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Abstract

Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. 

Neurophysiological and computational investigations point to common mechanisms for gamma or 

odor associated oscillations across phyla (40–100 Hz in mammals, 20–30 Hz in insects, 0.5–1.5 

Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle 

neurons and inhibitory interneurons in the olfactory bulb, antennal lobe, or procerebrum. Recent 

studies suggest important mechanisms that may modulate gamma oscillations, including 

neuromodulators and centrifugal input to the olfactory bulb and antennal lobe. Beta (20 Hz) and 

theta (2–12 Hz) oscillations coordinate activity within and across brain regions. Olfactory beta 

oscillations are associated with odor learning and depend on centrifugal olfactory bulb input, 

while theta oscillations are strongly associated with respiration.

Introduction

Oscillations abound in cortical circuits. If excitatory and inhibitory neurons get together in 

large, interconnected groups, oscillations happen. Oscillations that have become the 

hallmark of olfactory areas in all vertebrate species so far examined have analogous 

counterparts in arthropods and molluscs. The olfactory circuit has evolved separately across 

phyla [1], which suggests that oscillations may be a very good solution to a neural 

processing problem.

This review addresses circuitry and other mechanisms that support neural oscillations within 

and across three. Most research has been focused on the mammalian system, but there are 

important lessons to be learned from reaching across the taxonomic aisles. In fact, this reach 

has so far enabled a deeper mechanistic and functional understanding of odor-evoked 

gamma oscillations.
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Local sensory processing and coordination of neurons

Olfactory bulb (OB) gamma oscillations, which initiate on the transition from inhalation to 

exhalation, were the first cortical oscillations described in detail (Fig. 1). Lord Adrian 

detailed these oscillations recorded from hedgehogs, cats and rabbits with frequencies 

around 40 Hz. He noted both induced (by odors) and evoked (spontaneous) waves recorded 

from electrodes on the surface of the olfactory bulb [2]. The gamma oscillation circuitry was 

first described for pyriform cortex (PC) by Freeman [3], and a few years later for the OB by 

Rall and Shepherd [4]. We now know that fast (gamma) oscillations in the mammalian OB 

range from 40 to 100 Hz or more and that the frequency varies across species [5]. In cortical 

systems olfactory oscillations arise in isolated frequency bands out of the 1/f (log(power)/

log(frequency)) background cortical activity (Fig. 1a; [6]). OB gamma oscillations are 

supported by the reciprocal dendrodendritic synapse between glutamatergic mitral or tufted 

(MT) cells and GABAergic granule cells (GCs). MT cells’ firing probability matches 

gamma oscillations, so the oscillation represents relative precision among mitral cells 

(reviewed in [7]).

Odor induced oscillations occur in non-mammalian vertebrate OBs (frogs, zebrafish, turtles, 

salamanders), in the insect antennal lobe (AL; locusts, bees, moths, drosophila) and mollusc 

procerebrum (terrestrial slugs and snails). Frequencies vary widely across species (~20 Hz in 

insects [8], ~30 Hz in zebrafish [9], 15 Hz in salamanders [10], 7–15 Hz in turtles [11,12], 

~10 Hz in frogs [13], ~0.7 Hz in Limax [14,15]; Fig. 2). These oscillations are analogous for 

two reasons: 1) they are elicited by exposure to odorants, and 2) they are supported 

primarily by interactions between the principal excitatory neurons (MT cells in vertebrates, 

projection neurons in insects) and inhibitory neurons (granule cells and other OB 

GABAergic cells, GABAergic local neurons in insects). The spike patterns of the principal 

neurons conform to a restricted range of phases, around 90° before the peak of the LFP 

oscillation, and do not change phase in response to odor exposure or any other measured 

behavioral event. Frequencies associated with a given species are an intrinsic feature, the 

result of biophysical properties of the neurons and synapses involved. Freeman’s classic 

book, Mass Action in the Nervous System [6], describes influences by both negative and 

positive feedback and deep computational insight on oscillations and their frequencies.

Physiological analyses of brain slices are powerful tools for studying gamma oscillation 

circuits in the mammalian OB. Several studies have focused on the role of NMDA and 

AMPA receptors in setting GABA release kinetics at the dendrodendritic synapse [16,17] 

and intrinsic oscillatory properties of MT cells independent of GC spiking [18]. There is 

disagreement as to whether AMPA or NMDA receptors dominate GABA release at the 

reciprocal synapse, which has important implications for inhibition timing. When input 

fibers from the olfactory nerve are stimulated with a single shock, GC NMDA receptors 

dominate GABA release [19]; with 4 Hz stimulation simulating sniffing, AMPA receptors 

dominate [16]. AMPA receptors depolarize GC dendrites very quickly allowing short 

latency and duration GABA release. MT cells can produce gamma oscillations even in the 

absence of GC bodies meaning that reciprocal inhibition does not require GC spiking [20]. 

This feature, coupled with the fast action of GC AMPA receptors during sniffing, may 

support gamma oscillations in waking rats and mice [21].
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Invertebrate studies provide rich insight into oscillations and odor responses. Odor induced 

oscillations produced in the insect AL are measured from the mushroom body where AL 

axon terminals produce coherent excitatory drive (Fig. 2b,d). Much of the early work was 

done in locusts, but this has been expanded to other species, including drosophila [22,23]. 

Within the oscillation, individual neurons fire on identified cycles and are constrained to a 

defined phase within the cycle, similar to MTs in anesthetized rabbits [24,25]. Thus, odors 

are not represented by firing relative to the phase of the fast oscillation but rather by what 

neurons fire on which cycles. When oscillations are disrupted by applying picrotoxin to the 

AL disabling fast GABAergic transmission, the neurons that read these uncoordinated 

spikes in the beta lobe respond more promiscuously to odors [26].

The molluscan system has a much lower oscillatory frequency (<1Hz), but the circuit that 

produces the oscillation is analogous to the mammalian and insect systems with reversed 

action of glutamate and GABA [27]. Olfactory nerve input targets projection neurons in the 

procerebral glomeruli, and these neurons interact with local inhibitory circuits to produce the 

oscillations (Figs. 2c,e). Oscillation frequency can vary dependent on odors, learning and 

neurotransmitter levels [15,27,28].

Multiple gammas

As described above, gamma oscillations can vary widely in frequency across species. 

However, within a species or group of species variations in fast oscillations can be 

informative. For example, in rats and mice there are two main bands of gamma oscillations. 

Gamma1 oscillations are those above 60 Hz and are what we commonly think of as evoked 

or induced gamma initiating at the transition from inhalation to exhalation. High amplitude, 

narrow band gamma2 oscillations (50–55 Hz) occur in behavioral states such as alert 

immobility are strongly coherent with pyriform cortex [29]. They do not occur in β3 

knockout mice that lack GABAA receptors on OB GCs.

A further subdivision of gamma1 oscillations can be made. Gamma1 oscillations slow down 

after the first part of exhalation. Within the OB, mitral and tufted cells fire at different 

phases of the respiratory cycle. Tufted cells get direct olfactory nerve input [30] and fire at 

the peak of inhalation with little variation [31]; mitral cells receive indirect nerve input and 

fire in the early expiratory phase with significant variability driven by local inhibition. These 

different activation times may correspond to the two types of gamma1 oscillations, with 

faster oscillations driven by tufted cells and slower oscillations by mitral cells [32]. These 

two sets of neurons project to different pathways, so the two types of gamma1 oscillations 

may represent targeting of different neural pathways.

Functional role and modulation of gamma oscillations

Several studies have addressed and solidified the functional role of gamma oscillations, and 

here again is where we cross phylogenetic lines [33–35]. When oscillations are blocked in 

the honeybee AL, projection neurons maintain their slow temporal activation patterns in 

response to odors, but fine temporal coordination is lost [33]. Behaviorally, these honeybees 

are deficient in discriminating closely related but not more different odors. In the β3 

knockout mouse the β3 subunit of the GABAA receptor is knocked out, which in the OB 
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selectively deletes the functional GABAA receptors on GCs. These mice have abnormally 

large gamma oscillations without increased firing rates among MT cells, which means that 

they are much more precise in their timing relative to each other and the LFP oscillation 

[34]. These mice are deficient in generalizing among similar odors. Finally, when rats are 

challenged with difficult discriminations, gamma oscillations in the OB increase 

dramatically associated with performance increases [35].

We can view gamma oscillations as a simple negative feedback relationship between 

excitatory and inhibitory units, but stopping at this point would miss the exquisite circuitry 

that modifies these oscillations in behavioral contexts and provides converging evidence to 

support gamma oscillations’ functional properties (Fig. 3). First, centrifugal inputs to OB 

GABAergic deep short axon cells [36,37] and GCs desynchronize gamma oscillations. 

Ablating feedback to the OB greatly increases the amplitude of gamma oscillations and 

tightens MT cell firing precision [38,39]. Another source of gamma desynchronization is 

inhibition of GCs via GABAA receptors which can come from many sources, both intrinsic 

to the OB and from the basal forebrain [36,40,41].

Neuromodulators can also play a large role in adjusting the power of gamma oscillations; 

many of them act either at the OB reciprocal synapse or at the synapses from centrifugal 

input. Acetylcholine in the frog OB increases gamma power; in models of the pyriform 

cortex it is predicted to decrease gamma power [13,42]. In rats, drugs that increase 

cholinergic action at either muscarinic or nicotinic receptors decrease odor generalization, 

and those that decrease cholinergic action decrease odor discrimination [43]. In other 

cortical systems, acetylcholine is assigned to attention modulation signified by increased 

gamma power [44]. While this may be an oversimplification, it addresses neural 

mechanisms of attention.

Gamma oscillations are large and interesting, and we want them to be important, but there 

can be too much of a good thing. β3 mice discriminate too much; this can be bad for survival 

if they can’t generalize to similar odors when foraging or detecting a predator. A recent 

study combining slice physiology and modeling addresses the impact of heterogeneity in 

MT cells and shows that differences in phase resetting among neurons accounts for the 

asynchrony of neurons and oscillations [45]. Heterogeneity then provides what the authors 

refer to as a plastic substrate, allowing cells to flexibly enter and exit correlated assemblies 

of neurons, as Freeman hypothesized some time ago [46].

Processes that organize activity and link olfactory areas

Gamma oscillations are relatively local phenomena that represent neural firing precision in 

the OB. Slower cortical rhythms, theta (2–12 Hz) and beta (15–30 Hz) oscillations, may 

organize local activity and link brain areas.

In terrestrial mammals, breathing and olfaction are linked by sniffing, which an individual 

uses to gather odor stimuli from the environment and present them to the olfactory 

epithelium and receptor neurons. Most research on sniffing has been carried out in rats and 

mice. Humans do not perform rhythmic repetition of sniffs, so I will concentrate on 

rhythmic properties associated with respiratory rhythm in rodents.
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The rat OB theta rhythm tracks the respiratory cycle at every frequency, which incorporates 

the motor signal within OB sensory processing [47]. MT cells were shown some time ago to 

fire at preferred phases all along the respiratory cycle which can change with learning 

[48,49]. The phase preference was recently reconfirmed with more technical power [50]. 

However, when rats sniff at high rates, as they do during odor discrimination, MT cells 

uncouple from respiration [48,49,51], which makes respiratory phase coding somewhat 

unreliable except in conditions of slow breathing associated with odor habituation. However, 

the respiratory cycle does, under many circumstances, group spikes into sniffs, and these 

cycles are intermittently coherent with the same rhythm in pyriform cortex and hippocampus 

[52–55]. Insects may have their own sniff cycle associated with sensorimotor processes. The 

moth AL and olfactory nerve responds optimally to odor pulses that cover their wing beat 

range of 18–20 Hz [56].

Of all the olfactory oscillation bands, beta oscillations are most coherent across areas 

[55,57–59] and occupy a very narrow frequency band centered about 20 Hz in mammals 

[60]. We know very little about the mechanisms of olfactory system beta oscillations, except 

that they require centrifugal input to the OB [39]. Beta oscillations are associated with 

operant odor learning and vary in power dependent on odor volatility [55,57,60]. In 

anesthetized rats, beta oscillations have a defined relationship with the respiratory rhythm, 

occurring during late exhalation [61]. It is not known whether this respiratory phase 

relationship persists during waking states.

Because beta oscillations depend on centrifugal feedback to the OB, it might be assumed 

that they do not have an analog in invertebrate olfactory systems. However, there is 

abundant centrifugal input to the insect AL, and odor responses in the mushroom body can 

precede the final sorting out of responses in the AL [62]. A recent study in terrestrial snails 

shows that the normal oscillation associated with odors slows down by as much as 40% in 

response to aversive odors following tentacle withdrawal [63]. Might these be molluscan 

beta oscillations?

Conclusion

Seven decades of research using many approaches at many levels in three different phyla 

have contributed to a deep and nuanced understanding of olfactory system gamma 

oscillations, even though there is still more to learn. Oscillations that organize and link 

activity within and across brain areas, theta and beta oscillations, are less well understood 

and will require broad and convergent studies across phyla to understand their mechanisms 

and functional roles.

What we have learned from gamma oscillations is to focus on the circuit, the behavior and 

the functional relationships to define them, not the frequency. As the scope of our 

knowledge about these enigmatic processes expands, we may want to consider revising 

definitions of these oscillations to focus not on frequency but rather on the function and the 

circuit.
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Highlights

1. Odor evoked oscillations rely on similar mechanisms across several phyla.

2. Slower oscillations help group activity within the olfactory bulb and link brain 

areas.

3. Olfactory bulb or antennal lobe centrifugal input may adjust inhibition modes 

and frequencies.
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Figure 1. Rhythms in the mammalian olfactory bulb
A. 1/f power spectrum with deviations for theta beta and gamma rhythms from rat OB. B. 
Gamma and theta rhythms recorded from the rat OB. Seven respiratory cycles are shown 

by the low frequency high amplitude wave in which the peak is the end of inhalation. The 

gamma rhythm begins at the peak with a high frequency oscillation giving way to a lower 

frequency one, sweeping form above 90 Hz to near 70 Hz. Top panel is the LFP trace and 

bottom panel is a wavelet spectrogram of the gamma band. C. LFP theta rhythms are 

coherent with respiratory drive at all waking respiratory frequencies. Left: OB LFP with 

theta filtered signal overlaid. The diaphragm EMG signal is rectified and smoothed, which 

shows the similarity with the simultaneously recorded OB theta rhythm. Right: Coherence 

between the two signals from one rat (histogram of respiratory frequencies on bottom of 

plot); horizontal line is the significance floor for coherence. Figure modified from [47] with 

permission. D. Gamma2 example from the rat OB. During slower respiration in alert rats, a 

low frequency high amplitude bursts in the 50–60 Hz range are seen. Wavelet spectrogram 

is shown and the frequency of bursts is lower than the end of the gamma sweep in A. E. 
Beta rhythm example recorded from the mouse OB in response to sniffing a highly volatile 

odor as in [55]. Wavelet spectrograms in the gamma and beta bands below (color scale in 

top is 1/10 that of the bottom to emphasize bursts).
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Figure 2. Olfactory systems from 3 phyla
A. The mammalian central olfactory system begins with the OB, which receives olfactory 

nerve input from the olfactory epithelium (OE) in the glomeruli around the periphery of the 

bulb. Primary olfactory cortex is primarily represented by the anterior olfactory nucleus 

(AON) [64]. The pyriform cortex (PC) is a higher order sensory association cortex [65,66], 

but it is often referred to as primary olfactory cortex. The OB also projects to the multimodal 

entorhinal cortex (EC), which sends fibers into the hippocampus (HPC), and the amygdala 

(amyg) among other limbic and subcortical areas. The PC projects to the EC, hypothalamus 

and thalamus, as well as other higher order areas. Most OB connections to other brain 

regions are bidirectional. Centrifugal projections to the OB synapse primarily onto 

GABAergic GCs in the deep layers, except for the AON, which targets superficial 

juxtaglomerular cells and mitral cells [67]. (Figure adapted from [68].) B. The honeybee 

central olfactory system begins with antennal nerve (AN) input to the antennal lobe (AL) 

projection neurons in peripheral glomeruli. AL neurons project to the mushroom body 

(MB), a higher order multimodal area, and the lateral horn (LH). Descending modulatory 
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input associated with appetitive state comes from the VUM-mx optopaminergic neuron in 

the subesophogeal ganglion (SOG). (Figure adapted from [69]). C. The limax cerebral 

ganglion receives olfactory nerve (ON) input to glomeruli in the procerebrum (PC). The PC 

also receives input from the medial lip nerve (MLN) in the inferior nose. (Figure adapted 

from [15] with permission.) D. Odor evoked oscillations (~20 Hz) are recorded in the locust 

mushroom body (MB) but are produced by axon terminals from the antennal lobe (AL) 

projection neurons (PN). Simultaneously recorded PN shows depolarization, odor evoked 

spikes and subthreshold oscillations. (Figure adapted from [26], with permission). E. 
Procerebral lobe oscillations in limax showing the <1Hz oscillation typical of this species. 

(Figure adapted from [15] with permission.)
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Figure 3. A. Olfactory bulb circuitry associated with oscillations
Over the past few years, the canonical picture of OB circuitry has changed and some of the 

changes may have implications on mechanism and modification of OB oscillations: 1) 

Olfactory nerve input (not shown) targets external tufted (ET) cells directly (and possibly all 

tufted cells within glomeruli [31]) and then MT cells via excitatory inputs from ETs and 

inhibitory relays from ETs to periglomerular (PG) cells (not shown) to MT cells. ETs fire in 

bursts that can match the respiratory rhythm and may support theta oscillations [70]. One 

population of GABAergic deep short axon cells (dSAC) target PG cells [36]. Pyriform 

cortex input targets dSACs [37]. B. Reciprocal synapse as shown in the red dashed circle in 

A is on the distal dendrites of GCs and may support local graded inhibition through AMPA 

receptors with ~4.2 ms rise times [17]. This mechanism may support gamma oscillations 

independent of GC spikes [21]. NMDA and AMPA receptors are present on GCs at most 
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synapses. About 25% are NMDA silent and a very small number are AMPA silent. GABAA 

receptors mediate inhibition of MTs. Synapses proximal to the GC soma from centrifugal 

axon fibers also have NMDA and AMPA receptors at most of these synapses (dashed black 

ovals). Activation of GCs by stimulating these fibers produces GABA release at the 

reciprocal synapse with faster rise times (1.3 ms). Additional abbreviations: GL- glomerular 

layer, EPL- external plexiform layer, MCL- mitral cell layer, GCL-granule cell layer.
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