
HARVESTING, IDENTIFICATION AND BARRIER FUNCTION OF 
HUMAN LUNG MICROVASCULAR ENDOTHELIAL CELLS

John D. Catravas1,2,*, Connie Snead1, Christiana Dimitropoulou2, Albert, S.Y. Chang3, 
Rudolf Lucas1,2, Alexander D. Verin1,4, and Stephen M. Black1,5

1Vascular Biology Center, Medical College of Georgia, Augusta, GA, 30912-2500, USA.

2Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA, 
30912-2500, USA.

3Department of Surgery (Division of Cardiothoracic Surgery), Medical College of Georgia, 
Augusta, GA, 30912-2500, USA.

4Department of Medicine (Division of Pulmonary and Critical Care Medicine), Medical College of 
Georgia, Augusta, GA, 30912-2500, USA.

5Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA, 
30912-2500, USA.

Abstract

Endothelial barrier dysfunction is an important contributor to the pathogenesis of acute lung injury 

(ALI) and acute respiratory distress syndrome (ARDS). Even though approaches that target the 

prevention and repair of endothelial barrier dysfunction are clearly needed, our understanding of 

the molecular regulation of pulmonary microvascular endothelial permeability remains 

incomplete. Cultured pulmonary microvascular endothelial cells represent an attractive paradigm 

for the study of barrier function. Here, we describe a method for the harvest, identification and 

culture of human lung microvascular endothelial cells (HLMVEC). HLMVEC thus obtained, grow 

as a monolayer, exhibit contact inhibition and have the typical cobblestone appearance. They 

express endothelial proteins, such as von Willebrand Factor and endothelial nitric oxide synthase 

and take up acetylated LDL. Furthermore, HLMVEC respond predictably and with superior 

sensitivity to the barrier disruptive effects of Gram positive and Gram negative bacterial products, 

thrombin, vascular endothelial growth factor and microtubule disrupting agents. These HLMVEC 

present an in-house-derived alternative to commercially available human cells for the study of 

mechanisms contributing to ALI and ARDS.
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INTRODUCTION

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a 

continuum of progressive respiratory failure in the absence of left heart failure. ARDS 

patients represent a subset of ALI patients, distinguished by a greater severity. In ALI/

ARDS, the integrity of the capillary barrier is compromised, leading to increased vascular 

permeability and alveolar flooding. Gram negative sepsis (indirect injury) is by far the most 

common cause of ALI (Hudson et al. 1995). Sepsis represents the systemic inflammatory 

response to infection3, (Jacobi 2002). Lungs are among the most frequently affected organs 

in severe sepsis leading to ALI and ARDS (Martin et al. 2003). The incidence of sepsis has 

increased by 8.7% from 1979–2000 (Martin et al. 2003) and mortality ranges from 30–50% 

(Rangel-Frausto et al. 1995; Angus et al. 2000; Annane et al. 2000). Clinical trials targeting 

inflammatory mediators have shown no survival benefit (Fisher et al. 1994; McCloskey et 

al. 1994; Abraham et al. 1998; Dhainaut et al. 1998; Fink 1998; Abraham et al. 2001) and 

other strategies have failed to reduce morbidity associated with severe sepsis except for the 

survival benefit with the use of recombinant activated protein C (Bernard et al. 2001).

Even though approaches that target the prevention and repair of endothelial barrier 

dysfunction are clearly needed, our understanding of the molecular regulation of pulmonary 

microvascular endothelial permeability remains incomplete. Cultured pulmonary 

microvascular endothelial cells represent an attractive paradigm for the study of barrier 

function. However animal-derived endothelial cells do not necessarily reflect the complex 

biology of human endothelial cells. Moreover, human endothelial cells, while available 

commercially, are expensive and, frequently of inconsistent quality. Here we present a 

method for the harvesting, identification and culture of human lung microvascular 

endothelial cells. We further provide data to suggest that these cells exhibit a strong baseline 

barrier function and respond predictable to common edemagenic agents.

MATERIALS AND METHODS

1. Materials

Tosyl activated Dynabeads and Prolong Gold were from Invitrogen; eNOS antibody was 

from Becton Dickinson; vWF antibody was from Sigma; goat anti-mouse IgG and Cy3 goat 

anti- rabbit IgG were from Jackson Laboratories. Fetal bovine serum (FBS) was from 

Hyclone. All other reagents were obtained from Sigma Chemical Co. (St. Louis, MO). 

Eight-well arrays were from Applied Biophysics (Albany, NY).

2. Harvest, culture and identification of human lung microvascular endothelial cells. 
(HLMVEC)

Peripheral lung specimens from patients that were undergoing lobectomy or 

pneumonectomy at the Medical College of Georgia Hospital were obtained. The 

overwhelming majority of these patients were undergoing curative surgery for lung cancer. 

All tissue was from anatomic resection specimens obtained away from the primary tumor, 

where tumor margins are not an issue. We did not use pulmonary wedge resection 

specimens because of the small amount of tissue that would be available. Patients with 
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known underlying lung disease such as tuberculosis, pulmonary fibrosis or interstitial lung 

disease and patients with known systemic diseases such as HIV were not enrolled. All 

specimens were obtained from subjects 70 years of age or younger. We have observed that 

the age of the donor is a major determinant of the quality of the endothelial cell isolation. 

Specimens of varying size (5–15g) were placed on ice in a sterile 50ml tube containing 

culture medium and were transported to the laboratory for processing within one hour of 

resection. Isolation and culture of HLMVEC was performed by a modification of the 

methods of Hewett and Murray (Hewett & Murray 1993) and Burg et al. (Burg et al. 2002). 

Briefly, isolation of HLMVEC was performed as follows: sub-pleural lung tissue was cut 

into small fragments with scissors. After removal of debris and erythrocytes through a 40µm 

nylon net, the tissue collected in the net was treated with dispase (1 U/ml at 4°C for 18h). 

After filtration through a 100µm nylon net, the filtrate was treated in a volume of 15ml 

M199, 15% FBS, 1mg dispase/ml at 37°C for 1h, followed by a further 100µm net filtration. 

The cell clumps within the filtrate were repeatedly resuspended in M199 and filtered 

through a 40µm net, followed by centrifugation for 10min at 1000rpm and re-suspension in 

M199 with 20% FBS. The positive selection of HLMVEC was achieved by interacting the 

cell suspension with magnetic beads (Tosyl activated Dynabeads) coated with Ulex 

europaeus I, according to the method of Jackson et al (Jackson et al. 1990). Cells were 

cultured in M199 supplemented with 20% FBS, 100 Units/ml heparin, 150µg/ml ECGF, 

1µg/ml hydrocortisone, 292mg/l L-glutamine, and 110mg/l sodium pyruvate. The cells thus 

collected were identified as HLMVEC by their 1) growth as a contact-inhibited monolayer; 

2) exhibition of cobblestone-like appearance;3) uptake of 1,1_-dioctadecyl-1,3,3_,3_-

tetramethyl-indocarbocyanine-acetylated low-density lipoprotein (Dil-Ac-LDL), 4) 

expression of endothelial nitric oxide synthase (eNOS or NOS3) and 5) expression of von 

Willebrand factor (vWF), as described below. Cells were sub-cultured 1:3 using standard 

techniques.

For purposes of identification, cells were grown on glass coverslips and incubated in Dil-

Ac-LDL (10µg/ml medium) for 4h at 37°C. Cells were washed three times with PBS, fixed 

in 4% neutral buffered formalin for 15min, washed three times with PBS, and mounted with 

Prolong Gold on microscope slides. For immunostaining, cells were grown on coverslips, 

washed three times in PBS, fixed in acetone:methanol (1:1) at −20° C for 10min, washed 

three times in PBS and blocked for 1h in 1% BSA in PBS. Cells were then incubated 

overnight at 4° C in primary antibody at 1:1000 dilution in blocking buffer for eNOS and 

1:200 dilution in blocking buffer for vWF. Cells were then washed three times in blocking 

buffer and then incubated in secondary antibody for 1h at room temperature: either 1:1000 

Cy3 conjugated goat anti-mouse IgG antibody for eNOS or 1:1000 Cy3 goat anti- rabbit IgG 

antibody for vWF. Cells were washed three times in PBS and mounted with ProLong Gold 

on microscope slides. Dil-Ac-LDL uptake and eNOS and vWF expression were observed 

using an Axio Observer D1 microscope (Zeiss) with rhodamine filter.

3. Measurements of transendothelial resistance (TER) across endothelial monolayers

Cells were grown in special wells (0.8 cm2) at seeding density of 1.25×105 cells/cm2, as we 

have previously reported (Antonov et al. 2008; Chatterjee et al. 2008). Electrical resistance 

was continuously monitored during the course of treatments with an Applied Biophysics 
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Electric Cell-Substrate Impedance Sensing System (Applied Biophysics, Albany, NY). The 

system can monitor 16 wells simultaneously and includes real time calculation and 

presentation of transendothelial resistance. At the bottom of each well there is a gold-film 

electrode. When cells cover the electrode, the impedance changes, because the cells block 

the current flow. The main contribution to impedance is due to narrow spaces beneath the 

cells and the intercellular junctions. As the cell alters its morphology or moves about, these 

passages vary causing changes in the electrical impedance. From changes in impedance, the 

barrier function of the cell can be determined (Tiruppathi et al. 1992).

4. Data analysis

All TER measurements were performed in triplicate or quadruplicate and each experiment 

was repeated at least three times. Values are presented as means ± SEM from one 

representative experiment. Differences among groups were examined by the two way 

ANOVA for repeated measures, followed by the Neuman-Keuls test, and were considered 

significant at P<0.05.

RESULTS

Identification of human lung microvascular endothelial cells

The harvesting procedures outlined in Methods consistently produced endothelial cells free 

of other cellular contamination. We call these cells microvascular because we utilized sub-

pleural lung segments with no visible large vessels, as well as subjected the chopped tissue 

to two successive 100µm filtrations. Furthermore, these cells are endothelial cells for several 

reasons. As shown in Figure 1, left upper panel, they are of small size, form a contact-

inhibited monolayer, exhibit the characteristic cobblestone appearance of endothelial cells 

and are highly homogeneous. These cells also possess properties and express proteins, 

which are characteristic of vascular endothelial cells. Thus, as shown in Figure 1, upper 

right panel, they take up acetylated LDL (Ac-LDL), while the two lower panels of Figure 1 

demonstrate that these cells express widely two proteins constitutively found in endothelial 

cells: von Willebrand factor (vWF) and endothelial (type 3) nitric oxide synthase (eNOS). 

The HLMVEC depicted in Figure 1 are of passage 3; similar results were observed in 

HLMVEC at passages 4–10. We have not studied HLMVEC beyond passage 10.

Barrier properties of human lung microvascular endothelial cells

Twenty-four to forty-eight hours after being seeded on 8-well arrays, in preparation for 

measurements of transendothelial resistance (TER), HLMVEC exhibited a tight monolayer 

with excellent resistance (~1000MΩ). To demonstrate the barrier properties of the 

HLMVEC, we tested six substances known to increase pulmonary endothelial permeability 

(a Gram negative and two Gram positive bacterial products, two receptor-acting agents and 

one cytoskeleton disrupting agent).

Figure 2 shows that lipopolysaccharide (LPS), a product of the wall of the Gram negative 

bacteria, E.coli, produced a time and concentration-dependent decrease in HLMVEC TER. 

LPS decreased TER at concentrations ranging from 1 to 10 EU (endotoxin units)/ml. At the 
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lowest concentration tested, 1 EU/ml, LPS reduced TER as early as one hour after addition 

and reached a nadir of 45% decrease in TER by 3–4h.

Figure 3 shows that the Gram positive bacterial products, listeriolysin (LLO; top panel) and 

pneumolysin (PLY; bottom panel) also decreased the TER of HLMVEC in a time- and 

concentration-dependent manner, but with different profiles. Whereas LLO produced a 20–

40% inhibition in TER in concentrations of 250–500 ng/ml, PLY caused a 40–70% 

inhibition at much lower concentrations of 62.5–250 ng/ml; additionally, the effect of PLY 

was much quicker than that of LLO: the nadir of the PLY-induced decrease in TER occurred 

at about 40min, whereas for LLO it was at around 12–14 hours.

To investigate the response of HLMVEC to two well-characterized receptor-acting 

edemagenic agents, we studied time- and concentration- dependent responses of HLMVEC 

to changes in TER caused by thrombin (Figure 4) and VEGF (Figure 5). Both thrombin and 

VEGF induced a profound and both time- and concentration-dependent decrease in TER, as 

expected. Thrombin, at concentrations between 0.0625 and 1 U/ml, produced a rapid 5–15% 

decrease in TER, within a few minutes, that – at the two higher concentrations- partly 

recovered, but remained depressed for at least three hours. Conversely, VEGF, at 

concentrations between 10–50 ng/ml produced a slow, but sustained 10–30% decrease in 

TER, which remained depressed for at least 11 hours.

Microtubules are an important cytoskeletal regulator of paracellular endothelial 

permeability. We exposed HLMVEC to the microtubule depolymerizing agent, nocodazole 

(Figure 6). At concentrations between 0.05 and 2µM, nocodazole caused a quick, 5–35% 

decrease in TER that was sustained for at least 30min.

DISCUSSION

The maintenance of a barrier between blood and tissue is a very important function of 

vascular endothelium. This is especially true for pulmonary microvascular endothelium, 

because failure to maintain a healthy barrier may result in impaired gas exchange, reduced 

blood oxygenation, acid-base disturbances, acute lung injury (ALI) and the acute respiratory 

distress syndrome (ARDS). Over the past three decades, cultured endothelial cells have been 

used frequently as a model for the study of mechanisms regulating endothelial barrier 

integrity. Most of these studies have utilized bovine and other animal endothelial cells or 

human umbilical vein endothelial cells, although recently a number of investigators have 

utilized commercially available human pulmonary arterial endothelial cells and a few of 

them, have employed human pulmonary microvascular endothelial cells. Because 

commercially available endothelial cells are both costly and of inconsistent quality, we 

developed a method for the routine and large scale in-house harvesting and culture of human 

lung microvascular endothelial cells (HLMVEC). This method produces consistently 

excellent quality HLMVEC, as shown under phase contrast microscopy (Figure 1). 

Importantly, they express proteins, characteristic of endothelial cells. Thus, HLMVEC 

strongly express both vWF and eNOS, two proteins that are nearly exclusively expressed by 

endothelial cells. vWF, a glycoprotein involved in hemostasis, is contained within the 

endothelial perinuclear Weibel-Palade bodies (Jaffe et al. 1974; Wagner et al. 1982). 
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Outside of platelets, endothelial cells are the only cells expressing vWF; since the cells 

shown in Figure 1 are not platelets, their extensive expression of vWF strongly suggest that 

they are endothelial cells with undetectable non-endothelial contamination. Similarly, even 

though, both platelets and alveolar epithelial cells express endothelial NOS (Muruganandam 

& Mutus 1994; Vyas-Read et al. 2007), the simultaneous expression of both eNOS and vWF 

in our cells confirms their identity as endothelial cells.

With this approach, it is not possible –nor intended- to separate arterial from venous 

microvascular cells. It is reasonable to expect that these cultures contain a mixture of both. 

Similarly, we cannot be certain of the exact vessel size of origin of these cells, even though 

no specimen contained visible-size vessels.

To investigate the barrier function of HLMVEC, we tested a number of permeability-

inducing agents. The Gram negative bacterial product, LPS, elicited a strong increase in 

HLMVEC permeability. This agrees with numerous literature reports. For example, in 

BPAEC, LPS decreases transendothelial electrical resistance through a mechanism sensitive 

to hsp90 inhibitors (Antonov et al. 2008), (Chatterjee et al. 2007). An important means of 

LPS-induced hyperpermeability involves the stimulation of endothelial contractile 

mechanisms and inhibition of Rho kinase effectively prevents endothelial contraction 

induced by LPS and reduces edema formation during septic inflammation (Essler et al. 

2000; Tasaka et al. 2005). In general, Rho A is considered to be important for the increase 

of endothelial permeability in response to inflammatory stimuli, such as thrombin, tumor 

necrosis factor-[alpha], and LPS (Essler et al. 1998; van Nieuw Amerongen et al. 2000; 

Wojciak-Stothard & Ridley 2002; Baumer et al. 2008). LPS-induced lung edema is also 

blocked by sphingosine-1-phosphate, a known activator of Rac 1 (Peng et al. 2004), and by 

cAMP, which, in part, stabilizes endothelial barrier function also via activation of Rac 1 

(Wojciak-Stothard et al. 2001; Birukova et al. 2007; Birukova et al. 2008). Endothelial 

barrier properties are known to be strictly dependent on the integrity of endothelial adherens 

and tight junctions (Bazzoni & Dejana 2004). LPS also increases paracellular permeability 

of human lung microvascular EC through tyrosine phosphorylation of VE-cadherin, p120 

catenin, and [gamma]-catenin (Gong et al. 2008), as well as through inhibition of NADPH 

oxidase activity (Chen et al. 2008). In these studies, the overwhelming majority of human 

lung endothelial cells (arterial or microvascular) were from commercial sources (Chen et al. 

2008; Gong et al. 2008; Tiruppathi et al. 2008). Our HLMVEC compare favorably and with 

increased sensitivity to those commercially available. Thus, Tiruppathi et al (Tiruppathi et 

al. 2008) reported that LPS concentrations as high as 4µg/ml (~12,000U/ml) did not alter the 

resting TER in commercially obtained HLMVEC, whereas at 1 U/ml, LPS produced a 45% 

decrease in TER in our own HLMVEC. Similarly, in our lab, the TER response of our 

HLMVEC to 1U/ml LPS is equivalent to the TER response of our in-house harvested bovine 

pulmonary arterial endothelial cells (BPAE) to 1000EU/ml (Chatterjee et al. 2008).

Our findings that both pneumolysin (PLY), the main virulence factor of Streptococcus 

pneumoniae and listeriolysin (LLO), the main virulence factor of Listeria monocytogenes, 

profoundly decrease TER in HLMVEC agree with published studies. The family of 

cholesterol-dependent pore-forming toxins, to which PLY and LLO belong, produce a rapid 

increase in intracellular Ca2+ and diacylglycerol levels (Repp H 2002) and have been 
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implicated in severe pulmonary hyper-permeability (Ananthraman A 1983), (Witzenrath M 

2006). The interaction of Listeria monocytogenes with endothelial cells represents a crucial 

step in the pathogenesis of listeriosis. Incubation of human umbilical vein endothelial cells 

(HUVEC) with wild-type L. monocytogenes provokes a strong, immediate NO synthesis, 

attributable to LLO and can be reproduced by purified LLO (Rose F 2001). In addition, 

incubation of HUVEC with LLO is a potent stimulus for sustained up-regulation of pro-

inflammatory cytokines (IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor) 

(Rose F 2001). The LLO-induced transmembrane Ca2+ flux in endothelial cells leads to the 

activation of phospholipase, generation of diacylglycerol, ceramide, and NF-κB, which may 

contribute to the pathogenic sequelae in severe listerial infection and sepsis. Recently, 

intravascular PLO dose-dependent increased pulmonary vascular resistance and lung 

microvascular permeability. In these studies, PLY was mainly detected in pulmonary arterial 

endothelial cells. PLY also increased permeability of HUVEC monolayers (Witzenrath M 

2006). Furthermore, in neuroblastoma cells, PLY induced cholesterol- and Rho and Rac 

GTPase-dependent actin remodeling leading to the formation of actin stress fibers, filopodia, 

and lamellipodia (Iliev AI 2007). It is not clear why PLY exhibited a much faster time 

course in the decrease of TER in HLMVEC than LLO (1h vs. 12h). We have not yet 

investigated whether similar differences exist in the time course of calcium influx and 

stimulation of the previously described pro-inflammatory pathways between LLO and PLY 

in HLMVEC.

In agreement with literature reports, our HLMVEC responded to thrombin by decreasing 

TER in a concentration-dependent manner. Thrombin induces barrier dysfunction of 

pulmonary endothelial monolayer and this is associated with dramatic cytoskeletal 

reorganization, activation of actomyosin contraction, and gap formation (Birukova et al. 

2004b). Thrombin-induced actin reorganization in BPAEC requires activation of both 

myosin light chain kinase (MLCK) and protein kinase C (PKC) (Zhao & Davis 1996). The 

thrombin-induced endothelial hyper-permeability occurs in conjunction with calcium 

mobilization as well as PKC activation (Lum et al. 1993), (Lum et al. 1992). Like LPS, 

thrombin‘s effect on endothelial cell cytoskeletal rearrangement and TER is inhibited by 

hsp90 inhibitors (Antonov et al. 2008). Also like LPS, the thrombin-induced barrier 

dysfunction requires RhoA (Vouret-Craviari et al. 1998; Hippenstiel et al. 2000; Woo & 

Kim 2002), as well as the induction of superoxide (Holland et al. 1998; Li et al. 2002; 

Pandian et al. 2005). These effects of thrombin are mediated via G-proteins, which couple 

the thrombin receptor to several key physiological responses.

VEGF increases permeability by at least two different pathways: one involving Raf-1, MEK, 

and ERK-1/2; and the other involving NOS. PKC, which increases permeability via 

increased NO production (Huang & Yuan 1997), is a mediator of VEGF-induced ERK-1/2 

phosphorylation and hyperpermeability (Breslin et al. 2003). In vitro studies demonstrate 

that VEGF causes an increase in protein permeability across primary cultures of bovine 

macro- and microvascular lung endothelial cell monolayers and that this is associated with 

VE- and E-cadherin phosphorylation and the formation of actin stress fibers. Activation of 

the stress protein response prevents the VEGF-mediated changes in protein permeability 

across EC monolayers and reduces the phosphorylation of VE-and E-cadherin, as well as the 
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formation of actin stress fibers (Godzich et al. 2006). The VEGF increase in endothelial cell 

permeability is prevented and reversed by hsp90 inhibitors (Antonov et al. 2008). The 

sensitivity of HLMVEC to VEGF was comparable to that of BPAEC: in both cell types 

50ng/ml VEGF elicited ~30% decrease in TER. (Antonov et al. 2008)

The endothelial cytoskeleton plays a critical role in the regulation of endothelial barrier 

function (Dudek & Garcia 2001). Disassembly of microtubules by various agents, including 

nocodazole, results in a hyper-permeable endothelial monolayer (Verin et al. 2001; 

Birukova et al. 2004a; Birukova et al. 2005). We confirmed this observation in our 

HLMVEC. Nocodazole, produced a concentration-dependent decrease in HLMVEC TER, 

that was comparable to that previously observed in BPAE (Antonov et al. 2008).

In summary, we present a method for in-house harvesting, identification and culture of 

human lung microvascular endothelial cells and provide evidence that these cells exhibit 

predictable barrier functions. Altered pulmonary microvascular endothelial barrier function 

is a hallmark of ALI and ARDS, where mortality remains virtually unchanged in over 40 

years. Whenever available, human tissue is a superior alternative to animal tissue for 

experimental studies; in addition in-house harvested human endothelial cells can provide a 

more economical and better quality alternative to those available commercially.
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FIGURE 1. 
top left panel: phase contrast micrograph of HLMVEC (passage 3); the other three panels 

demonstrate well established characteristics of all endothelial cells, i.e., uptake of acetylated 

LDL (Ac-LDL: top right panel), expression of von Willebrand factor (vWF; bottom l;eft 

panel) and expression of endothelial (or type 3) nitric oxide synthase (eNOS; bottom right 

panel). See Materials and Methods for details.
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FIGURE 2. 
time and concentration-dependent decrease in HLMVEC transendothelial resistance (TER) 

by LPS. Eight-well arrays were inoculated with HLMVEC (100,000); 48h later, confluent 

monolayers were observed exhibiting resistance of ~900MΩ. LPS or vehicle were added 

(15µl) at the time indicated by the arrow and TER values were continuously recorded at 

20sec intervals over the next 18h. Data shown are means ±SEM of four replicates. *:P<0.05 

from Vehicle group.
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FIGURE 3. 
time and concentration-dependent decrease in HLMVEC transendothelial resistance (TER) 

by the Gram positive bacteria products lysteriolysin (LLO; A) and pneumolysin (PLY; B). 

Eight-well arrays were inoculated with HLMVEC (100,000); 48h later, confluent 

monolayers were observed exhibiting resistance of ~900MΩ. LPS or vehicle were added 

(15µl) at the time indicated by the arrow and TER values were continuously recorded at 

20sec intervals over the next 18h (A) or 150min (B). Data shown are means ±SEM of four 

replicates. *:P<0.05 from corresponding Vehicle group.
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FIGURE 4. 
time and concentration-dependent decrease in HLMVEC transendothelial resistance (TER) 

by thrombin. Eight-well arrays were inoculated with HLMVEC (100,000); 48h later, 

confluent monolayers were observed exhibiting resistance of ~900MΩ. Thrombin or vehicle 

was added (15µl) at the time indicated by the arrow and TER values were continuously 

recorded at 20sec intervals over the next 160min. Data shown are representative of three 

separate experiments with comparable results.
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FIGURE 5. 
time and concentration-dependent decrease in HLMVEC transendothelial resistance (TER) 

by vascular endothelial growth factor (VEGF). Eight-well arrays were inoculated with 

HLMVEC (100,000); 48h later, confluent monolayers were observed exhibiting resistance 

of ~900MΩ. VEGF or vehicle was added (15µl) at the time indicated by the arrow and TER 

values were continuously recorded at 20sec intervals over the next 11h. Data shown are 

means ±SEM of four replicates. *:P<0.05 from Vehicle group.
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FIGURE 6. 
time and concentration-dependent decrease in HLMVEC transendothelial resistance (TER) 

by the microtubule depolymerizing agent, nocodazole. Eight-well arrays were inoculated 

with HLMVEC (100,000); 48h later, confluent monolayers were observed exhibiting 

resistance of ~900MΩ. Nocodazole or vehicle was added (15µl) at the time indicated by the 

arrow and TER values were continuously recorded at 20sec intervals over the next 30min. 

Data shown are representative of three separate experiments with comparable results.
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