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Genome-wide association studies (GWAS) have un-
covered >65 common variants associated with type
2 diabetes (T2D); however, their relevance for drug
development is not yet clear. Of note, the first two
T2D-associated loci (PPARG and KCNJ11/ABCC8)
encode known targets of antidiabetes medications.
We therefore tested whether other genes/pathways
targeted by antidiabetes drugs are associated with
T2D. We compiled a list of 102 genes in pathways
targeted by marketed antidiabetic medications and
applied Gene Set Enrichment Analysis (MAGENTA
[Meta-Analysis Gene-set Enrichment of variaNT Asso-
ciations]) to this gene set, using available GWAS meta-
analyses for T2D and seven quantitative glycemic traits.
We detected a strong enrichment of drug target
genes associated with T2D (P = 2 3 1025; 14 poten-
tial new associations), primarily driven by insulin and
thiazolidinedione (TZD) targets, which was replicated
in an independent meta-analysis (Metabochip). The gly-
cemic traits yielded no enrichment. The T2D enrichment
signal was largely due to multiple genes of modest effects
(P = 4 3 1024, after removing known loci), highlighting
new associations for follow-up (ACSL1, NFKB1, SLC2A2,
incretin targets). Furthermore, we found that TZD tar-
gets were enriched for LDL cholesterol associations,
illustrating the utility of this approach in identifying
potential side effects. These results highlight the poten-
tial biomedical relevance of genes revealed by GWAS

and may provide new avenues for tailored therapy and
T2D treatment design.

Genome-wide association studies (GWAS) have uncovered
.65 common DNA variants associated with type 2 diabe-
tes (T2D) that collectively explain ;10% of the genetic
contribution to T2D susceptibility, mostly in populations
of European ancestry (1,2). Hundreds of additional common
variants (minor allele frequency.1%) are predicted to be as-
sociated with T2D, with modest odds ratios based on mixed-
model and polygenic analyses of large GWAS meta-analyses
(3–5). In addition, dozens of other single nucleotide poly-
morphisms (SNPs) have been found to be associated with
various quantitative glucose and insulin-related traits (6–
11), which are intermediate phenotypes of T2D and, hence,
may help in better understanding the pathophysiology of
diabetes. These GWAS have been extended by the use of
large, custom-made genotyping arrays, which include the
top SNP associations for a variety of metabolic traits that
approached, but did not quite achieve, genome-wide signif-
icance (12); when deployed across large numbers of addi-
tional samples, genome-wide significance has been reached
for 10 additional association signals with T2D (3) and 41
for a number of quantitative glycemic traits (13).

Several genes that lie near established SNPs associated
with T2D or a related glycemic trait encode direct or
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indirect targets of antidiabetes medications (Table 1 and
Supplementary Table 1). Specifically, the first two repro-
ducible associations with T2D were reported for missense
polymorphisms in two candidate gene regions (encoding
the peroxisome proliferator–activated receptor g [PPARG]
and the islet ATP-sensitive potassium channel Kir6.2/sulfo-
nylurea receptor SUR1 complex [KCNJ11/ABCC8]), which
were selected because they happen to be targets of antidi-
abetic medications (thiazolidinediones [TZDs] and sulfonyl-
ureas, respectively) (14,15). This observation led us to ask
whether additional genes that function in biological path-
ways or processes affected by various antidiabetes medica-
tions may also contain common variants associated with
T2D or related glycemic traits, albeit less strongly (i.e., weaker
effects, lower penetrance in the population), but when an-
alyzed together, their combined effect may surpass statisti-
cal significance. In other words, we reasoned that proof of
their successful modulation by pharmacological means
might indicate their involvement in T2D pathophysiology.

Currently, multiple classes of antidiabetic medications
are approved for clinical use, including insulin, biguanides,
sulfonylureas, TZDs, meglitinides, a-glucosidase inhibitors,
GLP-1 receptor agonists, dipeptidyl peptidase 4 (DPP4)
inhibitors, and amylin mimetics (16–30). All medications
help to decrease glucose blood levels through different
mechanisms of action. These vary from increasing insulin
secretion by pancreatic b cells to increasing insulin sensiti-
zation in target tissues (e.g., muscle, fat) and inhibiting
glucose absorption in the gastrointestinal tract. Some of
the more recently approved medication classes are the result
of rational drug design (e.g., GLP-1 receptor agonists, DPP4
inhibitors), some from empirical experimentation (e.g., met-
formin), and others from a combination of the two (e.g.,
TZDs [ciglitazone discovered through in vivo compounds
screening (31) and successive analogs designed against the
subsequently identified drug target PPARG (32)]).

The targeted pathways and downstream effects of these
drug classes have been investigated to a greater or lesser
extent through human, animal, and cell culture studies
(16–30). We attempted to leverage existing GWAS data
sets to comprehensively test whether these pathways con-
tain multiple genes, in addition to those already known,
that harbor natural genetic perturbations that may influ-
ence risk of T2D. We further evaluated whether this ap-
proach could be used to predict unintended phenotypic
effects of drug treatment by examining the genetic basis
of a known nonglycemic effect of TZD drugs.

RESEARCH DESIGN AND METHODS

Construction of the Antidiabetes Drug Target Gene Set
The source of genes to include in the drug target gene set
were culled from PubMed searches (initially performed in
2007 [before the wave of GWAS publications] and
repeated in 2010) of original reports and reviews on the
mechanism of action of nine Food and Drug Administra-
tion (FDA)–approved antidiabetes medication classes at
the time: insulin, biguanides (metformin), sulfonylureas,

TZDs, meglitinides, a-glucosidase inhibitors, GLP-1 receptor
agonists, DPP4 inhibitors, and amylin mimetics (16–30).
More recent classes of antidiabetes drugs (cholesterol-
binding resins, dopamine agonists, or sodium-glucose co-
transporter-2 inhibitors) have not yet reached widespread
use and, thus, were not studied here. Drug class targets
and their downstream effectors were considered broadly
for each drug class. Proteins were considered a potential
target of the drug if they were directly affected by the
drug or a direct downstream mediator of the known
drug pathway, considering human, animal, and cell culture
studies. There was significant overlap of target genes
among certain drug classes because their mechanisms of
action are largely the same (e.g., sulfonylureas, megliti-
nides). Proteins in the drug pathway whose genes did
not have a validated human genome location were ex-
cluded from the analysis.

GWAS Meta-analyses Analyzed
The present analysis was based on the SNP association
P values from the following GWAS meta-analyses: 1)
DIAGRAMv3 (DIAbetes Genetics Replication And Meta-
analysis version 3) T2D meta-analysis: 12,171 T2D cases
and 56,862 controls across 12 GWAS of individuals of
European descent and ;2.5 3 106 genotyped and im-
puted SNPs (data can be downloaded at http://diagram-
consortium.org/downloads.html) (3); 2) Metabochip T2D
meta-analysis: 21,491 T2D cases and 55,647 controls
across 25 studies of individuals of European descent
and 1,178 T2D cases and 2,472 controls from one study
of individuals of Pakistani descent (PROMIS [Pakistan
Risk of Myocardial Infarction Study]), with a total of
22,669 cases and 58,119 controls (3) (the Metabochip cus-
tom array comprises 196,726 SNPs, 5,057 of which are T2D
“replication” SNPs that capture the strongest independent
autosomal association signals from the DIAGRAMv3 GWAS
meta-analysis; individuals in the DIAGRAMv3 meta-analysis
are independent from those in the Metabochip T2D meta-
analysis); 3) seven MAGIC (Meta-Analyses of Glucose and
Insulin-related traits Consortium) meta-analyses of glu-
cose and insulin-related traits: 9–23 GWAS of 15,000–
46,000 participants without diabetes and 2.3–2.7 3 106

genotyped and imputed SNPs, depending on the trait
(data can be downloaded at www.magicinvestigators.org/
downloads) (7–9); and 4) three GWAS meta-analyses of
plasma LDL cholesterol (LDL-C), HDL cholesterol (HDL-C),
and triglyceride levels: 46 GWAS in ;95,000–100,000 indi-
viduals total (data can be downloaded at www.sph.umich.
edu/csg/abecasis/public/lipids2010) (33). The global lipids
blood measurements were taken after .8 h of fasting.
The lower-bound minor allele frequency of SNPs in these
meta-analyses is 1%.

Discovery Step 1: Gene Set Enrichment Analysis of
GWAS SNP Data Using MAGENTA
To test whether a set of antidiabetes drug target genes
contains multiple genes associated with T2D more than
would be expected by chance, we applied a Gene Set
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Enrichment Analysis (GSEA) method (an approach orig-
inally developed for gene expression) that we previously
adapted for GWAS data called Meta-Analysis Gene-set
Enrichment of variaNT Associations (MAGENTA) (34).
Intuitively, MAGENTA tests whether multiple genes asso-
ciated with a disease or trait cluster in a given biological
pathway or set of functionally related genes. It does so
by testing whether the distribution of gene association
P values of all genes in a gene set of interest is skewed
toward low P values compared with the (close to uniform)
P value distributions of randomly sampled gene sets of
equivalent size (Fig. 1). A significant skewness below
a given P value cutoff (enrichment cutoff) would suggest
that the gene set is enriched for multiple genes associated
with the tested complex disease or trait. To gain statistical
and explanatory power, MAGENTA tests for enrichment
not only of genes with strong SNP associations (e.g., ones
that pass multiple hypothesis correction, P , 5 3 1028)
but also of genes with modest SNP associations (associa-
tions that have not yet reached genome-wide significance
[e.g., P = 1024–1023] due to insufficient power afforded
by finite GWAS sample sizes). This is supported by poly-
genic analyses of GWAS that suggest that various complex
phenotypes, including T2D risk, are influenced by hun-
dreds of modest associations that have not yet been
detected due to insufficient statistical power (3–5).

We applied MAGENTA to all genotyped and imputed
SNP associations from the aforementioned GWAS meta-
analyses DIAGRAMv3, MAGIC, and global lipids GWAS
meta-analyses, as described quantitatively and in detail by
Segrè et al. (34). Briefly, first, MAGENTA scores all genes
in the genome by assigning each gene the most significant
local SNP association P value within 2110 kilobases (kb)
upstream and +40 kb downstream the transcript start and
end sites, respectively (boundaries chosen to capture po-
tential regulatory causal variants in addition to coding
variants within the gene itself). The gene association
scores are subsequently corrected for confounding effects,
such as gene size, local SNP density, and linkage disequi-
librium (LD)–related properties, using stepwise multivar-
iate linear regression analysis (because larger genes are
more likely to carry a SNP with a more significant P value
than smaller genes by chance, as larger genes contain more
SNPs) (34). Second, the adjusted gene association P values,
used to rank genes in the genome with respect to their
likelihood of association with the given trait, are used to
estimate gene set enrichment P values for each gene set of
interest. The gene set enrichment P value calculated by
MAGENTA assesses the overrepresentation of highly ranked
gene association P values above an enrichment cutoff,
compared with multiple randomly sampled gene sets
from the genome, with equal gene set size. The 75th
percentile of the association P values of all genes in the
genome (which corresponded, e.g., in DIAGRAMv3 to an
adjusted gene P, 0.3) was used as the enrichment cutoff.
Physical proximity along the chromosome between two or
more genes in a given gene set was corrected for by

collapsing them to one effective gene, retaining the gene
with the most significant adjusted association P value.
Only genes on autosomal chromosomes were analyzed,
which led to the exclusion of three drug target genes on
chromosome X. The HLA region was removed due to high
LD and gene density in the region, making it difficult to
disentangle the putative causal gene if an association sig-
nal exists in the region. One of the antidiabetes drug
target genes, TNF lies in this region. The MAGENTA soft-
ware package can be downloaded at www.broadinstitute.org/
mpg/magenta.

The set of validated T2D SNPs used in this work
(Supplementary Table 3) included 55 associated loci iden-
tified in GWAS meta-analyses of populations of European
descent, including DIAGRAMv3 and Metabochip. Genes
near the validated T2D SNPs were defined using the larger
of two boundaries around each SNP: 6100 kb or an LD-
based boundary defined by proceeding to r2 . 0.5 on either
side of the SNP, then to the nearest recombination hotspot,
and finally adding an additional 50 kb on either side. Ge-
nome build 36 (hg18) was used for chromosome positions.

Replication Step 2: Modified GSEA of Metabochip
Meta-analysis
To test if the gene set enrichment results obtained by
MAGENTA replicated in an independent study, we applied
a modified GSEA method for genetic association data that
we developed in Morris et al. (3) to a separate, larger meta-
analysis of multiple association studies genotyped on the
Metabochip array. A modified GSEA approach was needed
to account for the bias in the Metabochip SNP design,
which contains a subset of SNPs that unevenly cover the
genome (196,725 replication and fine-mapping SNPs)
compared with the less biased genome-wide SNP arrays
(;2 3 106 SNPs) used in DIAGRAMv3, MAGIC, and the
lipid GWAS (analyzed in the discovery step). The Meta-
bochip is a custom array designed to follow-up nominal
associations for T2D and 22 other metabolic and cardio-
vascular traits in a more cost-effective manner than
genome-wide SNP arrays and contains 5,057 T2D replica-
tion SNPs chosen based on the top independent associa-
tion signals in DIAGRAMv3 (12). This has enabled the
genotyping of top-ranked metabolic SNPs in an additional
;21,500 T2D cases and ;55,600 controls. Specifically,
the modified GSEA method tests for enrichment of anti-
diabetes drug target genes among all genes near a set of
top T2D-associated SNPs based on the Metabochip meta-
analysis. First, for the enrichment cutoff, we used a set
of high-confidence T2D SNPs/loci: 137 T2D loci, which
included 53 established (P , 5 3 1028); 6 highly probable
(P , 5 3 1027); and 78 probable (more modest) T2D loci
with a posterior probability (confidence score) .75%, as
chosen in Morris et al., based on a mixture model fitted to
the Metabochip T2D meta-analysis z scores (for a list of
the 137 T2D SNPs, see Supplementary Table 15 in Morris
et al. [3], excluding the monogenic genes). Second, we
tested two SNP-to-gene mapping definitions: 1) nearest
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gene and 2) an LD-based boundary defined by proceeding
to r2 . 0.5 on either side of the SNP, then to the nearest
recombination hotspot, and finally adding an additional
50 kb on either side. SNPs with no genes in LD were

assigned the nearest gene. SNPs with the same nearest
gene were collapsed to one locus. SNPs with more than
one proximal gene in the drug target gene set were
counted as one instance to reduce inflation of the gene

Figure 1—An overview of the study design, analytical steps, and questions addressed. The strategy addressed a number of key questions
about the relationship between human genetic associations with T2D or related glycemic traits and antidiabetes drug targets. A similar
strategy can be applied to other diseases and traits. 2-h glucose and 2-h insulin, glucose or insulin plasma levels measured 2 h after an oral
glucose tolerance test; HbA1c, a measure for long-term glycemia; HOMA-B, a measure for b-cell function; HOMA-IR, a measure for insulin
resistance.
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set enrichment P value due to physical clustering of sub-
sets of drug target genes along the genome (3). For each
gene set gs and a set of T2D SNPs/loci l with m SNPs, we
calculated the probability of observing at least k T2D loci
of a total m loci with one or more proximal genes that
belong to gene set gs, given that n of N Metabochip SNPs
analyzed have one or more proximal genes in gene set gs
(using a hypergeometric probability distribution) (Eq. 1):

Pgs;lðX $ kÞ ¼ 12 ∑
k2 1

i¼0

�
m
i

��
N2m
n2 i

�
�
N
n

� [Eq. 1]

N refers to the number of Metabochip SNPs in the null set
(defined next) plus the m top T2D SNPs/loci. To account
for differences in coverage of the Metabochip replica-
tion SNPs across all genes in the genome, we generated
an empirical null distribution of Pgs;randðX $ kÞ for
Nrand ¼ 1002 10; 000 randomly sampled sets of SNPs,
matched for SNP number and local gene density with
the T2D SNPs/loci set l. The adjusted gene set enrichment
P value PEnrichgs;l is the fraction of randomly sampled SNP
sets of equal size to the T2D SNP set l with the same or
more significant hypergeometric probability (Eq. 1) than
that of the actual T2D SNP set (Eqs. 2–4):

G ¼
n
PðiÞ
gs;rand

���i ¼ 1::Nrand

o
[Eq. 2]

~G¼ �
Y ∈GjPgs;randðX $ kÞ#Pgs;lðX $ kÞ� [Eq. 3]

PEnrich
gs;l ðX $ kÞ ¼

��� ~G���
Nrand

[Eq. 4]

For the null SNP set, we used the full set of Metabochip
replication SNPs after LD pruning (r2 , 0.05, using CEU
[Utah residents with Northern and Western European
ancestry] HapMap samples as the reference population),
excluding the lead and proxy (CEU r2 $ 0.1) SNPs of
previously established T2D SNPs, 5,057 T2D replication
SNPs, SNPs near monogenic diabetes genes, and QT-
interval replication SNPs (used as a negative control).
This resulted in a set of 16,408 null SNPs. Similar GSEA
results to those in Table 5 were obtained when using as
the null SNP set 1,600 SNPs with the lowest posterior
probability of being associated with T2D of 3,408 LD-
pruned Metabochip T2D replication SNPs (posterior proba-
bility, 5% of belonging to an alternative distribution in the
mixture model of Metabochip z scores) (data not shown).

RESULTS

We tested the hypothesis that biological pathways tar-
geted by antidiabetes medications may be enriched for
multiple genes modestly associated with T2D, more than

would be expected by chance, by applying the GSEA
approach implemented in MAGENTA (34) to a compiled
list of 102 direct or indirect target genes of one or more of
the nine classes of antidiabetes medications (described in
RESEARCH DESIGN AND METHODS). The antidiabetes drug target
genes ranged from 1 to 41 per drug class (Table 1). The
study design and analyses performed on the drug target
gene set and its subclasses are described in Fig. 1.

Using the largest available T2D GWAS meta-analysis of
;12,000 cases and ;57,000 controls (DIAGRAMv3), we
found that the full set of antidiabetes drug target genes
was significantly enriched for multiple genes that carry
SNPs modestly associated with T2D risk (P = 1.7 3 1025,
1.8-fold enrichment [i.e., we predict that about one-half the
target genes with association scores above the 75th percen-
tile enrichment cutoff are modestly associated with T2D])
(Table 2 and Fig. 2). MAGENTA suggests that 18 of the 41
loci (44 genes) above the 75th percentile enrichment cutoff
(expected number of genes above cutoff, 23) (see columns
3–5 in Table 2) are true associations with T2D risk, 4 of which
map onto known T2D loci (see column 8 of Table 2) and
14 of which may contain new SNP associations with T2D.
Additional follow-up analyses and experiments are needed
to identify the 14 true-positive novel gene associations. The
top-ranked 44 drug target genes and their most significant
local T2D SNP P values are listed in Supplementary Table 2.

Given the positive results, we next asked whether the
antidiabetes drug target gene set might also be enriched for
multiple genes associated with glucose or insulin-related
traits, which are intermediate phenotypes or risk factors of
T2D. We repeated the aforementioned analysis by applying
MAGENTA to seven GWAS meta-analyses of 15,000–
46,000 nondiabetic individuals (MAGIC) for the following
glycemic traits: fasting glucose levels, fasting insulin levels,
2-h glucose or 2-h insulin plasma levels following an oral
glucose tolerance test, a measure for b-cell function
(HOMA-B), a measure for insulin resistance (HOMA-IR),
and a measure for long-term glycemia (glycated hemo-
globin [HbA1c]). None of the glycemic traits showed
a significant overrepresentation of multiple modest
gene associations in the antidiabetes drug target gene
set (Table 2).

Given the strong enrichment of drug target gene
associations with T2D, we asked whether the observed
enrichment signal was primarily driven by genes targeted
by one or a subset of the nine classes of antidiabetes
medication classes. To address this, we tested for enrich-
ment of T2D associations in individual drug class tar-
get subsets for four of the nine classes of drugs that
contained at least 10 target genes (chosen as the lower
bound for statistical power considerations). We found
that insulin targets and TZD targets were the primary
drivers of the collective enrichment signal (P = 0.001,
2.5-fold enrichment, and P = 0.02, 1.6-fold enrichment,
respectively) (Table 3 and Fig. 2). However, although not
enriched, incretin targets were also among the top-ranked
drug target genes based on their T2D association P values
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(e.g., the DPP4 inhibitors GIP, GLP2R, GRP, GIPR) (Table 4
and Supplementary Table 2).

Because 6 of the 102 drug target genes lie in five
validated loci associated with T2D (Table 1 and Supple-
mentary Table 1), we asked whether the T2D enrichment
signal observed in the antidiabetes drug target set was
mainly due to genes in known association regions or
whether it was also driven by additional new associations
of modest effect sizes that have not yet reached genome-
wide significance (due to insufficient GWAS sample size).
To test this, we excluded all genes near established T2D
SNPs from the analysis (listed in Supplementary Table 3
for T2D SNP list and RESEARCH DESIGN AND METHODS for
boundary definition) and reran MAGENTA on the full list
of drug target genes and on the drug-specific target sub-
sets. The enrichment signal still remained significant, al-
though it decreased by an order of magnitude (P = 43 1024,
Bonferroni-corrected cutoff P , 0.003 accounting for 17
hypotheses tested in Tables 2 and 3), as may be expected
when removing a portion of the signal. These results sug-
gest that the enrichment is due not only to genes near
known associations but also to ;14 additional new genes
of modest effects (odds ratio of modest associations
above enrichment cutoff are in the range [0.8521.24],
with the exception of one value of 1.73; P values of best
local SNPs range between 5.4 3 1026 to 7 3 1023).

To test the reproducibility of the T2D enrichment
signal in the antidiabetes drug target set, we tested

whether the results replicated in an independent associ-
ation study of T2D. For this, we used the large-scale T2D
association meta-analysis of ;24,000 T2D cases and

Table 2—GSEA of T2D and glycemic trait associations in the antidiabetes drug target gene set

GWAS
meta-analysis

Nominal
MAGENTA
enrichment
P value*

Number of
OBS genes/loci

above
enrichment

cutoff

Number of EXP
genes/loci
above

enrichment
cutoff

Excess number of
genes/loci above

enrichment
cutoff

(OBS 2 EXP)†

Enrichment
fold

(OBS/EXP)

Number of
genes near
validated

GWAS SNPs‡

Genes near
validated

GWAS SNPs‡

T2D 1.7 3 1025 41** 23 18 1.78 6*** PPARG, IRS1§,
KCNJ11/
ABCC8‖,
IDE, GIPR¶

Fasting
glucose 0.078 31 24 7 1.29 1 SLC2A2

HOMA-IR 0.11 29 24 5 1.21 0 —

2-h insulin 0.24 27 24 3 1.13 1 IRS1

HOMA-B 0.27 26 23 3 1.13 0 —

Fasting insulin 0.29 26 24 2 1.08 0 —

2-h glucose 0.74 20 23 0 0.87 0 —

HbA1c 0.75 20 23 0 0.87 0 —

The 2-h glucose and 2-h insulin concentrations were measured after an oral glucose tolerance test. EXP, expected; OBS, observed.
*The gene set enrichment P value was calculated by MAGENTA using a 75th percentile enrichment cutoff. **44 genes had scores above
the enrichment cutoff, but 3 genes were removed from GSEA to correct for physical clustering along the genome (see Table 4). ***Only 4
loci contributed to enrichment signal. See next two footnotes for explanation. †Estimated number of antidiabetes drug targets that may
be true associations with T2D, 14 of which have not yet reached genome-wide significance. ‡Genes were mapped onto 55 established
T2D SNPs using the larger of the two boundaries around each SNP: 6100 kb or LD r2 . 0.5 (see RESEARCH DESIGN AND METHODS and
Supplementary Table 3). §The gene association P value of IR1S did not surpass the enrichment cutoff because the established T2D
GWAS SNP near IRS1 lies farther away than the gene boundaries used in MAGENTA (+110 kb/240 kb). ‖KCNJ11/ABCC8 were
collapsed to one effective gene in the GSEA due to their physical proximity. ¶GIPR was added to our drug target gene list before its
association with T2D reached genome-wide significance in a joint meta-analysis of DIAGRAMv3 and Metabochip (3).

Figure 2—Distribution of T2D gene association P values of antidia-
betes drug targets. To visualize the enrichment of multiple modest
associations with T2D among antidiabetes drug target genes, we
plotted the noncumulative distribution of adjusted gene association
P values (calculated with MAGENTA) for all the antidiabetes drug tar-
gets (99 autosomal genes), as shown in the first track (red line). The
following two tracks display from top to bottom the individual gene P
values (represented by vertical lines) for the insulin targets subset and
the TZD targets subset. Common insulin and TZD targets are shown in
blue. The dashed line marks the 75th percentile enrichment cutoff.
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;58,000 controls genotyped on Metabochip and applied
a modified GSEA method that accounts for the SNP bias
of this custom array (see RESEARCH DESIGN AND METHODS for
details). Of note, we observed a nominal enrichment of
drug target genes among the nearest gene or the genes in
LD to a set of 137 established or high-confidence T2D
SNPs determined based on a mixture model of the Meta-
bochip meta-analysis z scores (see RESEARCH DESIGN AND

METHODS) (P = 0.003 and 0.04, respectively) (Table 5).
Some of the new gene associations that replicated
were ACSL1 and NFKB1 (TZD targets) and GIPR (which
encodes the receptor for the incretin hormone GIP and
reached genome-wide significance in the joint analysis
of DIAGRAMv3 and Metabochip meta-analyses [3]).

Finally, we asked whether GSEA of human genetic
association data could help to predict unintended, second-
ary phenotypic effects of drug treatment by testing for
enrichment of associations in a drug target gene set, with
a phenotype that is not directly targeted by the specific
drug. We tested the hypothesis that targets of TZDs may
be enriched for genetic associations with cardiovascular
risk factors, such as circulating lipids. This is based on
a potential effect of rosiglitazone on increased risk
of myocardial infarction (35–37) (see FDA Advisory
Committee Minutes at http://www.fda.gov/downloads/
AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/
EndocrinologicandMetabolicDrugsAdvisoryCommittee/
UCM369180.pdf) and on the observation that both
rosiglitazone and pioglitazone affect lipid levels (22).
Thus, we tested whether TZD target genes were enriched
for multiple modest associations with circulating LDL-C,
HDL-C, or triglyceride levels. We applied MAGENTA to
three GWAS meta-analyses of LDL-C, HDL-C, and tri-
glyceride blood levels across ;100,000 individuals (33)
and found that the 38 TZD targets were significantly
enriched for genes associated with LDL-C levels with
modest effect sizes (P = 0.0007, twofold enrichment)
(Table 6). Of note, this result was specific to the TZD
target set (see other antidiabetes drug class target sets in
Table 6). We observed nominal enrichment of triglycer-
ide levels among the TZD targets (P = 0.06) and the full
set of antidiabetes drug targets (P = 0.03). No significant
enrichment was found for HDL-C associations. In addi-
tion to the known LDL-C gene locus APOC3/APOA1, this
analysis proposes that 8 of the 20 top-ranked genes
based on their LDL-C association scores may be novel
TZD targets associated with LDL-C plasma levels (listed
in Supplementary Table 4).

DISCUSSION

Meta-analyses of GWAS have yielded dozens of genetic
variants that are overrepresented in cases of T2D com-
pared with nondiabetic controls (3,6,38–44). The robust-
ness of the evidence for their association with T2D is
based on a stringent threshold for genome-wide sig-
nificance that accounts for the number of independent
tests that are possible among the ;106 common variants

in the human genome (45). Because most common var-
iants have modest effect sizes on common disease (e.g.,
disease risk odds ratio 1.05–1.10), although the adoption
of this strict standard minimizes type I error, it leads
to a high number of false-negative associations that re-
main undetected. The design of custom arrays that facil-
itate large-scale replication genotyping in many samples
(12) can rescue some of these signals through increased
power, but a large fraction (numbering in the hundreds
to low thousands by some estimates) are yet to be discov-
ered (3,4,39).

There is, therefore, a need to integrate additional tools
to mine GWAS data sets in a hypothesis-driven but
systematic manner, which can raise the prior probability
of association while maintaining quantitative statistical
standards. Other domains of biology can be brought to
bear on GWAS data under the reasonable assumption that
not every variant in the genome carries the same low
prior probability of association with a given phenotype.
In addition, queries that set each gene as the functional
biological unit (gene-based tests) can increase statistical
and explanatory power by considering association statis-
tics of all variants that span a given gene and by collectively
analyzing sets of genes that function in common pathways.
The adaptation of GSEA to GWAS data sets as embedded
in MAGENTA accomplishes all these goals, accounting
for differences in genetic and physical properties be-
tween genes (34).

In this study, we applied MAGENTA to gene sets
constructed under the reasonable assumption that genes
whose protein products are targeted by drugs used to
treat T2D are likely to influence glycemia when modified
by naturally occurring variation. The present analysis was
predicated on the initial observation that the first two
reported and confirmed genetic associations with T2D
implicated genes that encode T2D drug targets (14,15).
Based on the empirical evidence of these existing T2D
associations, we postulated that variants in other genes
that encode drug targets have a higher likelihood of asso-
ciation with T2D than the genomic average, if they or
variants in LD to them affect function or expression of
the gene. Indeed, we found significant enrichment of
modest common variant associations with T2D in path-
ways targeted by antidiabetes medications. The results
were replicated in an independent study genotyped on
the Metabochip, persisted after removing validated T2D
loci, and suggest that 15–20 of the top-41 modest asso-
ciations with T2D prioritized by the present GSEA are
worthy of further investigation (about one-half of the
41 top-ranked loci listed in Table 4), mostly driven by
genes involved in insulin and TZD signaling. These
results are also consistent with the nominal enrichment
observed in both the DIAGRAMv3 and the Metabochip
meta-analyses for T2D associations in the PPAR signal-
ing pathway, known to be targeted by TZDs (P , 0.04)
(3). These findings highlight insulin sensitivity networks
as a common nidus of potential T2D associations.
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In addition, some of the top-ranked T2D associations
lie near genes that encode hormones and their receptors,
such as adiponectin and its receptor and incretins and
their receptors (e.g., GIP, GIPR). Of note, some of the
antidiabetes target genes are monogenic diabetes genes,
including PDX1, INSR, KCNJ11, ABCC8, and PPARG (the
latter three are also associated with the common form
of T2D).

Although the present GSEA helped to hone in on
a shortened list of candidate T2D-associated genes,
additional functional analyses and experiments will be
required to decipher which 15–20 of the ;40 top-ranked
drug target genes represent true T2D associations. Possi-
ble approaches include examining their expression levels
in relevant T2D tissues or elucidating the phenotypic con-
sequences of perturbing these genes in model systems.
Further genetic studies with larger sample sizes may pro-
vide additional statistical support. Genes such as ACSL1,
NFKB1, and GIPR that replicated in two independent ge-
netic studies (DIAGRAMv3 and Metabochip) are top can-
didates for follow-up.

Because a large fraction of drugs that enter clinical
trials today fail due to toxicity (46), we examined a test
case to gauge the utility of this approach for detecting
secondary, undesired phenotypic effects of drugs. Specif-
ically, we provided human genetic support for a potential
causal role of LDL-C blood level alterations in the poten-
tial increased incidence of myocardial infarction in people
with T2D following treatment with TZDs (35). Although
LDL-C blood levels have been shown to increase in re-
sponse to TZDs (22), the clinical significance of this
process is not yet clear. Further investigation of the top-
ranked TZD target genes that are most likely to be asso-
ciated with LDL-C based on MAGENTA analysis and that
drove the observed enrichment signal may help to shed
light on the LDL-dependent mechanism through which
TZDs may affect risk of myocardial infarction in people
with T2D. In the future, unbiased mining of genetic

associations with a range of common diseases and traits
may help to propose putative side effects of drugs for
testing during drug development.

The finding that common DNA variants in genes that
encode known drug targets are enriched for T2D asso-
ciations supports the reciprocal notion that existing
genetic associations from GWAS could guide us to novel
relevant drug target genes or pathways. Furthermore,
the present work may have useful applications for future
genetic, pharmacogenetic, or drug development studies:
1) We expect that ongoing deep sequencing studies
and/or larger GWAS focusing on functional variation
might uncover novel genetic variation in our prioritized
T2D-associated loci, 2) we highlight drugs and targets
worthy of dedicated pharmacogenetic studies that might
help to stratify the population into likely responders and
nonresponders, 3) we suggest potential alternative drug
targets for established drug classes, and 4) we provide
additional evidence that might help to prioritize some of
these genes in future GWAS for drug response if a sug-
gestive signal of association with T2D is detected at one
of these loci. One such example is SLC22A1, which en-
codes a liver-specific metformin transporter, because it
is nominally associated with metformin response (47)
and is among our top-predicted T2D-associated drug
target genes.

The approach can be refined with more granular types
of drug target definitions, such as genes whose expres-
sion varies in response to drug perturbations in relevant
tissues or cell types, and can be applied to any complex
disease or quantitative trait with available GWAS data and
knowledge of drug targets. Of note, in concordance with
the present findings, a recent study found that genes
associated with rheumatoid arthritis or genes that in-
teract with the disease genes through protein-protein
interactions are enriched for targets of approved drugs for
rheumatoid arthritis (48). An extension of this approach
to examining low frequency or rare variation in drug

Table 5—Replication of T2D association enrichment signal in antidiabetes drug target set in an independent T2D meta-analysis
(Metabochip)

Genes mapped to
established and
high-confidence
set of T2D SNPs*

Number of Metabochip
replication SNPs (null
set) near one or more
drug target genes†

Number of top-ranked
T2D SNPs near one

or more drug
target genes

Gene set
enrichment
P value

Genes near
established or
high-confidence

T2D SNPs

Nearest gene 48 5 0.003 PPARG1, KCNJ111, IRS11,
GIPR2, ACSL13

Genes in LD‡ 83 7 0.04 PPARG1, KCNJ111,
ABCC81, IDE1 IRS1

GIPR2, NFKB13, ACSL13

*T2D SNP set tested includes 137 loci: 59 established or highly probable SNPs and 78 high-confidence T2D SNPs based on Meta-
bochip analysis (described in RESEARCH DESIGN AND METHODS). †This set includes a null set of 16,408 LD-pruned Metabochip replication
SNPs that does not contain SNPs in LD to previously established T2D SNPs,;5,000 T2D replication SNPs, monogenic diabetes genes,
or QT-interval replication SNPs (see RESEARCH DESIGN AND METHODS ). ‡LD boundaries are defined in RESEARCH DESIGN AND METHODS. 1Genes
near previously established T2D SNPs. 2Gene near T2D SNP found in the joint T2D meta-analysis of DIAGRAMv3 and Metabochip,
which did not reach genome-wide significance in DIAGRAMv3 alone. 3Genes near T2D SNPs that have not yet reached genome-wide
significance but have a high posterior probability of being associated with T2D based on Metabochip analysis (3).
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target genes and pathways may be instrumental for per-
sonalized treatment design.
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