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Abstract

With the long-term goal of developing receptor subtype-selective high affinity agonists for the 

uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and 

molecular modeling studies of the human P2Y2 and P2Y4 receptors. UTP analogues with 

substitutions in the 2′-position of the ribose moiety retained capacity to activate both P2Y2 and 

P2Y4 receptors. Certain of these analogues were equieffective for activation of both receptors 

whereas 2′-amino-2′-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2′-azido-

UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted 

in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and 

P2Y4 receptors. In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of 

the uracil base resulted in molecules that were 3–30-fold more potent at the P2Y2 receptor than 

P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 

receptor. Stereoisomers of UTPαS and 2′-deoxy-UTPαS were more potent at the P2Y2 than P2Y4 

receptor, and the R-configuration was favored at both receptors. Molecular docking studies 

revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding 

pockets with the most prominent dissimilarities of the two receptors located in the second 

transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second 

extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor). In summary, this 

work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 

receptors and in combination with molecular modeling studies should lead to chemical synthesis 

of new receptor subtype-selective drugs.
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1. Introduction

Pharmacological effects of UTP (uridine 5′-triphosphate) and other uracil nucleotides on 

second messenger signaling pathways and on various tissue responses provided the initial 

indications of the existence of cell surface receptors that specifically recognize extracellular 

pyrimidines [1,2]. This concept was confirmed and extended over the past decade with the 

cloning of three different G protein-coupled receptors, the P2Y2, P2Y4 and P2Y6 receptors 

[3–6] that are activated by uracil nucleotides, and by the direct demonstration of regulated 

release of UTP from a variety of cell types [7,8].

The P2Y2 receptor is activated equipotently by both UTP and ATP (adenosine 5′-

triphosphate) and is distributed in a broad range of tissues. For example, this receptor plays 

important physiological roles in epithelial cells of the lung, gastrointestinal tract, eye, and 

other tissues [9,10]. The human P2Y4 receptor is selectively activated by UTP, and ATP is a 

potent competitive antagonist at this receptor [11]. However, the P2Y4 receptor of several 

other species is activated by both UTP and ATP [11–13], and therefore, it has proven 

difficult to differentiate the P2Y4 receptor from the P2Y2 receptor on the basis of its cognate 

agonists in, for example, rat and mouse tissues. The P2Y6 receptor is selectively activated by 

UDP (uridine 5′-diphosphate), and UTP is a weak agonist or inactive at this receptor [6,14].

The existence of three different G protein-coupled receptors that recognize uracil 

nucleotides has made difficult the pharmacological characterization or selective activation of 

these receptors in native tissues. As has proved to be the case with the P2Y receptors, i.e. 

P2Y1, P2Y11, P2Y12, and P2Y13 receptors, that are activated by adenine nucleotides, the 

metabolism and interconversion of extracellular nucleotides add complexities to the study of 

uracil nucleotide-activated receptors in native tissues [15]. For example, the ectonucleoside 

triphosphate diphosphohydrolase, NTPDase2, converts extracellular UTP to UDP [16], 

whereas ectonucleoside diphosphokinase forms UTP from UDP with the transfer of the γ-

phosphate from ATP [17].

Drugs that selectively activate or block the uracil nucleotide-activated P2Y receptors would 

provide armamentaria for circumvention of some of the problems inherent in the study of 

these physiologically important signaling proteins. However, receptor subtype-selective 

agonists or antagonists are not available for the uracil nucleotide-activated P2Y receptors 

[18]. Therefore, we have undertaken a series of pharmacological studies designed to 

systematically evaluate the effects of various modifications of the UTP structure on the 

capacity of analogues to activate the UTP-activated P2Y2 and P2Y4 receptors. Since UTP 

activates the human P2Y2 and P2Y4 receptors with similar potencies, our first goal is to 

identify substitutions in UTP analogues that differentially affect activity at either of these 

receptors. Conversely, identification of partial agonists at these receptors would open a path 

to synthesis of selective high affinity antagonists of the UTP-activated P2Y receptors in a 
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manner similar to the approach we have followed to identify a subnanomolar affinity 

antagonist for the ADP-activated P2Y1 receptor [19–21]. The results reveal encouraging 

progress in the first of these goals. We also conducted docking studies with rhodopsin-based 

homology models of the P2Y2 and P2Y4 receptors with the goal of extending insight gained 

from the empirical structure activity studies to predict optimized structures that will be 

pursued by application of new molecular syntheses. The combination of these structure 

activity analyses and molecular modeling studies provides resolution of key differences in 

the ligand binding pockets of the P2Y2 versus P2Y4 receptor that will be of heuristic 

importance for future ligand development.

2. Materials and methods

2.1. Reagents

2′-Ara-fluoro-2′-deoxyuridine (25) was purchased from R.I. Chemical, Inc. (Orange, CA). 

All other reagents and solvents were purchased from Sigma–Aldrich (St. Louis, MO).

2.2. Uracil nucleotide analogues

Most of the nucleotide analogues studied (compounds 5–10, 12–17, and 20) were purchased 

from TriLink Biotechnologies (San Diego, CA). Compound 19 was custom synthesized by 

TriLink Biotechnologies and was the gift of Dr. Victor Marquez, NCI, Frederick, MD. 

Compounds 1–4 and 3-methyluridine (26) were purchased from Sigma (St. Louis, MO). 

Compounds 21–24 were manufactured by Axxora (San Diego, CA)/Biolog Life Science 

Inst. (Bremen, Germany).

2.3. Chemical synthesis

2.3.1. Chemical methods—Methods used to prepare compounds 11 and 18 are depicted 

schematically in Fig. 1. 1H NMR spectra were obtained with a Varian Gemini 300 

spectrometer using D2O as a solvent. The chemical shifts are expressed as relative ppm from 

HOD (4.78 ppm). 31P NMR spectra were recorded at room temperature by use of Varian XL 

300 spectrometer (121.42 MHz); orthophosphoric acid (85%) was used as an external 

standard. Purity of compounds was checked using a Hewlett-Packard 1100 HPLC equipped 

with a Luna 5µ RP-C18(2) analytical column (250 mm × 4.6 mm; Phenomenex, Torrance, 

CA). System A—linear gradient solvent system: 5 mM TBAP-CH3CN from 80:20 to 40:60 

in 20 min, then isocratic for 2 min; the flow rate was 1 mL/min. System B—linear gradient 

solvent system: 10 mM TEAA-CH3CN from 100:0 to 90:10 in 20 min, then isocratic for 

2min; the flow rate was 1 mL/min. Peaks were detected by UV absorption with a diode array 

detector. All derivatives tested for biological activity showed >99% purity in the HPLC 

systems. High-resolution mass measurements were performed on Micromass/Waters LCT 

Premier Electrospray Time of Flight (TOF) mass spectrometer coupled with a Waters HPLC 

system. Purification of the nucleotide analogues for biological testing was carried out on 

(diethylamino)ethyl (DEAE)-A25 Sephadex columns with a linear gradient (0.01–0.5 M) of 

0.5 M ammonium bicarbonate as the mobile phase. Compounds 27 and 28 were additionally 

purified by HPLC using system C (10 mM TEAA-CH3CN from 100:0 to 90:10 in 30 min, 

then isocratic for 2 min; the flow rate was 2 mL/min) with a Luna 5µ RP-C18(2) 

semipreparative column (250 mm × 10.0 mm; Phenomenex, Torrance, CA).
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2.3.2. General procedure for preparation of nucleoside 5′-triphosphate 
(compound 18)—3-Methyluridine (26) (25 mg, 0.10 mmol) and Proton Sponge (31 mg, 

0.15 mmol) were dried for several hours in high vacuum and then dissolved in trimethyl 

phosphate (1 mL). After cooling the solution at 0 °C, phosphorous oxychloride (0.02 mL, 

0.19 mmol) was added. The mixture reaction was stirred at 0 °C for 2 h. A solution of 

tributylammonium pyrophosphate (303 mg, 0.64 mmol) and tributylamine (0.09 mL, 0.39 

mmol) in DMF (1 mL) was added and stirring was continued at 0 °C for additional 20 min. 

Five milliliters of 0.2 M triethylammonium bicarbonate (TEAB) solution was added, and the 

reaction mixture was stirred at room temperature for 45 min. Analysis of the reaction 

mixture by analytical HPLC (System A) indicated the formation of three compounds, the 

corresponding nucleotide mono-, di-, and triphosphates. The mixture was subsequently 

frozen and lyophilized, and the residue was purified by Sephadex-DEAE A-25 resin ion-

exchange column chromatography and when was necessary (compounds 27 and 28) by 

semipreparative HPLC as described above. The corresponding nucleotide mono-, di-, and 

triphosphates were collected, frozen, and lyophilized as the triethylammonium or 

ammonium salts. (2′R,3′R,4′S,5′R)-1-(3′,4′-dihydroxy-5′-phosphoryloxymethyltetrahydro-

furan-2′-yl)-3-methyl-1H-pyrimidine-2,4-dione, triethylammonium salt (27) was obtained as 

a white solid (6 mg, 11%). 1H NMR (D2O) δ 8.06 (d, J = 8.4 Hz, 1H), 6.04 (d, J = 8.1 Hz, 

1H), 6.02 (d, J = 4.2 Hz, 1H), 4.37 (m, 2H), 4.28 (m, 1H), 4.07 (m, 2H), 3.30 (s, 3H); 31P 

NMR (D2O) δ 1.88; HRMS m/z found 337.0404 (M − H+)−. C10H14N2O9P requires 

337.0437; HPLC (System A) 7.6 min (99%), (System B) 11.5 min (99%). (2′R,3′R,4′S,

5′R)-1-(3′,4′-dihydroxy-5′-diphosphoryloxymethyltetrahydro-furan-2′-yl)-3-methyl-1H-

pyrimidine-2,4-dione, triethylammonium salt (28) was obtained as a white solid (1 mg, 

1%). 1H NMR (D2O) δ 8.01 (d, J = 7.8 Hz, 1H), 6.05 (d, J = 8.1 Hz, 1H), 6.01 (d, J = 3.6 

Hz, 1H), 4.41 (m, 2H), 4.27 (m, 3H), 3.31 (s, 3H); 31P NMR (D2O) δ −8.68, −11.32 (d, J = 

21.4 Hz); HRMS m/z found 417.0116 (M − H+)−. C10H15N2O12P2 requires 417.0100; HPLC 

(System A) 14.3 min (99%), (System B) 12.4 min (99%). (2′R,3′R,4′S,5′R)-1-(3′,4′-

dihydroxy-5′-triphosphoryloxymethyl-tetrahydro-furan-2′-yl)-3-methyl-1H-pyrimidine-2,4-

dione, ammonium salt (18) was obtained as a white solid (8 mg, 15%). 1H NMR (D2O) δ 

7.98 (d, J = 8.1 Hz, 1H), 6.02 (m, 2H), 4.44 (m, 1H), 4.40 (m, 1H), 4.28 (m, 3H), 3.29 (s, 

3H); 31P NMR (D2O) δ −6.64 (d, J = 20.2 Hz), −10.88 (d, J = 19.5 Hz), −21.91 (t, J = 20.2 

Hz); HRMS m/z found 496.9750 (M − H+)−. C10H16N2O15P3 requires 496.9764; HPLC 

(System A) 18.3 min (99%), (System B) 13.5 min (99%).

(2′R,3′S,4′S,5′R)-1-(3′-Fluoro-4′-hydroxy-5′-triphosphoryloxymethyl-tetrahydro-furan-2′-

yl)-1H-pyrimidine-2,4-dione, ammonium salt (11). Compound 11 (29 mg, 26%) was 

obtained as a white solid from 2′-ara-fluoro-2′-deoxyuridine (25) following the general 

procedure for 18. 1H NMR (D2O) δ 7.93 (d, J = 8.1 Hz, 1H), 6.34 (d, J = 15.6 Hz, 1H), 5.94 

(d, J = 8.1 Hz, 1H), 5.24 (d, J = 51.6 Hz, 1H), 4.60 (d, J = 19.5 Hz, 1H), 4.25 (m, 3H); 31P 

NMR (D2O) δ −9.86, −11.46 (d, J = 19.6 Hz), −23.05; HRMS m/z found 484.9576 (M − 

H+)−. C9H13N2O14FP3 requires 484.9564; HPLC (System A) 19.0 min (99%), (System B) 

11.6 min (99%).
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2.4. Assay of P2Y2 and P2Y4 receptor-stimulated phospholipase C activity

Stable cell lines expressing the human P2Y2 receptor or the human P2Y4 receptor in 

1321N1 human astrocytoma cells were generated as previously described in detail [14]. 

Agonist-induced [3H]inositol phosphate production was measured in 1321N1 cells grown to 

confluence on 48-well plates. Twelve hours before the assay, the inositol lipid pool of the 

cells was radiolabeled by incubation in 200 µL of serum-free inositolfree Dulbecco’s 

modified Eagle’s medium, containing 0.4 µCi of myo-[3H]inositol. No changes of medium 

were made subsequent to the addition of [3H]inositol. On the day of the assay, cells were 

challenged with 50 µL of the five-fold concentrated solution of receptor agonists in 200 mM 

Hepes, pH 7.3, containing 50 mM LiCl for 20 min at 37 °C. Incubations were terminated by 

aspiration of the drug-containing medium and addition of 450 µL of ice-cold 50 mM formic 

acid. After 15 min at 4 °C, samples were neutralized with 150 µL of 150 mM NH4OH. 

[3H]Inositol phosphates were isolated by ion exchange chromatography on Dowex AG 1-X8 

columns as previously described [22].

2.5. Data analyses

Agonist potencies (EC50 values) were obtained from concentration– response curves by 

non-linear regression analysis using the GraphPad software package Prism (GraphPad, San 

Diego, CA). All experiments were performed in triplicate assays and repeated at least three 

times. The results are presented as mean ± S.E.M. from multiple experiments or in the case 

of concentration effect curves from a single experiment carried out with triplicate assays that 

were representative of results from multiple experiments.

2.6. Reconstruction of the binding pocket model

The reconstruction of the P2Y2 and P2Y4 receptors around UTP was performed with the 

InducedFit module of the Prime 1.2 homology modeling program (Schrödinger, LLC). The 

calculation was restricted to the residues located within 5 Å of the ligand.

2.7. Conformational analysis of UTP inside the putative binding pocket

A conformational analysis of UTP in the binding pockets of the P2Y2 and P2Y4 receptors 

was performed by means of the mixed MCMM/LMCS sampling method as implemented in 

Macro-Model 9.0 [23] (Schrödinger, LLC). The approach combines the Monte Carlo 

Multiple Minimum (MCMM) [24] and the low-mode conformational search (LMCS) [25]. 

All of the rotatable bonds of the ligand, as well as the ligand itself as a single body, were 

subjected to Monte Carlo driven rotations and translations during the conformational search. 

The search was performed on the ligand and the residues located within 5 Å of the ligand, 

while the remaining residues were conformationally frozen. The calculations were 

conducted with the MMFFs force field [26], using water as implicit solvent (GB/SA model 

[27] as implemented in MacroModel [23]) and a molecular dielectric constant of 1. The 

Polak-Ribier Conjugate Gradient was used for the energy minimizations with a convergence 

threshold of 0.05 kJ/mol/Å.
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3. Results

3.1. Chemical synthesis

Synthetic methods for the preparation of nucleoside 5′-triphosphate derivatives 11 and 18 
from the nucleosides of 25 and 26, respectively, are shown in Fig. 1. The classical 

phosphorous oxychloride method was used for the synthesis of both derivatives [28,29]. The 

5′-mono (27) and diphosphate (28) derivatives of 26 were also isolated as side products.

3.2. Pharmacological assays and structure activity relationships

The human P2Y2 and P2Y4 receptors were stably expressed in 1321N1 human astrocytoma 

cells using retroviral vectors as previously described [14]. Agonist-promoted activation of 

phospholipase C (PLC) was assessed in these two stable cell lines by quantification of the 

accumulation of [3H]inositol phosphates as described in Section 2. UTP markedly 

stimulated [3H]inositol phosphate accumulation to similar levels in P2Y2 versus P2Y4 

receptor-expressing cells. Similar EC50 values also were observed for UTP (1) for activation 

of the two receptors (Fig. 2 and Table 1). ATP (2) was two-fold less potent than UTP at the 

human P2Y2 receptor, and CTP (3a) and GTP (3b) were only weakly active at this subtype. 

Both nucleotides were previously shown to be antagonists at the human P2Y4 receptor [11].

Given the similar activities of UTP at the P2Y2 versus P2Y4 receptor, we compared the 

activities of a series of ribose-modified UTP analogues (4–11) for activation of the two 

receptor types. Although less potent than UTP in most cases, all 2′-substituted molecules 

retained capacity to maximally stimulate both receptors in the test system used. Whereas 

similar potencies were observed for the 2′-O-methyl-substituted (5) and 2′-fluoro-substituted 

(9) molecules at the P2Y2 versus P2Y4 receptors (Table 1), differential effects on potencies 

at the two receptors were observed with 2′-amino (7) and 2′-azido (8) substitutions (Fig. 2 

and Table 1). That is, the potency of 2′-amino-2′-deoxyuridine-5′-triphosphate (7) was 

unchanged from UTP at the P2Y2 receptor but was 16-fold less at the P2Y4 receptor. 

Conversely, 2′-azido-substitution in 8 resulted in a greater decrease in potency at the P2Y2 

receptor than at the P2Y4 receptor. Interestingly, existence of the 2′-hydroxyl of UTP in the 

arabino configuration in 10 resulted in a molecule that exhibits similar potency to UTP at the 

P2Y2 receptor but 10-fold reduced potency at the P2Y4 receptor. The only 3′-substituted 

molecule, 3′-O-methyluridine-5′-triphosphate (6), tested was inactive at both P2Y2 and 

P2Y4 receptors.

Uracil-substituted UTP analogues (12–20) also were examined. Modification of UTP with a 

thio moiety in the 4 position in 16 resulted in an analogue that was two-fold and three-fold 

more potent than UTP at the P2Y2 and P2Y4 receptors, respectively (Fig. 3 and Table 1). In 

contrast, 2-thio-substitution in 15 resulted in a molecule that was at least as potent as UTP at 

the P2Y2 receptor and 5-fold less potent at the P2Y4 receptor. Halo- or alkyl substitution in 

the 5-position of the base (12–14) resulted in molecules 3–10-fold more potent at the P2Y2 

receptor than the P2Y4 receptor. Aza-substitution in the 6-position in 17 decreased potency 

at the P2Y2 receptor and resulted in an analogue that was inactive at the P2Y4 receptor. A 

decrease in P2Y2 receptor potency and complete loss of activity at the P2Y4 receptor also 

occurred with replacement of uracil with a pyrimidinone ring moiety, i.e. zebularine-5′-
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triphosphate [30]. Conversely, attenuated agonist activity was observed at the P2Y2 and 

P2Y4 receptors with pseudouridine-5′-triphosphate (20), in which the base moiety is 

replaced with a reoriented uracil ring.

Phosphate side chain modification as phosphothioates was examined in the stereoisomers of 

UTPαS and 2′-deoxy-UTPαS (21–24). These phosphate side chain modifications decreased 

agonist potency by approximately two orders of magnitude. Both stereoisomers of UTPαS 

(21, 22) were approximately fivefold more potent at the P2Y2 receptor than the P2Y4 

receptor (Fig. 4 and Table 1). The R-configuration was favored by both receptors by 

approximately three-fold over the S-isomer. Rp-2′-deoxy-UTPαS (23), although displaying a 

relatively large standard error, was a full agonist at the P2Y2 receptor and inactive at the 

P2Y4 receptor. Sp-2′-deoxy-UTPαS (24) was inactive at both the P2Y2 and P2Y4 receptors.

3.3. Flexible docking of UTP into putative binding pockets of the P2Y2 and P2Y4 receptors

We recently proposed, supported by experimental data, a hypothetical binding mode of 

nucleotides within P2Y receptors of subgroup A (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) 

[31,32]. Briefly, the cognate agonist nucleotide of each of these receptors is accommodated 

in the cavity defined by the third, sixth, and seventh transmembrane domains (TM) and the 

second extracellular loop (EL2). The ribose moiety of agonists is located between TM3 and 

TM7, with the negatively charged phosphate groups pointing toward TM6 and the 

nucleobase pointing toward TM1 and TM2.

Our previous success in identification of new receptor-selective high affinity agonists and 

antagonists of the P2Y1 receptor [19–21,33] was driven in part by a close interplay of 

structure activity analyses, rational new drug syntheses, and molecular modeling of the 

P2Y1 receptor binding site. Thus, we have carried out new modeling studies as described in 

Section 2 to further refine insight into the binding pocket of the P2Y2 and P2Y4 receptors. 

Our previously published binding mode [31,32] was utilized to position UTP in the putative 

binding pockets of the unoccupied P2Y2 and P2Y4 receptors. These respective binding 

pockets then were reconstructed around docked UTP by means of homology modeling under 

conditions that allowed the receptors to adapt to the presence of ligand. We subsequently 

performed a concerted conformational analysis of UTP and the surrounding residues, 

exploring simultaneously the flexibility of the ligand and the receptors. To facilitate the 

comparison among receptors, throughout this paper we use the GPCR residue indexing 

system, as explained in detail elsewhere [31].

The putative nucleotide binding pockets of the P2Y2 and P2Y4 receptors are highly 

conserved and, not surprisingly, the results of our docking experiments indicated very 

similar binding modes of UTP within both receptors (Fig. 5). The most prominent 

dissimilarities between the putative UTP binding pockets in the P2Y2 and P2Y4 receptors 

were found in residues located in TM2 (V90(2.61) in the P2Y2 receptor corresponding to 

I92(2.61) in the P2Y4 receptor) and a residue in EL2 (T182 in the P2Y2 receptor 

corresponding to L184 in P2Y4 receptor). Both of these non-conserved residues are located 

in proximity to the uracil moiety of UTP, and their presence results in an apparently smaller 

binding pocket of the P2Y4 receptor for the cognate agonist.
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The docking models suggested other ligand recognition elements. In agreement with 

observations for the P2Y1 receptor [31,32], the triphosphate moiety of UTP is putatively 

coordinated by three conserved cationic residues (Fig. 5). These residues, all Arg in P2Y2 

and P2Y4 receptors, are located in TM3 (3.29), TM6 (6.55), and TM7 (7.39). A fourth 

cationic residue located at the 7.36 position is in proximity to the ligand but, consistent with 

mutagenesis data [34], apparently does not directly interact. The NH at the 3-position of the 

uracil ring donates an H-bond to a Ser in TM7 (7.43). Alternatively, in other docking poses 

Ser(7.43) donated an H-bond to the oxygen at the 2-position of the uracil ring. This Ser 

residue is highly conserved within the P2Y family. Mutagenesis data revealed its 

fundamental role in the recognition of agonists and antagonists at the P2Y1 receptor, where 

it is probably involved in the coordination of the adenine base [31].

4. Discussion

Results from this study provide the first systematic structure activity analysis designed to 

distinguish the P2Y2 versus P2Y4 receptor selectivity of base- and ribose-modified 

analogues of UTP. The UTP receptor selectivity of molecules with phosphate side chain 

modified UTP, i.e. stereoisomers of UTPαS and 2′-deoxy-UTPαS, also was examined. 

Thio-substitution at the 4-position increases potency at both P2Y2 and P2Y4 receptors, 

whereas other base- or ribose-modifications were identified that differentially affect the 

capacity of analogues to activate the P2Y2 versus P2Y4 receptor. These results lay the 

ground-work for rational drug synthesis directed at generation of high affinity agonists that 

selectively activate either the P2Y2 receptor or P2Y4 receptor.

The P2Y2 receptor is broadly distributed in mammalian tissues, and its expression in 

epithelial cells of the lung, eye, and other tissues make it a potentially important therapeutic 

target in cystic fibrosis, eye disease, and other pathophysiologies [9,10]. Although the P2Y4 

receptor is less prominent than the P2Y2 receptor in mammals, the presence of this signaling 

protein on neuronal, vascular, and epithelial tissues also makes the P2Y4 receptor a 

potentially important drug target. Simultaneous expression of P2Y2 and P2Y4 receptors 

occurs in a number of cell types and tissues. These receptors theoretically can be delineated 

in human tissues since whereas both UTP and ATP activate the human P2Y2 receptor, only 

UTP activates the human P2Y4 receptor. However, both of these receptors are potently 

activated by ATP and UTP in rodents [11–13], and the complexities introduced by 

metabolism and interconversion of nucleotides also makes pharmacological delineation of 

the P2Y2 and P2Y4 receptors difficult in human tissues using the natural triphosphate 

agonists [15].

Few studies have addressed selectivity of synthetic nucleotide analogues at the P2Y2 and 

P2Y4 receptors, and no systematic comparison of structure activity relationships has been 

made for the P2Y2 receptor versus P2Y4 receptor using a unified assay system. Certain UTP 

analogues with substitutions in the 4-position of the base have been reported, and several of 

these, e.g. 4-SH or 4-S-hexyl analogues of UTP, retained potencies similar to UTP at the 

P2Y2 receptor [35]. To our knowledge the activities of these molecules at the P2Y4 receptor 

have not been reported. 5-Br-UTP is an agonist at both P2Y2 and P2Y4 receptors, but 

relative potencies have not been compared simultaneously in the same test system. We 
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previously directly compared at the human P2Y2 and P2Y4 receptors analogues of both UTP 

and ATP in which the ribose moiety was replaced by a fixed ring (methanocarba) system, 

i.e. a cyclopentane fused in the Northern confirmation with a cyclopropane ring [33]. (N)-

Methanocarba UTP was equipotent to UTP at both the P2Y2 and P2Y4 receptors, and this 

analogue was approximately five-fold more potent at the P2Y2 receptor than the P2Y4 

receptor. In contrast, whereas (N)-methanocarba-ATP is a very potent agonist at the human 

P2Y2 receptor, (N)-methanocarba-ATP like ATP itself is inactive at the human P2Y4 

receptor. UTPγS is a reasonably potent agonist at both P2Y2 and P2Y4 receptors [36,37]. 

Receptor activity also is retained in UTP analogues with imido- and methylene-

modifications of the phosphate side chain [18]. Finally, both diadenosine and diuridine 

polyphosphate molecules are agonists at the P2Y2 receptor with the most potent of these 

reported to be dinucleotides with four phosphates [29]. Up4U also is a potent P2Y4 receptor 

agonist.

The current structure activity studies provide encouraging new insight on agonist action at 

the P2Y2 versus P2Y4 receptors. Certain substitutions, e.g. thio-substitution in the 4-position 

of the uracil base, resulted in increases in potency at both the P2Y2 and P2Y4 receptors. 

These increases in potency are explainable on the basis of the favorable interactions that the 

sulfur atom establishes with hydrophobic residues from TM1, TM7, and EL2 in the binding 

pockets of both receptors (Fig. 5). These results strongly suggest that relative affinity can be 

retained or enhanced in future analogues modified in other positions to alter their P2Y 

receptor subtype-selectivity. The stereoselectivity in recognition of α-thiophosphate 

analogues of UTP showed a small but consistent preference at both P2Y2 and P2Y4 

receptors for the Rp isomer, which is the opposite of the diastereoselectivity found at the 

P2Y1 receptor [39].

A large number of modifications of the base or ribose moiety resulted in differential changes 

in the potency of analogues at the two receptors. Several base modifications differentially 

affected P2Y2 receptor versus P2Y4 receptor selectivity, but in all such cases P2Y2 receptor 

potency was better retained than activity at the P2Y4 receptor. As presented in Section 

3,molecular modeling indicates a larger size for the base-interacting portion of the P2Y2 

binding pocket compared to that of the P2Y4 receptor, and the observed enhancement of 

selectivity, for example, in the 5-substituted analogs is consistent with this predicted 

difference between the steric bulk tolerance of the P2Y2 receptor versus the P2Y4 receptor.

The observation that introduction of different functional groups in the 2′ position resulted in 

analogues that favored the P2Y2 receptor in some cases, e.g. 2′-amino, or the P2Y4 receptor 

in another substitution, e.g. 2′-azido, suggests both subtle differences in the binding pocket 

of these two receptors and avenues for developing analogues that favor binding to one of 

these UTP-activated receptors. The 3′-OH is intramolecularly H-bonded to the β-phosphate 

(Fig. 5) and, according to our molecular dynamics (MD) studies on the P2Y6–UDP complex 

[38], could be involved in an interaction with the cationic residues, possibly mediated by a 

water molecule. Therefore, substitutions at this position are likely to be detrimental for 

activity. Conversely, the 2′-OH apparently does not interact directly with the receptor. 

Hence, substitutions at this position are likely to be tolerated and can be exploited to 

modulate the P2Y2/P2Y4 receptor selectivity. The residues that interact directly with the 
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ribose moiety are conserved in the P2Y2 and the P2Y4 receptors (Fig. 5). Thus, the 

selectivities observed with various 2′-substituted compounds for the P2Y2 or P2Y4 receptors 

must arise from non-conserved residues located further away from the ligand that indirectly 

affect the shape of the binding pocket. Prolonged MD simulations of the receptor–ligand 

complexes in a phospholipid bilayer should reveal these residues.

In summary, these results indicate that agonist potency and P2Y2 versus P2Y4 receptor 

selectivity can be differentially modified in ribose- and base-modified analogues. Our work 

identifies molecules that may prove useful in pharmacologically distinguishing these 

receptors in complex tissues and that provide leads for rational new drug synthesis. Further 

evolution of molecular models for these two uracil nucleotide-activated receptors should 

proceed hand in hand with this novel molecule development.

Acknowledgements

We thank Dr. Victor Marquez (NCI, Frederick, MD) for the gift of zebularine 5′-triphosphate and for helpful 
discussion. This research was supported in part by the Intramural Research Program of the NIH, National Institute 
of Diabetes and Digestive and Kidney Diseases and by NIH grants GM38213 and HL34322. Susanna Tchilibon and 
Pedro Besada thank the Cystic Fibrosis Foundation (Bethesda, MD) for financial support. Mass spectral 
measurements were carried out by Dr. John Lloyd and NMR by Wesley White (NIDDK).

Abbreviations

PLC phospholipase C

HEPES N-(2-hydroxyethyl)-piperazine-N′-2-ethanesulfonic acid

ATP adenosine 5′-triphosphate

CTP cytidine 5′-triphosphate

GTP guanosine 5′-triphosphate

TM transmembrane domain

TBAP tetrabutylammonium dihydrogen phosphate

TEAA triethylammonium acetate

UDP uridine 5′-diphosphate
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Fig. 1. 
Synthetic methods for the preparation of compounds 11 and 18.
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Fig. 2. 
Activation of the human P2Y2 (left panel), and P2Y4 (right panel) receptors by ribose-

modified uracil 2′-deoxynucleotide analogues containing 2′-amino (7) (▼) and 2′-azido (8) 

(▲) functionality. PLC activity was measured as described in Section 3.2 in 1321N1 human 

astrocytoma cells stably expressing the human P2Y receptors. The data are the means of 

triplicate determinations and are representative of results obtained in at least three separate 

experiments with each analog.
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Fig. 3. 
Activation of the human P2Y2 (left panel), and P2Y4 (right panel) receptors by UTP (1) and 

its base-modified uracil nucleotide analogues having 5-methyl (14), 2-thio (15), and 4-thio 

(16) substitution. PLC activity was measured as described in Section 3.2 in 1321N1 human 

astrocytoma cells stably expressing the human P2Y receptors. The data are the means of 

triplicate determinations and are representative of results obtained in at least three separate 

experiments with each analog.

Jacobson et al. Page 15

Biochem Pharmacol. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Activation of the human P2Y2 (left panel), and P2Y4 (right panel) receptors by chiral α-

phosphothioate uracil nucleotide analogues 21 (▲), 22 (◆), and 23 (▼). PLC activity was 

measured as described in Section 3.2 in 1321N1 human astrocytoma cells stably expressing 

the human P2Y receptors. The data are the means of triplicate determinations and are 

representative of results obtained in three separate experiments.
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Fig. 5. 
Models of the complexes formed by UTP (1) with the P2Y2 (a) and P2Y4 (b) receptors. The 

nucleotide binding pockets are highly conserved in the two receptors [23]. The only two 

sites of divergence can be found in two residues located in TM2 and EL2 (represented with 

balls and sticks) in proximity to the uracil-binding pocket. To the left of each detailed 

binding site is a schematic representation of the entire receptor structure complexed with 

UTP. In the tube representations the receptor is colored according to residue positions, with 

a spectrum of colors that ranges from red (N-terminus) to purple (C-terminus): TM1 is in 
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orange, TM2 in ochre, TM3 in yellow, TM4 in green, TM4 in cyan, TM5 in blue, TM7 in 

purple.
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