroskedastic. More 

importantly, models that included an A × SES effect clearly fared better than those that did 

not, and those that included an E × SES effect fared slightly better than those that did not. 

But, the C × SES effect appeared quite extraneous. Further, the AICc rank-orders within 

each column of Table III are nearly identical, indicating that the SES-moderation effects’ 

contributions to relative model efficiency depended little on whether or not age-moderation 

effects were included. From these results, we concluded that our data support only an A × 

SES effect, but not a C × SES effect.

Exploratory Analysis

Perhaps the A × SES effect apparent in our data weakens with age. Perhaps there is a small C 

× SES effect lurking in our data that is only operative among younger participants. Certainly, 

if these SES-moderation effects decline with age, it would help to explain why attempts to 

replicate them in adults (van der Sluis et al., 2008; Grant et al., 2010) failed. To investigate 

these possibilities, we fit Block #3, composed of Models #20 through #22. Both age- and 

SES-moderation effects for A and C should be included, since we were considering the 

moderation effects of an age × SES interaction. We also included the SES-moderation effect 

on E, since it received limited support in Block #2. Model #20 included the A × Age × SES 

and C × Age × SES effects, Model #21 only the former, and Model #22 only the latter. 

Except where these three-way interactions are concerned, we do not utilize point estimates 

or standard errors from Models #20, #21, and #22 in model-averaging, partly because of 

these models’ exploratory nature, but primarily because the parameters of greatest interest in 

our study are age- and SES-moderation effects, which lose interpretability once the three-

way interactions are included.

The three models’ AICcs and Akaike weights are reported in Table IV. None of the 

interaction effects contributed to model performance. On this basis alone, we conclude that 

there is no age-dependent SES-moderation. But, we are now ready to draw inferences about 

those interaction parameters, and a number of other parameters of interest as well.

Overall Results

Table V lists model-averaged parameter estimates, plus corresponding confidence intervals 

and p-values based on the assumption of normal sampling distribution. The estimates of 

neither three-way interaction from Block #3 differed significantly from zero. Consistent 

with existing literature, we did observe a significant increase in additive-genetic variance, 

and a significant decline in shared-environmental variance, with increasing age. Most 

interestingly, we replicated only the A × SES effect of Turkheimer et al. (2003): additive-

genetic variance varied positively with family SES. The C × SES effect was not in the 

hypothesized direction and was estimated with little statistical precision. Finally, although 

the AICcs provided some support for an E × SES effect, the model-averaged results show 

that we do not have sufficient evidence to conclude that it differs from zero.
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Although model-averaging is well-suited for inference about one parameter at time, it does 

not necessarily make for easy interpretation. Consider the model-averaged estimate of the A 

× SES effect, 2.969. Because the SES variables were scaled to the interval [0,1], this value 

means that for the highest-SES families, the loading onto A is greater than that for the 

lowest-SES families by 2.969. But to really interpret this value, one would need a value for 

the main-effect of A, which is not a parameter of interest. Sometimes, a meritorious model 

can tell a complete story in a way that model-averaging cannot easily do. For this reason, we 

also report point estimates and standard errors from the two most AICc-favored models, 

Model #15 (A × SES, E × SES, no age-moderation) and Model #17 (A × SES only), 

respectively (Table S2 in Online Resource). It can be seen that the model-conditional 

estimates of free parameters do not differ drastically from the corresponding model-

averaged estimates. In Figure 2, we graph how the biometric decomposition would vary by 

SES according to the estimates from Model #15, expressed in raw variance components and 

in normalized variance proportions.

Discussion

Guided by existing data and theory, we fit a number of biometric models to a relatively large 

dataset collected from twins, non-twin biological siblings, and adoptive siblings. We 

compared models by a sample-size corrected version of AIC, the AICc (Hurvich & Tsai, 

1989). We compared models’ AICcs to first resolve basic questions of specification, then to 

attempt to replicate the SES effects of primary interest, and finally to explore the possibility 

of age-dependent SES effects. We first resolved that an a priori plausible ACE model would 

suffice for our purposes, and that the effects of assortative mating and of differential 

heritability/shared-environmentality by trait level were negligible. We fit models with 

various SES-moderation effects, both including and excluding two age-moderation effects 

identified in the literature. We observed support for the hypothesized A × SES effect, weakly 

suggestive evidence of an E × SES effect, but none for the hypothesized C × SES effect. Our 

exploratory analysis did not provide any evidence for age-dependent SES-moderation 

effects. Thus, our study shows that additive-genetic variance in GCA increases with family-

of-origin SES. This replication of the A × SES effect is robust to model specification: what 

all models belonging to the 95% confidence set (marked with superscript “b” in Tables III 

and IV), save one, have in common is a free A × SES parameter. The effect is also 

statistically significant (Table V): it would survive (overly conservative) Bonferroni 

correction for the 17 p-values we report.

The A × SES and C × SES interactions from Turkheimer et al. (2003) are the biometric-

moderation effects of primary interest in this study, and although they have generated much 

interest, they have not been replicated together in any study of general cognitive ability 

applying Purcell’s continuous-moderation model. They have failed replication twice (Grant 

et al., 2010; van der Sluis et al., 2008), and the C × SES component has been replicated once 

(Hanscombe et al., 2012). Our study constitutes the third replication of the A × SES element, 

after Harden et al. (2007) and Bates et al. (2013). Interestingly, the A × SES effect has only 

been observed in U.S. samples in which parental income was available as an SES variable. It 

has not replicated in European samples nor in an American sample in which only parental 

education was available. In public health, it has been shown that income and education each 
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provide different information about health-relevant aspects of an individual’s SES, and are 

usually not so highly correlated that entering both into a regression analysis produces 

multicollinearity problems (Braveman et al., 2005). Further, a given SES variable’s relations 

with other variables can differ by country, and by demographic strata and regions within 

countries (Uher, Dragomirecka, & Papezova, 2006; Braveman et al., 2005). Possibly, the A 

× SES effect is a distinct moderation effect of family income in the United States. More 

research is needed to evaluate this tentative proposition. In the present study, we could have 

conducted analyses to gauge how much each of the three SES variables contributed to the A 

× SES effect. However, this would be a greater undertaking than it might seem, since 

rigorously gauging variables’ relative importance can be rather involved in multiple 

regression (Azen & Budescu, 2003), let alone in a structural equation model involving 

interactions with latent variables.

Our study, Bates et al. (2013), Harden et al. (2007), and Turkheimer et al. (2003) were all 

conducted in samples of American youth in which parental income was available, but the C 

× SES effect only occurs alongside the A × SES effect in the original 2003 study. We offer a 

speculative explanation for why this is so. Our sample, Harden et al.’s, Bates et al.’s, and 

Grant et al.’s (2010) are predominantly Caucasian, but Turkheimer et al.’s is mostly (54%) 

African-American. Perhaps low SES is not enough to produce the extreme deprivation that, 

according to Scarr (1992), is necessary to amplify the differential effect of the rearing 

environment; perhaps low SES must be combined with membership in a disadvantaged 

minority group whose place in and experience of American society is unique due to the 

historical legacy of slavery.

The fact that the A × SES effect has failed replication in adults suggests that it could be age-

dependent. But, Hanscombe et al.’s (2012) graphs and point estimates show no clear age-

related trend; further, we tested this hypothesis directly, and it was not supported. The 

availability of IQ data at different ages, which allowed us to directly estimate the age-

dependence of SES-moderation effects, is one of several advantages our study has over 

some existing ones. Another advantage is that we were able to empirically check for 

possible sources of spurious results, including assortative mating, and differential 

heritability/shared-environmentality by trait level. Still another advantage was the 

availability of adoptees, whose data are informative about shared-environmental variance, 

without bias due to assortative mating, passive rGE, or violations of the “equal environments 

assumption” for twins. We were also able to calculate different SES main effects for 

adoptees and biological children. The one for adoptees shows that family SES has a 

moderate, environmental effect on children’s cognitive functioning, equal to a 7-point IQ 

advantage for children from the highest-SES families versus the lowest-SES families. 

Finally, we consider our use of multimodel inference to be a major advantage of our study, 

because it enables us to produce point estimates and confidence intervals based on all fitted 

models informative about a parameter, each to the extent that AICc favors it over others. 

This avoids the bias resulting from conditioning one’s parametric inference only upon a 

single model (Lukacs et al., 2009).

We wish to temper our endorsement of multimodel inference with a few caveats. First, we 

must emphasize that Model #15 (A × SES, E × SES, no age-moderation) is not necessarily 
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most likely to be the true model because it has the smallest AICc. Likewise, a model’s 

Akaike weight is not the posterior probability that the model is the true model. AIC is not 

intended to discover the “true” model in the first place. Instead, as stated by Browne (2000, 

p. 129), AIC is “not appropriate for selecting the best-fitting model in some general sense 

independent of sampling error, but…for indicating models whose calibrations can be trusted 

given a specified sample size.”

Second, our conclusions depend upon the candidate set of models under consideration4. We 

wanted to obtain estimates of each SES-moderation effect from models in which other 

moderation effects were variously present or absent. We had to balance that objective with 

the needs to preserve interpretability and a manageable scope, to avoid blindly empirical 

“data fishing,” and keep our analyses relevant to our research objectives. It slightly 

complicates matters that our candidate model set evolved as our analyses proceeded, in that 

we used the results from previously fitted models to guide specification of subsequent ones. 

Also, for the sake of interpretability and maintaining a manageable scope, we proceeded 

from simpler to more-complicated models. In these respects, our approach bears some 

resemblance to stepwise forward-selection. However, we deliberately avoided some of the 

most objectionable aspects of stepwise analyses. We did not conduct a purely data-driven, 

blindly empirical analysis. Our analysis was guided by subject-matter knowledge, each 

block of models was intended to address a specific question, and we saved the most 

exploratory analyses for last. Further, we did not use significance testing for model 

selection, nor did we base our conclusions solely upon the final model.

One restriction we imposed upon the candidate set is that all the biometric-moderation 

models we considered are of the form of Purcell’s (2002) continuous-moderator model. 

There are other model formulations arguably more appropriate for estimating G × E in the 

presence of rGE, such as others described by Purcell (2002), and those of Rathouz, Van 

Hulle, Rodgers, Waldman, and Lahey (2008) or of Price and Jaffee (2008)—all of which 

involve biometrically decomposing the putative moderator in some way. We decided to 

retain the Purcell formulation because existing studies of SES-moderation have used it, and 

our study is intended as a replication study of Turkheimer et al. (2003). Nonetheless, 

inclusion of SES main effects in our models is a rather vexing problem. If one thinks of the 

path diagram in, say, Figure 1 as a simultaneous regression of IQ onto both observable and 

latent variables, then clearly the main effect of SES must be included if any interactions of 

SES with latent variables are to be included as well. With data from twins only, SES will 

necessarily account for variance otherwise attributable to C (or to rAC, which would appear 

as variance due to C). Our data enabled us to separately estimate the βSES path coefficient 

for adoptees and biological offspring; both effect sizes are nontrivial, and possibly, enough 

shared-environmental variance was partialled out that the C × SES effect was rendered 

impossible. On the other hand, including the two SES main effects allows us to be 

reasonably certain that our A × SES result is not an artifact of correlation between SES and 

latent variable A. Because we conditioned our models upon SES (as a fixed regressor in the 

4Readers certainly can think of models we could have fitted, but did not. Some readers may be interested in Table S3 (Online 
Resource), which, for the sake of completeness, reports point estimates and standard errors from a post-hoc, “full” model in which all 
parameters under consideration were freely estimated.
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definition of the model-expected phenotypic mean), any phenotypic variance due to SES or 

to covariance between SES and latent variable A would be partialled out (Purcell, 2002; van 

der Sluis, Posthuma, & Dolan, 2012).

Our study raises several other questions that can guide future research. We have already 

suggested three: to what extent are SES-moderation effects dependent upon country, SES 

measure, or ethnic minority status? Future studies could attempt to test specific hypotheses 

made by the Scarr (1992) and Bronfenbrenner & Ceci (1994) theories about SES-

moderation. For instance, Scarr’s theory predicts that C × SES effects are only likely to be 

observed when the lowest echelons of SES are represented in the sample. Similarly, 

Bronfenbrenner and Ceci emphasize the importance of environmental stability for effective 

development. Since family SES is correlated with stability of the rearing environment 

(Evans, 2004), perhaps stability is what really drives SES-moderation effects. It would also 

be interesting to investigate another correlate of SES—parental phenotype, that is, parental 

cognitive ability—as a biometric moderator. Finally, behavior geneticists could attempt to 

replicate the A × SES effect when genetic factors are not latent, but measured as molecular-

genetic data. Exciting avenues of G × E research remain to be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: The Information-Theoretic Approach and Multimodel Inference

Kullback & Leibler’s important 1951 paper concerns, inter alia, derivation of a metric 

representing how well one probability distribution is approximated by another. Specifically, 

it is the expected amount of information (in Kullback & Leibler’s generalized Shannon-

Wiener sense) lost when one probability distribution is approximated by another. This 

metric has become known as Kullback-Leibler (KL) divergence. A sensible objective of 

model selection, then, is to choose the model that has the smallest KL divergence from full 

reality. Full reality, of course, is not known, and may not even be knowable in principle; 

possibly, any complete description of full reality would be infinitely long. If we accept the 

possibility that no statistical model can completely describe full reality, then the premise of a 

“true model” that generated the data becomes rather dubious. These issues pose no problem, 

however, if one is only interested in the relative divergence of different models, since the 

unknown constants depending upon full reality cancel out from subtraction.

In a series of important contributions in the 1970s, Hirotugu Akaike5 showed that the 

maximized joint loglikelihood of a model’s parameters estimates how relatively “close” (in 

a KL-divergence sense) the model is to full reality, except that this estimator is biased 

5Unfortunately, several important primary sources by Akaike are inaccessible to us, due to being conference presentations or being 
written in Japanese. We do not cite sources we cannot read. Here, we rely on secondary sources by Burnham & Anderson (2001, 
2002, 2004) and Pawitan (2013).
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upward, because it represents the fit of the model in the same data from which its parameters 

were estimated. Akaike further showed that, in large samples, the magnitude of this bias is 

in fact approximately equal to k, the number of free parameters. Subtracting k from the 

loglikelihood thus serves to estimate the expected loglikelihood of the model when 

“plugging in” parameter estimates previously obtained from a separate, independent sample 

of the same size. Akaike multiplied this bias-adjusted loglikelihood by -2 (to turn it into a 

bias-adjusted deviance), obtaining what has become known as Akaike’s Information 

Criterion,

(4)

where θ̂ is the vector of maximum-likelihood estimates of model M’s k parameters, as 

estimated from dataset x. In theory, the candidate model with the smallest AIC is expected to 

be the model that best approximates full reality, conditional on sample size N and the set of 

candidate models considered. The expected relative KL divergence of two candidate models 

may be estimated simply by subtracting their AICs.

As is evident from the previous paragraph, AIC is a penalized fit index. The unpenalized 

model deviance, −2logL(θ̂|M, x), by itself is a poor measure of a model’s merit, as it may be 

made arbitrarily small by adding parameters and increasing model complexity. AIC’s 

penalty is the approximate amount by which model deviance is underestimated when 

assessing the model in the same sample in which its parameters are being estimated. In other 

words, AIC has deep theoretical connections to cross-validation (discussed further by Stone, 

1977; Shao, 1997; and Browne, 2000). Specifically, in large samples, it is expected to select 

that model in the candidate set which minimizes error of prediction in new samples of the 

same size from the population, where error is based on a loglikelihood function (Hastie, 

Tibshirani, & Friedman, 2009). Since maximizing normal likelihood is equivalent to 

minimizing quadratic loss, and since many analyses assume (at least implicitly) a normal 

distribution, in many contexts AIC is expected to select that model in the candidate set 

which minimizes mean squared error of prediction. We therefore phrase our interpretations 

of AIC in terms of “efficiency” or “performance”—shorthand for expected relative 

efficiency or performance—rather than “fit,” because, again, one can just add more 

parameters to improve model fit to the data at hand.

However, one of AIC’s appealing qualities is that it allows the expected relative efficiency 

of all the models in the candidate set to be compared to one another. Unlike the likelihood 

ratio test (LRT), AIC can be used to compare multiple models to one another and rank them 

in terms of their merit; they need not be a sequence of nested models. In fact, different 

models’ AICs will be comparable to one another provided that the models all: (1) are fitted 

to the same dataset (and in particular, have the same N); (2) have the same endogenous 

variable(s) (which are no longer considered “the same” if they have been transformed); and 

(3) either have likelihood functions from the same family of distributions or use fully 

normalized densities as likelihoods (Burnham & Anderson, 2002).
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We now describe how AIC can be used to weight the results of multiple models under 

consideration, and obtain model-averaged point estimates and sampling variances. Let 

AICmin denote the smallest AIC in a set of m comparable models. Then, those models’ AICs 

can be re-expressed relative to AICmin. For some model l, let Δl = AICl − AICmin. Then, 

model l’s Akaike weight can be calculated as

(5)

Do this for all models l = 1, …, m. The resulting Akaike weights are normalized (sum to 1); 

each is interpretable as the posterior probability that its model is the one that minimizes KL 

divergence from full reality in the population (again conditional on N and the candidate set 

of comparable models; Burnham & Anderson, 2002). The implicit prior probability on each 

model in the set calculated is not equal for all models. Instead, it is a “savvy prior” that takes 

into consideration the number of free parameters relative to sample size (see Burnham & 

Anderson, 2004).

Once Akaike weights are computed for all comparable models in the candidate set, a 

pragmatic way to proceed is to average each parameter’s estimates, and their corresponding 

sampling variances, across those models in which the parameter is free to be estimated6 

(Burnham & Anderson, 2002). For purposes of model-averaged estimates, the Akaike 

weights need to be re-normalized so that they sum to 1 within the subset of models in which 

the parameter of interest is free. If some parameter θ is a free parameter in some subset  of 

the comparable set of models, then for some model l within that subset, the re-normalized 

Akaike weight  equals

(6)

Do this for all models l, l ∈ . With the re-normalized weights, the model-averaged point 

estimate of θ can be calculated:

(7)

where θî is the maximum-likelihood estimate of θ, conditional on model i. In a sense, when 

computing θ̂, one is “integrating out” the model-dependence of the point estimates by 

averaging across models informative about the parameter, each contributing to the average 

in proportion to its relative weight-of-evidence. The model-averaged point estimate θ̂ has 

estimated sampling variance equal to (Burnham & Anderson, 2004):

6It may be objected that basing inference about a parameter only upon those models in which it is freely estimated ignores evidence 
about the parameter conveyed by those models in which it is fixed. If one’s objective is regression prediction rather than inference, 
Burnham & Anderson (2002) do recommend calculating the model-averaged regression coefficient from models in which it is fixed, 
as well as those in which it is free. However, as Bartels (1997, footnote 11) points out, a model-averaged estimate computed in this 
way will not have a normal sampling distribution, which complicates its use for statistical inference.
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(8)

where  is the estimated sampling variance of the MLE of θ, conditional on model i. 

Thus, the model-averaged sampling variance represents a weighted average of within-model 

variance estimates and between-model variance estimates. In the simplest application, one 

uses the square root of  as the standard error to form confidence intervals and test null 

hypotheses, assuming asymptotic normality of θ̂., which is what we do herein.

The chief advantage of multimodel inference is that it enables the researcher to base 

inference about parameters on all models under consideration, allowing each model to 

contribute in proportion to how well it is supported by the data (Burnham & Anderson, 

2002). Even if, say, the best-approximating model has the shared-environmental effect fixed 

to zero, it does not necessarily follow that the best estimate of the effect is zero, especially if 

other models under consideration had AICs close to that of the best model. The multimodel 

approach attempts to avoid the biased estimation and inference that result from conditioning 

one’s conclusions on a single best model (Lukacs, Burnham, & Anderson, 2009). In applied 

contexts, information-theoretic model-averaging can also improve predictive accuracy (e.g., 

Kapetanios, Labhard, & Price, 2008).

We acknowledge, though, that model-averaged estimates are not always easily interpretable, 

whereas a set of parameter estimates, taken together from the single “best” model, can tell a 

coherent “story,” and help the investigator form a gestalt whose whole may be greater than 

the sum of its parts. But, whatever criteria were used to select the “best” model are prone to 

sampling error. With this in mind, some way of quantifying model-selection uncertainty is 

desirable. Akaike weights can be applied to form a confidence set for the best-

approximating model, expected to contain, with a given probability over repeated sampling, 

the model in the candidate set that minimizes KL divergence in the population. For this 

purpose, we adopt a simple but easily understood method: sum Akaike weights from 

greatest to least until the cumulative sum first equals or exceeds the desired coverage 

probability; the confidence set is composed of those models whose Akaike weights 

contributed to the cumulative sum at that stopping point (Burnham & Anderson, 2002).
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Figure 1. Biometric moderation model—general form for Blocks #1, #2, and #3
For ease of presentation, only twin #1’s side of the diagram is shown. The path loadings 

onto the latent A, C, and E variables are allowed to depend upon moderators, and might be 

written thus: γA = γA0 + γA1(Age1) + γA2(SES) + γA3(SES × Age1), γC = γC0 + γC1(Age1) + 

γC2(SES) + γC3(SES × Age1), and γE = γE0 + γE1(Age1) + γE2(SES). For example, γA0 is the 

main effect of A, γA1 is the A × Age effect, γA2 is the A × SES effect, and γA3 is the A × Age× 

SES effect. In Block #1, only main effects (γA0, γC0, γE0, γT0) were estimated. In Block #2, 

moderation effects of age (γA1, γC1, γE1) and SES (γA2, γC2, γE2) were introduced, and in 

Block #3, the interactions (γA3, γC3) were introduced. The twin-effects parameter γT0 was 

only ever estimated in Block #1, and the loading onto T was never conditioned on 

moderators. Separate values of β0 were estimated for twins, biological SIBS offspring, and 

adoptees. Separate values of βSES were estimated for biological offspring of parents 

(including twins) and for adoptees.
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Figure 2. Biometric variance components (A) and variance proportions (B) as function of SES, 
based on estimates from best-approximating Model #15
At a given point on the abscissa in panel B, the ordinate positions of each curve sum to 

unity. SES is a composite of parental educational attainment, parental occupational status, 

and household income, transformed to cumulative proportions (mean = 0.58, SD = 0.24). 

Model #15 included A × SES and E × SES effects.
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Table III

Model-fitting results of Block #2: AICcs (underlined) and Akaike weights.

Age-Moderation Effects

AC None

SES-Moderation Effects

ACE
38612.34

0.1188 (Model #5)b
38613.93

0.0538 (Model #13)b

AC
38612.75

0.0972 (Model #6)b
38614.08

0.0498 (Model #14)b

AE
38612.21

0.1268 (Model #7)b
38611.91

0.1478 (Model #15)b

CE
38615.26

0.0277 (Model #8)b
38616.38

0.0158 (Model #16)

A
38612.46

0.1120 (Model #9)b
38612.1

0.1339 (Model #17)b

C 38619.31
0.0036 (Model #10)

38619.78
0.0029 (Model #18)

E 38621.47
0.0012 (Model #11)

38620.83
0.0017 (Model #19)

None
38628.91

3.00 × 10−5 (Model #12)
38627.9

4.99 × 10−5 (Model #4)a

a
Model #4 is part of Block #1 (see Table II).

b
Model is in the 95% confidence set for best-approximating model (see Appendix).

Table notes: AICcs are underlined; Akaike weights are proportions. Smaller AICcs and greater Akaike weights both correspond to a more-
preferable model. The overall preferred model, #15, is bolded. A model’s Akaike weight is interpretable as the posterior probability that the model 
is the best at approximating full reality in the population, given the size of the sample and the set of models under consideration (see Appendix). 
“Age Moderation Effects” are those latent biometric factors the loadings of which were allowed to be moderated by age; ”none” indicates that no 
age-moderation effects were included, whereas “AC” indicates that both A × Age and C × Age effects were included. “SES Moderation Effects” are 
those latent biometric factors the loadings of which were allowed to be moderated by SES. For example, the models in the row marked “CE” 
included C × SES and E × SES effects.
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Table IV

Model-fitting results of Block #3.

Model Number (Free Interaction Parameters) AICc Akaike Weight

Model #20 (A × Age × SES, C × Age × SES) 38616.27 0.0167

Model #21b (A × Age × SES only) 38614.25 0.0457

Model #22b (C × Age × SES only) 38614.31 0.0444

Model #5a (none) 38612.34 0.1188

a
Model #5 is part of Block #2 (see Table III).

b
Model is in the 95% confidence set for best-approximating model (see Appendix).

A model’s Akaike weight is interpretable as the posterior probability that the model is the best at approximating full reality in the population, given 
the size of the sample and the set of models under consideration (see Appendix). Smaller AICcs and greater Akaike weights both correspond to a 
more-preferable model.
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Table V

Multimodel inference from Blocks #1 through #3.

Parameter Point Estimate (CI) P-value

Full-Sib Genetic Correlation (rA) 0.489 (0.380, 0.599) 0.8483a

Twin Effects (γT0) 1.27×10−5 (−3.593, 3.593)b 1.000

A × SES Effect 2.969 (1.095, 4.843) 0.0019

C × SES Effect 1.299 (−2.762, 5.360) 0.5307

E × SES Effect 0.891 (−0.244, 2.027) 0.1264

A × Age Effect 0.318 (0.024, 0.611) 0.0339

C × Age Effect −1.437 (−2.254, −0.621) 0.0006

A × SES × Age Effect 0.160 (−0.383, 0.703) 0.5635

C × SES × Age Effect −0.272 (−1.794, 1.250) 0.7260

SES Main Effect, adoptees (βSES,A) 6.961 (1.617, 12.305) 0.0107

SES Main Effect, bio offspring (βSES,B) 16.047 (13.892, 18.202) 3.073×10−48

Table notes: Models #20, #21, and #22 (Block #3) are only included in calculating model-averaged inference for the three-way interactions (A × 
SES × Age and C × SES × Age; explanation in text). Otherwise, point estimates and standard errors for each parameter were calculated from all 
models among Models #1 through #19 in which the parameter was freely estimated. Confidence intervals and p-values were calculated from point 
estimates and standard errors, assuming a normal sampling distribution. Signs on moderation effects are reported so that a negative value indicates 
that the loading on the latent biometric factor becomes more negative as the moderator becomes more positive.

a
Null parameter value for rA is 0.5.

b
The sign of the twin-effects parameter (γT0) is arbitrary, since the actual corresponding variance component is . The 95% profile-likelihood 

confidence interval for , from Model #3 (γT0 free, rA fixed), is (0, 12.27).
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