Effects of attention and multisensory integration on conflict resolving in binocular rivalry. (A) Experimental design: an object rotating at a frequency of 0.6 Hz was presented to one eye, while a looming object, expanding at a rate of 1 Hz, was presented to the other eye. Concurrent with the presentation of these visual objects sounds could be presented, consisting of, a stationary “e-chord” sound that was presented to one channel of a headphone, while a looming sound that matched the temporal characteristics of the looming object was presented to the other channel. Participants were required to attend to the looming sound pattern and report when the dominant visual pattern switched from the looming to the rotating image and vice-versa. (B) Average durations of the looming (left) and rotating (right) visual patterns being dominant. Duration times were significantly increased when participants were requested to attend and hold on to one of the patterns. Importantly, when the sound pattern was present this effect was enhanced for the (rhythmically congruent) looming visual pattern, but not for the (rhythmically incongruent) rotating visual pattern. These results suggest that attention can affect visual dominance by way of interacting with congruent sound patterns (P, passive viewing; H, hold on to instructed pattern). (C) Effects of rhythmic congruency and attention. Experiments 1–4 tested the influence of sounds that were consisted with the looming patterns. Experiments 1 and 3 show an increase in attentional gain (i.e., a prolonging in duration of the held pattern) when a sound was present that was rhythmically congruent with the held pattern. When the sound was rhythmically incongruent (Experiment 2) a decrease in attentional gain was observed, and when the sounds were unattended (Experiment 4) no significant change in attentional gain could be observed. Experiment 5 generalizes the results to rotating visual patterns. Filled red circles indicate attentional gains that significantly deviated from one. Adapted from van Ee et al. (2009) by permission of the Society for Neuroscience.