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Abstract

Air pollution epidemiology continues moving toward the study of mixtures and multi-pollutant 

modeling. Simultaneously, there is a movement in epidemiology to estimate policy-relevant health 

effects that can be understood in reference to specific interventions. Scaling regression coefficients 

from a regression model by an interquartile range (IQR) is one common approach to presenting 

multi-pollutant health effect estimates. We are unaware of guidance on how to interpret these 

effect estimates as an intervention. To illustrate the issues of interpretability of IQR-scaled air 

pollution health effects, we analyzed how daily concentration changes in two air pollutants (NO2 

and PM2.5; nitrogen dioxide and particulate matter with aerodynamic diameter ≤ 2.5μm) related to 

one another within two seasons (summer and winter), within three cities with distinct air pollution 

profiles (Burbank, California; Houston, Texas; and Pittsburgh, Pennsylvania). In each city-season, 

we examined how realistically IQR-scaling in multipollutant lag-1 time-series studies reflects a 

hypothetical intervention that is possible given the observed data. We proposed 2 causal 

conditions to explicitly link IQR-scaled effects to a clearly defined hypothetical intervention. 

Condition 1 specified that the index pollutant had to experience a daily concentration change of 

greater than one IQR, reflecting the notion that the IQR is an appropriate measure of variability 

between consecutive days. Condition 2 specified that the co-pollutant had to remain relatively 

constant. We found that in some city-seasons, there were very few instances in which these 

conditions were satisfied (e.g., 1 day in Pittsburgh during summer). We discuss the practical 

implications of IQR scaling and suggest alternative approaches to presenting multi-pollutant 

effects that are supported by empirical data.
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Air pollution epidemiology is increasingly moving toward analysis of mixtures and multi-

pollutant modeling,1,2 which has motivated a robust discussion of the analytical methods 

and regulatory frameworks that are best-suited for this complex undertaking.3–5 Including 

multiple co-pollutants as independent variables in a regression model remains a common 

technique in time-series studies of acute effects.6–14 In this approach, the investigator often 

multiplies the regression coefficient by some large concentration change (e.g., an 

interquartile range [IQR]) to express the health effect of one pollutant, controlling for the co-

pollutant(s).12,13,15 This scaling technique is a form of regression coefficient 

standardization.

Although the statistical challenges associated with highly correlated exposure variables are 

well-known in air pollution epidemiology,3,16 there has been less attention paid to the causal 

interpretation of health effects under this IQR scaling framework. Although there is a 

movement in epidemiology to estimate policy-relevant effects that can be defined in 

reference to specific interventions,17–19 investigators rarely explicitly state the intervention 

that IQR-scaled health effects correspond to. As researchers continue to improve 

communication between the fields of epidemiology and risk assessment, more explicit 

dialogue about the chosen modeling and scaling approach behind effect estimate calculation 

will enable more evidence-based regulatory policies.20 Regression coefficient 

standardization is argued to permit comparison of health effects of multiple exposures on 

one outcome, or one association across various populations.21,22 However, the technique has 

come under criticism for conflating specific characteristics of a given study (e.g., sampling 

design) and causal effects.23 For example, two hypothetical studies with identical 

populations and identical health effect estimates of a single pollutant but very different 

exposure distributions (say, due to sampling) will result in greatly different scaled effects. 

Thus, the scaling of the health effect estimate is very sensitive to the exposure profile of the 

sample(s), as well as to the effect of exposure.24 It has been argued that such scaling results 

in effect estimates without causal interpretation.25

In recent years, other sub-fields of epidemiology have grappled with how to explicitly define 

the intervention that a given effect estimate corresponds to. Social epidemiology, in 

particular, has articulated the challenges of defining interventions in the presence of 

immutable exposure variables, highly correlated independent variables, and social 

selection.26–28 In some cases, effect estimates have been demonstrated to rely on covariate 

strata with no variability in the exposure (non-positivity or “off-support” estimation),27,29,30 

which prevents defining a counterfactual intervention, and may introduce bias.31 While 

post-model regression coefficient scaling does not threaten validity in the same manner as 

off-support estimation, it may present an analogous situation from a causal perspective: 

health effect estimates that represent hypothetical interventions that are poorly defined, 

unobserved in the empirical data, and perhaps impossible. While unfeasible/impossible 

interventions do not necessarily threaten the identifiability of a causal parameter,32 in 

epidemiology we often care about the practical applications of our findings, and the 

feasibility of effect estimates is central to this assessment.33,34

To illustrate the concerns related to unclearly defined or impossible health effect estimates 

in air pollution epidemiology, we analyze a simple exposure regimen of two ambient air 
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pollutants, assessing how daily concentration changes in two pollutants relate to one 

another. Specifically, we analyze nitrogen dioxide (NO2) and particulate matter with 

aerodynamic diameter ≤ 2.5μm (PM2.5), co-pollutants that are frequently studied in multi-

pollutant models.35–37 We analyze these co-pollutants in three US cities with different air 

pollution profiles, to illustrate how several factors (e.g., emission sources, local 

meteorology) may affect the extent to which an IQR-scaled effect estimate may be 

appropriate in a given dataset. Having described the conventional IQR-scaling approach for 

multi-pollutant models (hereafter called “the IQR approach”), we first identify one set of 

causal conditions that may link the IQR approach to an underlying real-world intervention. 

We then map the IQR approach onto several distinct air pollution profiles, to examine 

whether the intervention ostensibly represented by the IQR-scaled effect is empirically 

observed in various geographic regions and seasons. Our goal is to assess the extent to 

which the parameter estimate scaling commonly presented in the epidemiologic literature 

reflects real-world exposure scenarios for acute air pollution health effects. We also aim to 

provide examples of how researchers can assess the appropriateness of the air pollution 

effect estimates they present in acute health-effects studies. Our ultimate goal is to stimulate 

a discussion on best practices for air pollution health effect scaling, enabling calculation and 

presentation of more realistic health effect estimates for scientific and regulatory purposes.

Causal conditions underlying the IQR approach

Although IQR scaling is standard practice, we are unaware of a detailed explication of how 

to interpret and apply the effects it produces, in terms of real-world health effects. Linking a 

health effect estimate to an underlying causal parameter requires causal assumptions, which 

are separate from the statistical assumptions required for unbiased estimation from a 

regression model (e.g., linearity given the link function, correct specification of main terms 

and interaction terms, independent observations).32 We define one set of causal assumptions 

below, in the form of two separate but related causal conditions. We recognize that these 

causal conditions are unlikely to capture the causal meaning that each researcher attributes 

to her/his IQR-scaled air pollution effects; these are our attempt to express a potential 

intervention represented by IQR-scaled effects.

The first condition relates to using the IQR over the study period as a scaling interval. Here 

we focus on acute air pollution effects estimated in time-series studies, specifically lag 1 

(consecutive days) effects. We use “lag-1 effect” to refer to the effect of the air pollution 

concentration on the previous day (day X-1) on a health outcome on the index day (day X). 

We use “daily difference” to refer to air pollution concentration changes between the day 

before the index day (day X-1) and the index day (day X). The daily difference and the lag-1 

effect are distinct phenomena, and we posit that they are connected. Because the lag-1 health 

effects of one or more air pollutants are estimated between consecutive days, a hypothetical 

experiment corresponding to this lag would intervene on exposure to increase/decrease 

pollutant concentration(s) over a similar, temporally short time-frame. This implies that for 

intervention-relevant scaling of lag-1 health effects, the scaling interval applied to the 

regression coefficient should reflect an amount of variability that is possible in the exposure 

of interest, in this case an air pollutant, on consecutive days. Normally the IQR that is used 

for regression scaling is calculated from the full distribution of that air pollutant for the 
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whole study period or across a season, thus including the extremes of exposure across the 

study period, regardless of how temporally close these extreme concentrations are. We 

hypothesized that the IQR across a season, which is often used to present results in this field, 

would often be larger than the IQR of daily differences within a season. This gives rise to 

the first causal condition, formalized below: that an IQR-sized concentration change should 

be observed on some consecutive days in the study period.

Second, when multiplying one pollutant’s coefficient by an IQR, controlling for co-

pollutant(s), there is a tacit assumption that the concentration in one pollutant can change by 

a large interval while holding the co-pollutant(s) relatively constant (in cases where co-

pollutants are modeled as main terms only, without interaction terms). This particular 

condition is seldom empirically examined, and so it is not known if days with a large 

concentration change in one pollutant and relatively small changes in the co-pollutant(s) 

actually exist. Given the strong correlation among many ambient air pollutants, assessing the 

feasibility of a hypothetical intervention defined by an IQR-scaled multi-pollutant regression 

coefficient requires examining this condition. The hypothetical intervention defined by these 

conditions (which the IQR approach estimates, in our opinion) is as follows: If we were to 

change the index pollutant by a large (IQR-sized) interval between day X-1 and day X, 

holding the co-pollutant constant between these consecutive days, what would be the effect 

on the health outcome on day X? We now test how frequently these conditions hold, using 

real-world data for two pollutants in three locations in the U.S.

Data source

We obtained ambient air pollution data from the U.S. Environmental Protection Agency’s 

Air Quality System for the years 2010 through 2012. We analyzed daily concentrations (24-

hour averages) of NO2 in parts per billion (ppb) and PM2.5 in micrograms per cubic meter 

(μg/m3) from a central monitoring station in each of the following cities: Burbank, 

California; Houston, Texas; and Pittsburgh, Pennsylvania. These locations were chosen 

because they represent diverse air pollution profiles, emissions sources, and climatic 

conditions, enabling analysis of the joint NO2/PM2.5 exposure regimen across a variety of 

real-world settings of interest. NO2 and PM2.5 were chosen because both are associated with 

a host of acute adverse health outcomes,35,38 and because they are frequently analyzed 

together in multi-pollutant models.9,36,37 When there was more than one monitoring station 

in a city, we chose the monitoring station that had data for all of the EPA’s criteria air 

pollutants in the years we studied.

Methodological approach

We analyzed how daily concentration changes in one pollutant (the index pollutant) varied 

with daily concentration changes in the co-pollutant. We chose to focus on the daily 

differences between consecutive days in our analyses, corresponding to lag-1 health effects. 

In the literature, both PM2.5 and NO2 have been demonstrated to cause adverse health 

outcomes at lag 1.35,38 We calculated consecutive daily concentration differences by 

subtracting the previous day’s pollutant concentration from each daily concentration. 

Because the strength and direction of pollutant correlations may change between seasons, 
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we analyzed concentration changes separately by season.16 We analyzed daily multi-

pollutant concentration changes in summer (defined as June – August) and winter (defined 

as December – February) across the study years. We chose to use a consistent, simplified 

approach for defining seasons across cities to enable comparison of results. Multiple lag 

structures and combinations of lags may be of real-world interest; here we present only one 

combination, in order to focus the discussion and to enable comparison between cities and 

seasons.

Sources of variability

We analyzed two related sources of variability for each pollutant in each of the six city-

seasons (3 cities × 2 seasons). First, we examined the distribution of daily pollutant 

concentrations across the study years, within each city-season. This distribution and its 

parameters are referred to as “study period” (e.g., study period IQR). Studies that employ 

IQR scaling typically use this study period IQR to scale effect estimates.

Separately, we analyzed daily concentration differences to represent a lag-1 effect. We refer 

to this distribution and its parameters as “daily difference,” e.g., the daily-difference IQR is 

the IQR of daily concentration changes in the air pollutant. This terminology distinguishes 

the daily-difference IQR from the study-period IQR, which is conventionally (though not 

exclusively39) analyzed in air pollution epidemiology.

Assessing whether causal conditions are met

We operationalized the two conditions discussed above, in order to quantify how many days 

within a city-season met each condition for scaling of lag 1 health effects. The first 

condition, that a study period IQR adequately reflects concentration differences between 

consecutive days, we refer to as Condition 1. This condition involves only one pollutant, and 

it is satisfied for a given day if the absolute value of the daily difference equals or exceeds 

the study period IQR for that pollutant in the given city-season. We opted to consider the 

absolute value of the daily difference between consecutive days because days with large 

concentration changes reflect the first condition regardless of the direction of the 

concentration change.

Condition 2 includes the rule defined in Condition 1 as well as a second condition, that the 

concentration of the co-pollutant remains relatively constant while the index pollutant of 

interest changes by a large interval (i.e., the IQR). Therefore, Condition 2 is a compound 

condition that involves both co-pollutants. We operationalized “remains relatively constant” 

as days with a low absolute value-daily difference (specifically, days whose absolute value-

daily differences were in the lowest tertile). We chose the 33rd percentile as the cutoff for 

“low absolute daily difference” because it excludes days with high and moderately large 

concentration changes, while still capturing a reasonable proportion of days. In defining 

Condition 2, we imposed a dichotomous cutoff on what is a continuous phenomenon 

(variability in the co-pollutant); therefore we ran sensitivity analyses of Condition 2, 

fluctuating the “low daily difference” cutoff. We considered the 40th and 20th percentiles as 

alternative cutoffs and examined how results changed.

Snowden et al. Page 5

Epidemiology. Author manuscript; available in PMC 2015 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In a given pair of co-pollutants, one must consider changes in each individual pollutant and 

its co-pollutant as separate questions. If a day satisfies Condition 2 with NO2 as the main 

pollutant and PM2.5 as the co-pollutant, that day will by definition not satisfy Condition 2 

when considering PM2.5 as the main pollutant and NO2 as the co-pollutant. Therefore, we 

ran all analyses twice, once considering NO2 as the index pollutant and PM2.5 as the co-

pollutant, and the second time switching the two.

To provide a concrete example, in Pittsburgh during winter, the study period IQR for NO2 

was 9.7 ppb. The 33rd percentile of absolute value-daily differences for PM2.5 was 2.0 

μg/m3. Considering NO2 as the index pollutant and PM2.5 as the co-pollutant, days where 

the NO2 daily difference was more extreme than 9.7 ppb satisfy Condition 1 (large change 

in index pollutant). Among these days of large NO2 concentration change, the subset that 

had PM2.5 daily differences with absolute value less than 2.0 μg/m3 satisfy criterion 2.

Analysis

We compared the study-period distribution and the daily-difference distribution for both 

NO2 and PM2.5 in each city-season. We present median values, quartile values, and the IQR. 

We compared the study period IQR to the daily difference IQR by calculating a ratio of the 

two values. This enabled direct comparison of the two metrics of variability, and of how 

study period parameters map onto the distribution of daily differences. For both daily 

concentrations over the study period and daily differences, we calculated Pearson correlation 

coefficients for NO2 and PM2.5 for each city-season. We compared the study-period 

correlation to the daily-difference correlation using the method of Steiger for dependent 

correlations (specifically, Steiger’s modification of Dunn and Clark’s z; equation 1540 p.247).

To determine the extent to which the Conditions of the IQR method were met in each city-

season, we present the number and percent of days that satisfied each, separately for NO2 

and PM2.5 as the index pollutant. We represent these findings graphically, in daily difference 

scatterplots between NO2 and PM2.5 for each city-season. We use lines and shading to 

represent the two conditions. All analyses were conducted using R (version 2.13.1, R 

Foundation for Statistical Computing; Vienna, Austria).

Results

In all cities and seasons, greater NO2 variability occurred in the winter than summer, as 

indicated by IQRs (Table 1). Burbank had the largest IQRs for NO2, with values between 

6.9 ppb (summer daily difference IQR) and 12.2 ppb (winter study period IQR). 

Interquartile ranges for PM2.5 were lowest in Houston, between 4.5 μg/m3 (summer daily 

difference IQR) and 6.1 μg/m3 (summer study period IQR). PM2.5 variability was higher 

during winter in Burbank (10.6 μg/m3, study period IQR), as compared with summer 

months.

Generally, the study period IQR was greater than the daily difference IQR (10 of 12 city-

seasons, Table 1), reflecting greater variability across the season than between consecutive 

days. In summer, study period IQRs were consistently larger than the daily difference IQRs. 

For example, in Burbank the study-period IQR of NO2 (11.0 ppb) was 60% larger than the 
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daily difference IQR (6.9 ppb). Other differences were in the 20% – 35% range (except for 

Houston, 11%). In winter, no study-period IQR was more than 25% greater than its 

corresponding daily difference IQR.

The study-period correlations between NO2 and PM2.5 were similar to the daily- difference 

correlations between pollutants in all city-seasons (Table 2). For all cities, ambient NO2 and 

PM2.5 were more strongly correlated during winter months as compared with summer 

months. Pittsburgh exhibited the strongest correlations between NO2 and PM2.5 – 

approximately 0.45 during summer and 0.70 during winter. The study-period correlations 

between pollutants and daily-difference correlations between pollutants did not differ 

meaningfully within any city-season (P>0.05 for all comparisons).

In examining the number of days that met Condition 1, generally 10% to 25% of days per 

city-season had a daily difference exceeding the study-period IQR (Table 3). Considering 

NO2 as the index pollutant, summer days in Burbank and Pittsburgh had a smaller 

proportion: 10 days in Burbank (4.6%) and 17 in Pittsburgh (6.8%). Among these days of 

high concentration change in the index pollutant, the proportion that met the additional 

requirement of Condition 2 was always below 50%, in many cases much lower (less than 

25% in 6 of 12 city-seasons). This demonstrates that a minority of high-difference days in 

the index pollutant exhibited small differences in the co-pollutant. The overall proportion of 

days that met Condition 2 never exceeded 7%, and in some cases was below 1%. During 

summertime, considering NO2 as the index pollutant, there were only 2 such days (0.9%) in 

Burbank, and 1 such day in Pittsburgh (0.4%).

A region may fail to meet the joint stipulations of Condition 2 because of failure to satisfy 

either component of this condition. There may be inadequate variability in daily differences 

for the index pollutant (i.e., not meeting Condition 1). Or, on such days of high variability, 

the co-pollutant may also generally exhibit high daily differences (i.e., not meeting 

Condition 2). Figures 1 and 2 graphically demonstrate two such instances in which few days 

met Condition 2. In Burbank during summer, there were relatively few days meeting 

Condition 1 for either index pollutant. Such days are represented by dots that fall outside of 

the dashed lines. In particular when NO2 was the index pollutant (Figure 1A), the large 

majority of days clustered near the x-axis origin. The shaded regions in the graph represent 

further restriction to days that satisfy Condition 2, i.e., days of low concentration change. 

Application of this Condition further restricts the number of days that are on-support for the 

IQR method, leaving only two days that satisfy both conditions.

Figure 2 shows daily differences during winter in Pittsburgh. In this instance, a moderate 

proportion of days met Condition 1 (dots outside of the dashed lines). However, due to the 

high correlation between PM2.5 and NO2, very few days satisfy Condition 2 (e.g., the two 

dots within the shaded region in Figure 2B). Complete graphics for all city-seasons and both 

index pollutants are presented in the web appendix. In sensitivity analyses examining 

alternative definitions of Condition 2, results were not greatly changed (eTable 1, eFigures 5 

and 6). When the “low-concentration-change” cutoff was increased to the 40th percentile, 

the proportion of days satisfying Condition 2 still never exceeded 10%. When decreased to 

the 20th percentile, it was more frequently below 1%.
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Discussion

We analyzed changes in daily concentrations in ambient PM2.5 and NO2 across three cities 

and two seasons to demonstrate how researchers may assess whether IQR scaling 

realistically reflects hypothetical interventions that are possible given the observed data. We 

attempted to demonstrate that the issues of time-scale of exposure variability, regression 

coefficient scaling, and correlation between co-pollutants have implications for the causal 

interpretation of multi-pollutant health effects. Ultimately, our goal was to determine 

whether IQR-scaling of multi-pollutant health effects reflects actual daily changes in multi-

pollutant exposure regimens.

We believe that scaling air pollution effects to an interquartile interval implies that this is a 

reasonable concentration change in the time-window in which health effects are being 

estimated. In considering whether the study period IQR is an appropriate scaling interval for 

lag-1 health effects in time-series studies (i.e., Condition 1), we found that such variability 

was infrequently represented in season-stratified analyses. We also analyzed whether there 

were days in which a second co-pollutant’s concentration remained relatively constant, 

alongside the large daily difference in the index pollutant (i.e., Condition 2). We found that 

such daily concentration changes were adequately represented in very few real-data 

scenarios. For example, at least 5% of days in Houston exhibited this type of variability in 

the co-exposures of NO2 and PM2.5, making the IQR-scaled health effect estimate readily 

understandable as a hypothetical intervention. However, we also observed that such days are 

almost never observed in some city-seasons, for example Burbank during summer and 

Pittsburgh in both seasons. At least two factors contributed to this: (1) daily differences in 

pollutants rarely exceeded the study period IQR, and (2) days of high concentration changes 

in one pollutant also generally exhibited high concentration changes of the co-pollutant. In 

such scenarios, the hypothetical intervention, that of changing one pollutant a large amount 

while holding the other constant, is not supported by our data.

The approach that we used to characterize changes in multi-pollutant exposure regimens 

required several simplifications. First, air pollution health effects occur at various time lags 

in addition to lag 1.41,42 Second, although we used ambient pollutant concentrations from 

central site monitors, the true exposures of individuals are not necessarily represented by 

these central monitors. Exposure science continues to improve estimation of ambient air 

pollution for individual persons, where they spend their time.43 Third, our definition of 

“high change in concentration of the index pollutant” was based on the literature (i.e., a 

study period IQR), but our definition of “small change in the co-pollutant” was arbitrary; 

however, we examined alternative definitions. Fourth, precise definitions of season depend 

on local meteorology, and our simplified definitions may not optimally capture the full 

winter and summer air pollution profiles in our chosen cities. Finally, the three cities we 

selected represent distinct ambient air pollution profiles but do not represent the full range of 

ambient air pollution profiles. In light of this, it is worth noting that several of the 

correlations between NO2 and PM2.5 that we observed in this study were lower (i.e., <0.20 

during summer in Burbank and Houston) than correlations commonly observed in many 

multi-pollutant studies (i.e., >0.50 during winter in Pittsburgh, and in other regions6,10). 
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Higher co-pollutant correlations would decrease the probably that Condition 2 would be 

satisfied.

Nevertheless, our goal was to examine the practical interpretation of IQR-scaled health 

effects in multiple-pollutant modeling. Conducting this analysis across regions and seasons 

required uniform methods across the city-seasons; hence, our simplifying assumptions. We 

found evidence of ill-defined/unfeasible causal effects in some cases (given our particular 

definition of a hypothetical intervention). It is worth noting that (as in our examples), a 

single modeling or scaling approach may have a stronger empirical data basis in one region 

or season than others. It is our intent that this example should catalyze discussion of causal 

interpretation of health effects in environmental epidemiology, including how such effect 

estimates map onto interventions.18,19 Our general approach may also be applied using 

different pollutants, lag structures, time-scales, and exposure measurement methods. 

Although we addressed IQR scaling for single pollutants at temporally short lags (i.e., 

condition 1) and IQR scaling for multiple pollutants (i.e., condition 2) in one discussion, it is 

not a necessary feature of our approach to consider these issues in tandem.

Our approach of connecting IQR scaling to a hypothetical intervention is only one possible 

approach. With our causal conditions, we attempted to link commonly presented health 

effect estimates to a causal parameter of interest; however, these specific rules and this 

general approach are not broadly accepted by researchers presenting these health effects. 

Defining a hypothetical intervention is investigator-dependent; for example one could 

choose to hypothetically intervene on other variables in the multivariable model (e.g., 

temperature), while another investigator may consider them nuisance variables. Similarly, 

the failure to empirically observe an exposure-change scenario does not mean that such a 

scenario/intervention is not possible, and the health effects of such unobserved scenarios 

may well be of interest. However, investigators must be cautious in assigning causal 

interpretation to such interventions. In some cases, IQR scaling may violate the consistency 

assumption, which requires that “one needs to be able to explain how a certain level of 

exposure could be hypothetically assigned to a person exposed to a different level.”44 

Although less broadly appreciated than the causal assumptions of positivity and 

exchangeability,31,45,46 consistency is nonetheless an important assumption for sharply 

defining causal contrasts.

Conclusions

The continued move toward mixtures and multi-pollutant research promises to more 

realistically reflect the ambient air pollution profile that humans are exposed to. This shift 

holds scientific promise as well as hurdles. We have aimed to elucidate one of these 

challenges, the importance of defining a hypothetical intervention that reflects actual air 

pollution scenarios that are contained in the dataset. The most immediate implication of our 

work is the suggestion that investigators should consider scaling air pollution health effects 

using distributions that reflect the temporal association between exposure and outcome (e.g., 

daily differences for lag-1 research; maximal concentration change over a 4-day window for 

lag-4 health effects; concentration changes within a day for lag-0 health effects), rather than 

the distribution over the entire study period. Different air pollution exposure periods (e.g., 
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long-term health effects), modeling approaches (e.g., non-linearity or flexibly modeled 

exposure variables), and study designs (e.g., case-crossover) will likely require different 

approaches to defining a hypothetical intervention. We also believe that scaling co-

pollutants simultaneously to reflect joint air pollution exposure changes is a promising 

future direction47,48 (e.g., through the use of the g-computation plug-in estimator).49,50 By 

more clearly defining a hypothetical intervention in reference to empirical data, we can aid 

in the interpretation of our presented health effect estimates, making them more readily 

applicable for scientific and regulatory purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Ambient NO2 and PM2.5 daily differences during summer in Burbank, California, 2010 – 

2012. Figures 1 and 2 graphically demonstrate which days met Conditions 1 and 2 for 

selected city-seasons (summer in Burbank and winter in Pittsburgh). The points in 

scatterplots are the same for A and B, with the index pollutant toggled (NO2 for A, PM2.5 

for B). Days that satisfy Condition 1 (i.e., days with absolute value-daily differences 

exceeding the study period IQR) are represented by the points that fall outside of the dashed 

lines. Within this region beyond the dashed lines, days that satisfy Condition 2 are 

represented by the dots within the shaded region of “low daily difference in the co-

pollutant” (i.e., the 33rd percentile of absolute value-daily differences). A. NO2 as index 

pollutant B. PM2.5 as index pollutant
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Figure 2. 
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Ambient NO2 and PM2.5 daily differences during winter in Pittsburgh, Pennsylvania, 2010 – 

2012 A. NO2 as index pollutant B. PM2.5 as index pollutant
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